A MASTER"S DEGREE COURSE OF STUDY DATABASE

by

GEORGE RICHARD HUGHES

B.A., Kansas University, 1973

M.A., University of Regina, 1974

A MASTER’S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas
1979

Approved by:

5Vc.QﬁL

oy

AGGT
.RY
1179
HE
c.2

TABLE OF CONTENTS

List Of FIgures . « « « ¢ o ¢ o ¢ s ¢ s o s s o s o s «

Part 1I.

Part 1II.

Part III.

Part 1IV.

Part V.

Introduction e o o 5 8 o 8 e s o e e o = &
L.l HiStOrY . ¢« o o ¢ o o« o o o a s s s o =
1.2 Preliminary Guidelines . . « « + « « &
1,3 Controlling PurposSe . . « « o o s « + s
Specification Requirements . « « « ¢ ¢ « o «
2,1 Listing of requirements+ . . .

2,2 Relatijonships Between System Components

Description of Functions e & o o o s s s @

3.1 User Operations

L]
L]
.
L]
-
L]
L]
L]
»
L]
L]

3.2 The Database . . ¢ « ¢ « » s s ¢ o o =
3.3 Program GPAlL . . . ¢ + ¢ o o o » o o
3.4 Program CHECK . ¢ « ¢ o o s o o s o s &«
3.5 Program Check2 . . « « ¢ o ¢ « o s o @
3.6 Program CLASSES . ¢« « s o ¢ o« « s o s «

3.7 hxt '11'. L] L] - L] L [] - L] - L] . . . -

The Interface . + « « ¢ o ¢ ¢ s & s o s o @

Smm ry - * - L - L) . L] - - - - - - L L] L] -
5 - 1 Anal Y’ 1' L L] - - L - * - . L] L L] - . L

5.2 Concluding RemarksS . o ¢ « o s + o« o =«

Bibliogrlphy * e 8 ® 8 & e 8 8 ® 2 8 " e &

Appendix A -~ User’s Guide . . + « « o s » =«

ii

iv

11

11

12

19

21

23

24

25

26

30

30

31

33

34

iii

Appendix B = Supervisory Manual 36

Appendix C = Functional Specifications . . . 44

FIGURE

2,1 System Component Ralations

3.1 Database Definition of COURSE

B.l Procedure for Gaining Access to COURSE
C.l Ssource Code for Program GPAl .,

C.2 Source Code for Program CHECK

C.3 Source Code for Program CHECKZ ,

C.4 Directory for Text Files

List of Figures

-

*

iv

10

14

38

51

54

58

63

CHAPTER I

INTRODUCTION

1.1 History

There has been an ongoing effort in this University to
automate certain student records. The college of Home
Economics has developed a program which will verify what
Bachelor’s degree course requirements are being met by their
ma jor students. This program helps faculty members advise
students in planning course loads for future semesters.
This program was implemented using PL/l, with no provisions
made for any sort of database management system (DBMS). [4]

Although several Home Economics departments at other
institutions have expressed interest in duplicating this
implementation, it suffers from being used in the batch mode
only. Additionally, this program does not lend itself
easily to modification, and given frequent curricula changes
at both the departmental and College levels, this is a
serious complaint.

Voelz and Garland (8) designed a prototype system
using a DBMS that would contain University-wide academic
records. This implementation wutilized the Integrated Data
Base Management System (IDMS) [2] , and was an adequate
starting point. The commitment to a DBMS was important
because the data can be described, stored, and manipulated

independently of different users. Voelz and Garland’s

2

design proved to be too large, expensive, and wide ranging
for any Computer Science Department applications.

In 1976, Long (4] constructed an IDMS database that
extended upon the concepts of Voelz and Garland’s scheme.
Long was commissioned to make an economical system which
would act as a counselling aid for the Computer Science
faculty. Other requirements to be met by this database
included Bachelor of Science requirements, major course
requirements in Computer Science, some personal information
on the student, and courses completed and/or currently

enrcolled in. This program also used the batch mode on an

IBM 370 mainframe,

1,2 Preliminary Guidelines

The evolution of computer programs that automate both
academic record keeping and student advising procedures
continues. During discussions last Fall, the need was
expressed for a prototype system which would go beyond the
efforts mentioned above. The major contraints upon this
system were:

1., the system must be available to interactive

displiy terminal users

2., the DBMS must provide independence and security

3. the system would advise and help Master s students

in Computer Science

4, the prototype must be cost effective

3
These constraints necessitated using the Department’s
Interdata 8/32 minicomputer, and a conversational DBMS
system INFO32 [3] , as the hardware and software support,
respectively, for this project. The choice of the 8/32
reflected the cost constraint, as the overall database would
be cheaper to operate on this machine campared with an
implementation on the Kansas State Computing Center’s Itel
AS=5, The smaller machine had the added benefits of
terminal display mode, and convenient access for Computer
Science students,
Other reasons for choosing the Interdata mini were that
the Department would like to encourage the use of the 8/32
by out of town users via telephone links. Furthurmore, the
Department has a continuing research interest in database
applications for minicomputers over distributed networks.
INFO32 is a software product of Henco, Inc. {31.
Primarily a business oriented system, INF032 uses English
keywords as language command instructions for data entry and
update, query formulation, and report writing. INFO32 was
selected as the DBMS because it works well in a terminal
display environment, was available on the 8/32, and lent
jtself easily to a frontend interface [5] . This interface
will provide much of the data security and independence, as
it masks the user from the actual INFO32 database. It will

be discussed at a later time in this report.

1.3 Controlling Purpose

The controlling purpose of this report is to show the
design and implementation of this Master s degree database
prototype project. We have already looked at the background
of previous attempts in this area, and the renewed interest
in providing new informational services to prospective and
enrolled graduate students across the state.

In Section 1I, we will describe the specific
requirements that this project will ¢try ¢to fulfill. 1In
Section III, the database design will be discussed, and the
assertions that can be made about the various data items,
Other program parts within INF032 that manipulate this
database will also be described in this section.

We will outline the general data independence gqualities
that the backend interface between the user and the database
will support. A summary of this report will be presented,
as will a look at future directions for this type of work.
Finally, the appendices document the user and supervisory
manuals needed to modify or keep this implementation

functioning.

CHAPTER I1

SPECIFICATION REQUIREMENTS

2.1 Listing of Requirements

The impact of the initial constraints was felt mostly in
the selection of physical devices and software packages.
These constraints did not really effect the design or
logical organization of the fledgling project. Section II
will be an amplification of the overall purposes of the
project, and a complete statement of specifications that
will be realized in this implementation.

This project will be comprised of up~to-date, but
un-official academic and personal facts about Master’s
students in Computer Science. Several different purposes
are suggested by the specifications that follow. The first
purpose is informational. Sstudents can choose to view
reports about admission requirements, equivalent experience
in this discipline needed at the outset of graduate work, or
other matters relating to the Master’s program in Computer
Science at Kansas State University.

Secondly, this implementation will securely store
courses completed or enrolled in for individual students.
The credit hours and grade received for each course, and the

gsemester when the class was taken can alsc be entered into

the database. The student may, on demand, request that his
grade point average be calculated, or have his list of
courses evaluated for degree requirement satisfaction.

The third purpose of this project is to duplicate
certain Departmental personal files. Faculty members can be
spared the tedium of shuffling through file folders when
checking on the progress of a graduate student.

These three purposes helped to shape the following
required specifications:

1. Interactive capability for Manhattan, and out

lying users
l.a. access informational text files
l.b. one academic record stored in the database
per user
l.b.1, user can create this record
l.b.2. user can update items in this record
1.b.3. user can read through parts of this
created record
2. Database Administrator
2.a. purges inactive records
2.b. supervises the maintenance of the system
2,c. modifies the system due to necessary
changes
3. Interface that will monitor communication
between the user and the INFO032 database

J.a. controls user creation, updating, and

reading

3.b.

controls user access to informational text
files

provides some type checking on data
provides for data independence and

security

Individual Student records

4.a.
4.b.

4.c.

4.4.

name, address, etc.

city where enrolled

means of financial support (only important
if the student is a Computer Science
Department employee)

courses taken or currently enrolled in
4.4.1. course number

4.d.2. letter grade

4.4.3. credit hours

4.d.4. semester of enrollment

Queries allowed on the database record

5.a.

5.b.

S5.e.

5.4.

grade point average calculation

student’s position with regards to the

30 graduate credit hour minimum

‘Cc’ and ‘D° credit hour deficiency
curriculum checks for required courses
5.d.1. core curriculum classes

5.4d.2. upper level class

5.d.3. graduate seminar

Information

Department admission requirements

6.b. Department MS requirements

6.c. Bachelor of Science equivalent experience
one should have, or undergraduate
classes to be made up upon acceptance into
this Master’s program

6.d. current and following semester schedules

6.e. Kansas State Computer Science faculty
biographical sketches

6.f. courses acceptable for MS degree credit
6.£.1. pre-requisites
6.f.2. content of courses
6.£.3., credit hours for the course

7. No concurrent use of the database, at least for

the time being

2.2 Relationships Between System Components

At this point, it would be best to explain the

interrelationships between all the different parts of the

system that will implement these specifications.

The MTM operating system in the Interdata 8/32 oversees

and supervises any communication between the component

parts. Its task is to provide the environment by which

these parts can utilize the minicomputer’s resources.

The DBMS, INF032, controls all messages regarding the

database itself. The INFO32 system only allows qualified

users making legal gqueries to manipulate any part of the
database.

This underscores the fact that the Fortran interface’s
[6] main job is the interception and interpretation of
commun ications between a terminal user, INFO32, and
ultimately, the INFO32 database COURSE. The interface lets
the user choose from a limited set of options. The messages
outlining these options are sent to the user, the user
chooses a particular task, and the interface executes the
necessary steps to carry out that task.

The interface, in this way, receives and gives messages
to both the DBMS and the student user. The text files are
chosen individually by the student, the interface learns of
the choice, and then extracts for display the correct file.

Fin:lly, the student user can only send messages
directly to the interface, while receiving information from
the DBMS programs, the text files, and the monitoring
interface. The supervisory user can use the database by
circumventing the interface, and dealing directly with
INFO32. On the systems level, the supervisor can maintain
and create any text files.

A graphical representation of the system components can

be seen in Figure 2.1.

10

asvd

vivd i

d3asn
INIANLS

T'Z 3uno14

53714 [— ,MU/
1X31 > <

¢ L
IOVA¥ILNI
»l
SWeda
ZE04NI

W3LSAS ON11lvid3ddo

d3asn
AdOSTAY3dNS

1l

CHAPTER III

Description of Functions

The next step is to put flesh on the skeleton of
existing requirement specifications and constraints. This
chapter contains a description of the logical organization
of various program segments. The tasks involved here are
either the database itself, or command stream programs
within the INFO032 file directory which can act upon the
currently selected student record.

The latter type of program includes GPAl, CHECK, CHECK2,
and CLASSES. The more detailed functional specifications on

these tasks will appear in the Appendix.

3.1 User Operations

There are four primary operations that a user, with the
interface’s help, can make on the database COURSE. A new
student can enter the suggested personal information into
his own record. Secondly, a continuing student can make
updates on selected database items, by either changing the
original entries, or entering information ¢that is new, as
would be the case after a completed semester.

At any point in the interactive session, the user can

choose to view his database record in its entirety.

12

Finally, the wuser c¢an request operations that gquery his
record for curriculum checks and grade point average. These

user operations suggest the following definitions for the

database.

3.2 The Database

The database’s chief feature is the reproduction and
automation of a graduate student”s Departmental file. To
this end, many of the data items are fairly straight
forward, such as first, last, and middle names; and street,
city, state, and zip code for composing addresses. Although
ZIP is not yet used for any calculations, it was thought
that an integer and not a character representation would be
advisable. We don”t want to confuse the Postal Service with
any “ABCDE’ zip codes.

The database now consists of 82 separate data items or
data fields, which amount to a total of 373 bytes. As can
be seen from Figure 3.1, more than two thirds (or 56) of
these data fields consist of the record keeping apparatus
for storing 14 different courses, grades, credit hours, and
semester of enrollment.

The association of each CLASS-xx, GRADE-xx, HOURS=xx,
and ENROL-xx is made by the last two character places on
these data item names. For example, CLASS-09 is associated

with GRADE=09, and with HOURS-09, and so on. The choice of

13

14 different courses was an arbitrary decision based on the
fact that most graduate classes are three credit hour
courses. Since most graduate candidates do not greatly
exceed the 30 credit hour requirement , 14 classes should be
sufficient for this amount of course work.

Approximately 45% of the database storage requirements
are needed because INFO32 does not have any dynamic allo-
cation feature, and so these 56 static fields must always be
in place. An array implementation with looping would have
definitely shortened the command stream programs, which for
the most part, manipulate these fields of classroom
achievement.

To complete the discussion of the 14 repetitive class
instances, data items CLASS~0l through CLASS=14 were chosen
to be of type integer, with a range of 1 to 999999, The
reason for integer typing for this item was that logical
comparisons like ‘greater than’ or “equal to”’ were needed in

determining if degree course requirements had been met.

Database Definition of COURSE

ITEM=~NAME

LAST

FIRST

MIDDLE

SSN

STREET

CITY

STATE

ZIP

TELEPHONE
WHERE=-ENROLLED
FULL-TIME
START-OF~PROGRAM
MASTERS~EXAM
DATE-MS=EXAM
ORALS=PASSED
DATE-OF=ORALS
DEGREE=SOUGHT
SUPPORT-CLASS
SUPPORT=START
SUPPORT=SOURCE
SUPPORT=TENTH
ADVISOR
MAJOR=-PROF
GPA
TOTAL-HOURS
TOTAL-CREDITS
CLASS=01
GRADE-01
HOURS=-01
ENROL=-01
CLASS-14
GRADE-14
HOURS=-14
ENROL-14

TYPE

Character
Character
Character
Character
Character
Character
Character
Integer
Character
Character
Character
Date
Character
Date
Character
Date
Character
Character
Date
Character
Integer
Character
Character
Numeric
Integer
Integer
Integer
Character
Integer
Character

Integer
Character
Integer
Character

LENGTH

N e
o oo wun

N -
W

TN YRT
N o

[0, B -]

-

B et oy) DO = Lo g N) QO e QO et OO

o -

Figure 3.1

14

POSITION

16
26
36
45
65
80
B2
87
99
111
112
120
121
129
130
138
141
146
154
loe4
167
182
197
201
203
206
212
213
214

362
368
369
370

to

to
to

to
to

to
to
to
to
to
to
to
to
to
to

to
to

to
to

to
to

to
to

to
to

to
to

to
to

to

to
to
to
to

15
25

44
64

79

86

98
110
111
119
120
128
129

137
140

145
153

163
166

181
196

200
202

205
211

212
213

217

367
368
369
373

15

Six integer digits were wused, as a course like C. S.
720 must be designated as its full course number-- 286720--
because 720 is not a unique identifier. Any other depart-
ment might have a 720 course number, so consequently all six
digits are present.

Items GRADE~0l1 to GRADE~1l4 were set to be ocne byte
character variables, 8o that the wusual alphabetic marks
could be recorded. This GRADE-xx series is not without its
problems, as any other letter can inadvertantly be entered.
In the cases of °“I° for incomplete, or "W’ for withdraw,
this incorrect data entry seems at least plausible.

Since the DBMS and interface do not check for this type

of error in data validity, the command stream programs

rd rd

generally treat courses with grades of anything but “A°,

- -

B°, “C°, or “D° as courses that have yet to be completed.
Maybe by being informed that a course he is sure he has
completed has not been taken, a student will be moved to
recheck the grade entry for this course.

HOURS=01 to HOURS~14 are all one digit integer variables

that contain the credit hours for that particular course.

It would have been a small matter to check these values for
accuracy, as most classes are worth three credit hours. But
since there is a curriculum change being considered whereby
emphas is courses like C. S. 700 are expanded to four credit
hours, this testing was not done.

ENROL-01 through ENROL-14 jdentify the semester in which

a class was taken. A four character shorthand code is the

16
suggested valid entry, as Fall 1978 becomes °‘FA78°.
Similarly, “SP” for Spring and “SU° for Summer are the other
acceptable combinations for the first two data places. The
last two places are just the last two digits for that year.
No verification is done with this field, as entries like
“"W1° for Winter, or several Intersession terms that defy
classification are certainly possible for the database
user.,

The perscnal information like name and address is not
too controversial. Telephone, the items that comprise the
address, and last name are updatable, as people move, and in
a sometimes related action, change their last name.

Having the SSN, or social security number, as a length
nine character string item in this database could be the
source for data being compromised, and could even cause
legal headaches. The initial design of this database used
the SSN as the key by which a wuser would identify his
existing record. The fallacy in using SSN as the key to
selecting this database record is that (especially at a
school like Kansas State where social security numbers are
also student identification numbers) a social security
number can often become public knowledge.

An unscrupulous person could then jeopardize a database
record containing the SSN that he had somehow obtained. The
response to this serious problem was to have the interface
generate and display a five character hash key based on an

individual ‘s social security number upon record creation.

17

All subsequent referals to this record would only be allowed
by the entering of this hash key at the beginning of the
conversation. There is great room for improvement in the
area of protecting this data.

The WHERE<-ENROLLED variable was included so that
Manhattan, Leavenworth, Wichita, or Kansas City students
could be differientiated. Full time status is a simple one
character ‘Y’ or “N° entry, with presumably more Department
attention being given to full time students.

In the case of FULL-TIME, as well as the other one
character items MASTERS-EXAM and ORALS~PASSED, the “Y’ or
“N° type checking is done at data entry by the interface.
An “N° response to these last two items will cause the
interface to branch around DATE-MS—~EXAM and DATE-OF-ORALS,
respectively. To wit: if one hasn't passed the crals exam,
there isn“t much point in asking when that exam tocok place.

INFO32 does make provisions for date types. All dates
are checked for wvalidity by this system, with the format
being MM/DD/YY, or 6/27/79, This will be the only practical
type checking for dates because of the problem encountered
when this prototype reaches the twenty—-first century. The
answer would be to wutilize INFO32°s 10 character date
types. As for now, the saving of two bytes on each date is
justification enough for this definition.

The DATE-MS=EXAM and the START-OF-PROGRAM dates can be
used for gauging the degree progress of a student whose

graduate Computer Science career has been done exclusively

18

at Kansas State. A transfer student could distort the
credibility of these two items by entering accurate dates of
his accomplishments at other schools.

The DEGREE=SOUGHT item could be helpful in segregating
Master’s students, and PhD hopefuls, The advisor and
MAJOR-PROF categories could possibly be redundant. But in
the case of a student having a different advisor and major
professor, this difference will be noted.

The SUPPORT- serjes of data items are primarily intended
for use by the Department head. The SUPPORT=SOURCE,
SUPPORT= CLASS, and SUPPORT-TENTH items can be used for
bookkeeping, accounting summaries per source of funding, or
even performance evaluation of SUPPORT-CLASS types like
“G.T.A” or “G.R.A".

Finally, no type checking is done on TOTAL-HOURS, GPA,
or TOTAL-CREDITS, other than the usual integer versus
character checking INFO32 always does.

The GPAl program will figure a new value for TOTAL-
HOURS, TOTAL-CREDITS, and GPA, and return the new value to
the student’s tuple. A final note on GPA and real numbers:
INFO32 must count the decimal point as a digit place. 1In
order to get the familar grade point form of x.xx, GPA had
to be defined as a number of length 4, with two decimal
digits.

In summation, the COURSE database 1is a static entity
containing 82 different data items. It contains no links,

as would be the case in a network model, and consists of one

19

schema and one subschema, This database is one big
collection of these different data items and relationships.
An individual’s record represents the academic and personal
facts of one student, keyed upon by social security number,
and protected by the hash key password.

This design decision of making one database with many
records was necessary because INFO32 doesn’t provide for
making duplicate database copies off of a model database
definition for every different user. INFO0O32 does not allow
any concurrent operations, so the database can now be

accessed by only one user at a time,

3.3 Program GPAl

Program GPAl is a command stream program embedded in the
INFO32 DBMS. It is a sequential program using IF statements
in processing the selected database record for grade point
average, total grade credits, and total credit hours.
Additionally, the credit hours of grades “C° and “D°, and
the relationship of total credits of that user to the 30
graduate credit hour requirement will be computed. It is
the job of the interface to select just that record of the
database that is relevant to the current user of GPAl’'s
functions.

The GPAl section will only keep a running total of total
credit hours and total grade credits for these courses at

least at the 600 level in Computer Science. The C. S. 891

20

intensive course for non—major graduate students is the lone
exception to this rule.

These two running totals will only be made on a course

-, L

Cc , 'D‘, or P

whose GRADE~xx is explicitly an “A°, “B", F°.
In the last case, hours of “F° must be added to total credit
hours temporarily for grade point calculations, but left out
of total credit hours when that variable is subtracted from

the magic number of 30. 1f F° credit hours were not
subtracted at this point, the user with any “F° marks would
get a distorted picture of how close to graduation he might
be.

Thus the GPA data is 1limited to completed graduate
courses in Computer Science at Kansas State. This differs
from the official admissions and record computation by only
graduate courses completed in other departments. This might
seem to be a trivial matter, since at most six credit hours
can be taken outside of the Computer Science curriculum.

I did not see any easy way in INFO32 to account for
these possible credits from other departments. INFO32 has
no character string functions with which acceptable graduate
courses could be excised for GPAl°s attention. So I choose
to eliminate from GPAl’s consideration any classes which did
not conform to the domain of Computer Science graduate
courses, because of the awkward nature of type integer for
CLASS=xx that would adversely affect performance, and
because of the absence of character string manipulation in

INFO32 that could have been helpful.

21

Also unrescolved is the problem of accepting for credit
courses completed at other institutions. The Kansas State
Graduate Office is, of course, the final arbitrar in these
matters, so perhaps database users of this type should be
instructed to write that office. As it stands now, there is
no allowance for accurately idinterpretting course numbers
from other schools that may gain entry in a student’s tuple,
although these transfer credits will not be included in
GPAl“s processing.

On the subject of lower grades, a successful Master’s
candidate must have at least three times the number of
credit hours of “A° or “B° hours, as he has in credit hours
of ‘C” or “D°. GPAl will make known this deficiency due to
too many “C° or °“D° hours. A warning message will be
displayed by GPAl in the event that a student’s grades are
lacking in this way.

Other display messages given by this program are the
grade point average itself, and how many credits remain for
graduation for that person. GPA, TOTAL-CREDITS, and
TOTAL-HOURS are all returned back in wupdated form to the
student’s record in COURSE. A more detailed presentation,
and a source code listing of each of these programs can be

found in the Appendix.

3.4 Program CHECK

The CHECK command stream program has responsibility in

22

testing a user’s list of classes for completion of the major
emphasis courses in Computer Science. The four emphasis
courses are C.S5. 640, Introduction to Software Engineering;
C.S. 700, Translator Design I; C.S. 720, Operating Systems
II; and C.S. 760 or C.S5. 761, Database Management Systems.

This program was divided with the other curriculum
checking program CHECKZ2, because with only IF statements at
my disposal, the program was getting rather long. To
provide some degree of modularization, and improve response
time, CHECK2 will test for completion of the graduate
seminar, as well as the upper level graduate class
requirements.

CHECK can take advantage of the fact that courses will
be entered by the interface beginning with CLASS=01l, and
will proceed in order to CLASS-14, This allows for a
nesting arrangement of IF statements which test for any
numerical value while walking through the sequence of
CLASS~xx items,

In other words, if three classes have been entered, the
IF test for CLASS=04 will fail, control will “drop out”, and
no other CLASS=-xx items will be evaluated. In very
unscientific testing, it was observed that this nesting
approach was found to cut response time for this program by
about half, as compared to evaluating all 14 CLASS-xx fields
whether they need to be tested or not.

After the CHECK process determines that a CLASS=xx item

is active, it next examines the GRADE-xx value in the same

23

level of association, and determines if a passing mark has
been recorded. No assumptions about completion of a class
are made about either classes currently enrolled in, or
incomplete classes,.

Once there is an active c¢lass with a passing grade, it
is then a matter of testing that class for each of the
required emphasis courses. If there is a match under these
circumstances, a counter is incremented in the appropriate
fashion for that course. The logical details of this
operation are spelled out in the Appendix.

After evaluating as many classes as are active, CHECK
will output a message to the student describing exactly what
emphasis classes he has completed, and what emphasis classes

remain to be finished.

3.5 Program CHECK2

Program CHECKZ2 is similar in form to CHECK. A nesting
strategy is again employed that only tests those CLASS~-xx
items that contain values. A passing grade in an active
course is also demanded before any further tests are made.
The courses of interest to this program are the graduate
seminar, C.S. 897, and a dozen or so courses that have C.S.
graduate courses as pre-requisites.

The courses in this latter group that do satisfy the
upper level requirement are C.S. 725, Computer Networks:

C.S5. 750, Advanced Computer Architecture Experiments; C.S.

