AN IMPLEMENTATION OF THE SCHICK-WCLVERTON AND
THE JELINSKI-MORANDA SOFTWARE RELIABILITY MODELS

by
JOBNNIE CTIS RANKIN
B.S., Oklahoma State University, 1970

A MASTER'S REPORT

supmitted in partial fulfillment of the

requirements of the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1982

Approved by:

gL g - .
_OLL IAII-E[ID 1889448 it
Lk '

Ao ®

R4

198

/
R 36 ACKNOWLEDGEMENTS

C.d

I would like to thank several people for the invaluable
assistance given me during my efforts with this project.
The first is my major advisor, Dr. David A. Gustafson.
_Dr. Gustafson's direction and personal interest in my
project were what kept me going through difficult times.
Additionally, Mr. Robert Young and Mr. Carlos Qualls
provided me with expert technical assistance during the
course of my work. And finally, I would like to thank
Mrs. Mary Beth Cole for her tremendous support. With-
out all of these people and their contributions, I could

not have completed this work.

TABLE OF CONTENTS

ACKNOWLEDGEMENT

TABLE OF CONTENTS .

LIST OQF FIGURES . . & & & o o w = & & 4

LIST OF TABLES

CHAPTER 1:

CHAPTER 2

.
.

CHAPTER 3:

CHAPTER 4:

APPENDIX

APPENDIX

APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX

APPENDIX
APPENDIX

A.

INTRODUCTION

DESIGN ISSUES . . « « « + =
TESTING AND VALIDATION
CONCLUSIONS

LOGIC AND DATA FLOW OF THE
IMPLEMENTATION . £

IMPLEMENTATION STRUCTURE AND SPAN
OF CONTROL . . . o e e e e e

MODULE SPECIFICATIONS/DESCRIPTIONS
ISSUES OF MODIFICATION

SCHICK-WOLVERTON SOFTWARE
RELTABILITY MODEL

JELINSKI-MORANDA SOFTWARE
RELIABILITY MODEL

VALIDATION OF PROGRAM MODEL
COMPUTATIONS« . .

SOLUTION FORMATS
PROGRAM SOURCE CODE LISTINGS . . .

i1%

1id

iv

® wn = <

10

T

19
27

. 36

. 40

43

. 46
v B

57

¥ R - - .U ¥, B - O L B R o

[
o

'—l
'—l

12.

13,

LIST OF FIGURES

General Logic Flow of the Main Program .

General Logic Flow of Display Driver Program .

General Implementation Schematic .
Prompting Procedures Schematic

Model Coﬁputation Schematie
Print Tabular Display Schematic

Graphical Solution Schematic .,

Chromatics Display Device Schematic
Plotter Display Device Schematic

Tabular Solution Format Example
(Both Models Selected)

Tabular Solution Format Example
(Schick-Wolverton Model Selected).

Tabular Solution Format Example
(Jelinski-Moranda Model Selected).

Graphical Output Example .

iv

. 137
. 17
. 20
. 21
v 22
. 23
. 24
v 29
. 26

. 53

. 54

. 55
. 36

LS I - T L

Comparison
Comparison
Comparison
Comparison

Comparison

LIST OF TABLES

of Model Accuracy
of Model Accuracy
of Model Accuracy
of Model -Accuracy

of Model Accuracy

Case
Case
Case
Case

Case

LS, I - N L D - T

47
.48
.49
.50
.51

Page 1

CHAPTER ONE
INTRODUCTION

One of the major tasks facing the software engineer
in the program development cycle is the-determination of
when a sufficient amount of testing has been performed.
This is not an easy decision to make. Determining that a
sufficient amount of testing has been conducted is in a
sense a statement of the degree of the correctness of a
software package. The degree of difficulty which is as-
sociated with this decision drastically increases as the
size of the software package increases. In addition, there
are factors which tend to exert pressure to reach this deter-
mination as expeditiously as possible. These are mostly
economic factors of course, such as, time, the cost of
large manpower requirements to perform the testing functions,
the cost of the associated adﬁinistrative requirements to
perform the testing function, and the overall cost of the
testing effort. It is widely accepted that the testing and
certification effort is one of the more expensive portions
of the developmental cycle and thus any efforts toward allow-
ing this determination to be made accurately and as soon as
possible wou;d be welcome by the software engineer.

The Software Reliability Model has evolved as an aid

in making this determination[3, 9, 10]. The process of

Page 2

determining sufficiency of testing can be accomplished with
more confidence, less time, and reduced cost by the use of

a valid error prediction model [12,13,15]. Thus, the Soft-

ware Reliability Model has become an important factor in the
area of testing.

It should not be construed that this model is the answer
to each and every problem in testing. It is obviously not.
The Software Reliability Model would be utilized most effec-
tively in an integrated role with other alternatives to deter-
mining sufficiency of the testing effort. These other alter-
natives include number of errors discovered over a period of
time, the number of paths of a program executed during testing
and this number's relationship with the total paths of the
program [3,5,13], and the criticality of those errors discov-
ered. Although these alternatives are frequently used in the
decision making process to determine this sufficiency of test-
ing [13], there is certainly room for improvement in the area.
The Software Reliability Model would be useful as one of the
collection of indicators that the software engineer may use
to reach a sound decision as to when enough testing has been
done. |

With this statement of the importance of testing and
specifically the determination of when enough of the testing
process has been performed, the purpose of this project is
twofold. The first is to provide the Department of Computer
Science at Kaﬂsas State University with a tool that could be

used in classroom applications. Basic software engineering

Page 3

courses offered in the department include material discus-
sing the program development cycle quite extensively, and
naturally enough the testing phase of the cycle is also
extensively covered. It is intended this implementation be
integrated into the testing material of the development cycle
as an indication of how the Software Reliability Model could
be integrated into the decision making process to determine
sufficiency of testing.

The second purpose of this project is to increase my
expertise and exposure in an area I will have continued ex-
posure to within the military environment, that of testing,
and to provide me with the framework of a package that can
be utilized at other computer facilities performing various
functions within the Army.

This implementation is an interactive program which is
designed to compute the estimated reliability associated
with a number of errors in a partially debugged sofware pack-
age. The implementation offers the use of two currently
accepted Software Reliability Models, the Schick-Wolverton
and the Jelinski-Moranda model. Appendices E and F have
additional details of these two models. The implementation
has been designed to support a user friendly approach to the
interactive process by providing two distinct levels of
interaction, an expanded instruction sequence for a user un-
familiar with the program and a minimum instruction sequence
for a user who is more experienced with the program execu-
tion sequence. See Appendix I for details of the degree of

interaction and instruction sequences offered.

Page 4

Besides reliability estimates, the implementation in-
corporates other meaningful estimates of importance to the
managerial level and to the software engineer. These est-
imates are the mean time to failure of the software project
and the time to discover all remaining errors within the
software project. As a byproduct of the reliability models
in general, these two estimates have an important place in
the determination of sufficiency of testing by the very

nature of the information they convey. An estimate which
is an accurate reflection of a mean time to failure rate

would be of keen interest to a manager of a project. The
same type of generalized statement can also be made about
the time to discover all errors within the software package
estimate. This information could prove to be invaluable in
projecting schedules, curtailing costs, determining suffi-
ciency of testing, or any number of other decisions that the
manager and/or software engineer must make during the devel-
opment cycle of a software project.

All computations of this implementation may be pre-
sented on two solution forms. These are a tabular form on
which the reliability estimate, mean time to failure, time
to discover all errors within the package, and other statis-
tical information is presented, and a graphical form on
which reliability is plotted versus mean time to failure for
the software package. See Appendix H for examples of these

solution forms.

Page 5

CHAPTER TWO
DESIGN ISSUES

In the preliminary design phase of this implementation,
the overall effort was directed to designing an implementa-
tion package that would meet the purposes, as outlined in
Chapter 1, for doing this project. Two basic goals surfaced
from this effort. They were first of all to design a system
implementation package that was highly '"user friendly" in
nature and secondly to design a system implementation package
as far as future modifications were concerned and thus in-
crease the usefulness of the implementation to the Depart-
ment of Computer Science. See Appendix D for a detailed dis-
Cussion of modification issues relative to this project.

In deciding how to approach the design of the overall
project, it became obvious that the package should be highly
modular in nature, with functions of querying the user to
collect data necessary for the models to operate on and the
actual computations themselves being performed within sep-
arate packages. The mechanics of drawing the solutions would
also be modularized into separate packages. This approach
led to the development of three separate programs, one to
interface with the user and collect all necessary data to
perform the computations on, and one for each display device
used. The initial planning called for two devices to be

incorporated, the Chromatics display device and the Plotter

Page 6

display device. This decision avoided one monstrously large
implementation package and allowed the development of three
medium sized packages.

A subsequent issue addressed in the design phase was
the form of the solution offered to the user. Although
the initial planning was for a graphical solution, it be-
came obvious in investigating and researching the models
to be used, that they offered information of importance
that would not be displayable on a graph. This led to the
décision to incorporate a tabular type solution format and
offer the user the choice of which, or both, format he de-
sired. This decision turned out to be wise for it allowed
a more accurate presentation of the computation of the model
than can be interpolated from a graph. However, I did not
feel that this increase in detail completely negated the
value of a graphical solution in that the graphical solution
is extremely valuable in showing trends in the data collected
during the testing cycle of some software project.

The issue of providing a relatively user friendly inter-
face was easily solved. Two levels of interaction were
chosen, as detailed in Chapter 1 and Appendix I, and the
decision was made to provide a '"help" function to assist
the user in moments of indecision as to the proper response
to a program generated query.

In refrospect, I am firmly convinced that this decision

was the proper and correct one. I feel I have accomplished

Page 7

a design that will facilitate the incorporation of modifi-
cations easily and efficiently, and am certain that my design
assisted greatly in the programming and debugging phases of

the implementation.

Page 8

CHAPTER THREE
TESTING AND VALIDATION

Testing of this project was difficult at best. 1In
the testing process, three phases were used. These were
-exercising the user interface, verifying the accuracy of
the implementations of the models, and verifying the accur-
acy of the graphical solutions. As in most projects, more
time was spent in debugging and testing than in the actual

programming. The approach for each phase is presented be-
low.

To thoroughly test the interface of the implementation
with the user, two steps were used. The first was to exer-

cise each decision node of the interface procedures and

the second was to utilize 24 undergraduate students to sepa-
rately execute the program and offer a critique of its inter-
face potential. I found this latter step to be of immeas-
urable value. Through the candid remarks of these student
testers, I was able to refine initial instructions, queries,
and assistance messages to the user to provide a meaningful,
straight forward series of directions. This obviously
enhances the ability for someone unfamiliar with a statis-
tical reliability package to be able to successfully exe-
Cute this implementation. No formal data as to the number
of errors discovered during step 1 of this phase or concern-

ing those suggestions made during step 2 of this phase was

kept.

Page 9

In exercising each decision node of the interface
procedures with the user, errors were discovered and correc-
ted. As each of these decision nodes in the interface it-
self is dependent upon a user input, this step was actually
easy to accomplish.

Verifying the accuracy of the program computations was
inherently more complicated than the exercise of the user
interface. This is obviously a function of the highly math-
ematical nature of the models used. The accuracy was veri-
fied by hand calculating the various forms of solutions of
each model over a range of inputs. See Appendix G for a
representative sample of inputs used in this verification of -
model accuracy. Some difficulty was encountered in choosing
the inputs to examine because the size and number of the in-
put parameters that could be successfully calculated by hand
was limited. Nevertheless, the results of these efforts
indicate a sound basis for judging the implementation cal-
culations to be correct.

Finally, the last phase of the testing process was
easily accomplished after the computations of the program
were verified. This last phase was the verification of the
graphical data and that was of course very dependent upon
the model calculations being correct. Once this fact was
established, this phase became an exercise in verification
of the conversion of the model data to x and y graphical
coordinates. Numerous graphs were analyzed and the results

were positive in that the graphs are accurate.

Page 10

CHAPTER FOUR
CONCLUSIONS

I feel that this project has satisfied my purposes
for doing it. I have certainly increased my expertise in
the area of software reliability and the area of reliabil-
ity in general. '

The implementation works well but after being so
éctively involved, I can see a necessary addition to make
this implementation particularly useful to the Department
of Computer Science. This addition would be in the area
of adding display devices used.

I feel that at least two more types of display devices
could be added with relatively little difficulty. The two
types I would recommend are the Spinwriter device and the
CRT terminal itself. The addition of the Spinwriter device
would provide an additional hardcopy capability to the
implementation. At present, only the plotter offers the
hardcopy capability. The addition of the CRT as a display
device would provide the implementation with an increased
flexibility, if only in so much as increasing the number of
devices available for use. To be widely used in the Depart-
ment, more devices will be needed and the CRT addition could
certainly‘do that. I have expanded on the issue of modifi-

cations to this implementation in Appendix D.

Page 11

Finally, in evaluating this implementation, I must also
consider the negative aspects. I feel there was one major
detriment to my efforts and that was the language chosen to
do this implementation, PASCAL. PASCAL was not the language
suited for this application. FORTRAN is much better suited
due to its power in handling the arithmetic computations
which were necessary to perform. The very nature of the
computational models used in this implementation is highly
mathematical. The absence of capabilities in the Inter-
data implementation of PASCAL such as mixed mode arithmetic,
exponentiation, the standard functions used to raise the nat-
ural logarithm base to a power, a square root capability,
and the inability to directly write real numbers caused me
many hours of grief. A typical implementation of the FORTRAN
language would have solved these problems, albeit creating

some self-documentation short comings in the process.

Page 12

APPENDIX A
LOGIC AND DATA FLOW OF THE IMPLEMENTATION

The logic flow of the main program of this implementation

is divided into five phases. These are the establishment of

a prompting level, querying and obtaining user data, perfor-
ming the computations upon the data by the applicable reli-
ability model, preparing the user selected solution forms

for display, and presenting the selected solution forms to

the user. This flow is represented in the Figure 1. Also
Appendices B and C for other pertinent information concern-
ing span of control during execution of this implementation
and specifications and descriptions of modules of the main

program and the display driver programs.

Page 13

USER RESPONSE TO
MAIN BODY QUERY

ESTABLISH
PROMPTING
LEVEL

PROMPTING LEVEL SELECTED

.
COLLECT
USER
DATA
USER DATA
COMPUTE
MODEL
METRICS
CALCULATED
VALUES
PRESENT
SOLUTION
FORMS

Figure 1. General Logic Flow of the Main Program.

Page 14

The logic flow of the main program of the implementa-
tion is summarized as follows, by procedure function.

a. The user is queried as to which level of interac-
tive prompting he desires. There are two options which are
available, full or partial prompting. This initial inter-
active session is conducted through the main body of the
program. Once the user has decided upon the level of promp-
ting option procedure where the remainder of the execution
is controlled.

b. The prompting procedure selected again controls the
execution sequence of the main program. Specific functions
performed are as follows:

1. Directs the user through the inputs which are
necessary to collect all data required to compute the esti-
mates of solutions by the respective reliability models.
These are as follows:

a. Which reliability model to use.
b. Which solution form is desired.

. The scale of the mean time to failure axis

[e]

if the graphical solution was selected.

d. The number of errors estimated to be initial-
ly present in the software package.

e. The number of error testing intervals.

f. The time length associated with each of the
error testing intervals.

2. After successfully collecting all input data,

the prompting procedure invokes the procedures to compute

Page 15

the solution forms of the program. There are separate pro-
cedures for the Schick-Wolverton and the Jelinski-Moranda
models. |

3. After computation of the model results, the
prompting procedure invokes the respective procedures to
load the results computed into the form which was selected
by the user. Again, this form may be graphical or tabular.
There are separate procedures to load Schick-Wolverton and
Jelinski-Moranda data into the tabular soclution form and
to convert the data into coordinates to be graphed.

4. If the tabular solution form was selected,
the prompting procedure invokes the tabular solution print-
ing procedure. If both solution forms were selected, the
tabular solution form is presented to the user first.

5. If the graphical solution was selected, the
prompting procedure invokes a procedure used to obtain the
display device the user desires to use. The candidates are
the Chromatics or Plotter display devices.

6. After the device has been specified, the promp-
ting procedure invokes a procedure which in turn invokes the
particular display device driver program selected by the
user,

7. Upon finishing the above tasks, the prompting
procedure passes control back to the main body of the prog-
ram,

c. Upon receipt of control from the prompting proce-

dure, the implementation program is terminated.

Page 16

d. At each step of the prompting procedure, interaction
is carried on with the user in a "user friendly" fashion.
All input data is for legality checked and the user notified
and asked to reenter that data found to be in error.

e. Finally, at each step of the prompting procedure,
access to an assistance procedure is provided for the con-
venience of the user.

The logical flow of the display driver program por-
tion of this implementation is divided into three phases.
These phases are receiving control from the main program,
drawing and labeling the graphical framework, and then
drawing the graphical solutions themselves. See Appendices
B and C for other pertinent information concerning logic
flow, specifications and descriptions of modules of the dis-
play driver programs. Flow within the display driver pro-
gram is represented in Figure 2.

The logic flow of the display driver programs is
sumnarized as follows:

a. Receipt of control and the graphical coordinates
to be plotted is received by the main body of the driver
program. The procedure to control the activities of the
driver program is then invoked.

b. The controller procedure directs all further
execution of the program. This procedure performs the
following functions:

1. Invokes the system initialization procedure

to draw and label the graphical framework.

GRAPHICAL DATA
PASSED FROM
MAIN PROGRAM

DETERMINATION
OF REQUIRED
GRAPHS

h' S

INITIALIZATION

OF

GRAPH

Figure 2. General Logic Flow of Display Driver

Program.

3

DATA POINTS
PLOTTED
ON GRAPH

Page 17

Page 18

2. Invokes the graph drawing procedure to plot the
coordinates on the graphical framework.

3. Returns control to the main body of the driver
program.

c. The procedure used to initialize the system uses
the primitive commands of the respective display device to
draw the graphical framework, to label the intervals of the
x and y axis, to label each axis, and to provide the legend
to enable the user to distinguish data presented on the
graph.

d. The procedure used to actually draw the graphs
again interfaces with the primitives of the associated dis-
play device to perform the task of drawing lines at the

proper locations.

Page 19

APPENDIX B
IMPLEMENTATION STRUCTURE AND SPAN OF CONTROL

The program structure and span of control of certain
procedures are depicted in the Figures 3 through 9. Control
is indicated in each figure by the connecting line. The
General Implementation Schematic (Figure 3) is successively

broken down to provide detail as the logic and control flow.

Page 20

MAIN BODY
PROMPTING
PROCEDURES
MODEL TABULAR
COMPUTATION SOLUTION
PROCEDURES PROCEDURES
GRAPHICAL
SOLUTION
PROCEDURES

Figure 3. General Implementation Schematic.

PROMPTING
PROCEDURES

Page 21

SCHICK-WOLVERTON

JELINSKI-MORANDA

LOAD S-W
. TABULAR DISPLAY

LOAD J-M
TABULAR DISPLAY

COMPUTE WRITE
HELP STRING
COMPUTE READ PRINT TABULAR
INTEGER DISPLAY
COLLECT GRAPH LOAD S-W
INFORMATION GRAPH DATA
DRAW LOAD J-M
GRAPHS GRAPH DATA

Figure 4. Prompting Procedures Schematic.

MODEL
COMPUTATION
PROCEDURES

E RAISED TO
THE POWER OF X

Page 22

SQUARE
ROOT

Figure 5. Model Computation Schematic.

PRINT
TABULAR
DISPLAY

WRITE TABULAR
SOLUTION

Pagze 23

WRITE
INTEGER

Figure 6. Print Tabular Display Schematic.

DRAW
GRAPH

PROGRAM
CHROFIX

Page 24

PROGRAM
PLOTFIX

Figure 7. Graphical Solution Schematic.

NOTE : Invocations of Program Chrofix and
Program Plotfix are external to the

main program.

Figure 8. Chromatics Display Device Schematic.

Page 25

DISPLAY DEVICE
PRIMITIVES

MAIN BODY
USER
PROGRAM
SET UP OUTPUT
SYSTEM LINE
DRAW
GRAPHS

MAIN BODY

Figure 9. Plotter Display Device Schematic.

Page 26

DISPLAY DEVICE
PRIMITIVES

USER
PROGRAM
SET UP OUTPUT
SYSTEM LINE
DRAW
GRAPHS

Page 27
APPENDIX C

"MODULE SPECIFICATIONS/DESCRIPTIONS

As each major function of the iﬁplementation is accom-
plished through a specific procedure or procedures, the for-
mal specifications and descriptions of the procedures are
described below. Additional details of each procedure are
provided in Appendix I.

Procedures of the main program are as follows:

a. Procedure Provide Full Prompting. This procedure
provides an elaborate interface with the user to collect the
information necessary to perform the model calculations and
present the solutions. Questions are preceded with complete
explanations of what the question is and what the possible
answers are. Access to an assistance procedure is provided
with each question. The procedure controls the execution
sequence of the main program. This execution sequence and
the span of control of this procedure is detailed in Appen-
dices A and B, respectively.

This procedure is invoked from the main body with no
parameters. The procedure exercises access to global data
variables used to indicate the following:

1. The number of errors initially present in the

software package being analyzed.

