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Abstract

A collocation method is presented for numerical solution of a typical
integral equation Rh :=

R

D
R(x, y)h(y)dy = f(x), x ∈ D of the class

R, whose kernels are of positive rational functions of arbitrary selfad-
joint elliptic operators defined in the whole space R

r , and D ⊂ R
r is a

bounded domain. Several numerical examples are given to demonstrate
the efficiency and stability of the proposed method.
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Key words: integral equations in distributions, signal estimation, collocation
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1 Introduction

In [4] a general theory of integral equations of the class R was developed. The
integral equations of the class R are written in the following form:

Rh :=

∫

D

R(x, y)h(y)dy = f(x), x ∈ D := D ∪ Γ, (1)

where D ∈ R
r is a (bounded) domain with a (smooth) boundary Γ. Here the

kernel R(x, y) has the following form [4, 5, 6, 7]:

R(x, y) =

∫

Λ

P (λ)Q−1(λ)Φ(x, y, λ)dρ(λ), (2)
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where P (λ), Q(λ) > 0 are polynomials, degP = p, degQ = q, q > p, and Φ, ρ, Λ
are the spectral kernel, spectral measure, and spectrum of a selfadjoint elliptic
operator L on L2(Rr) of order s. It was also proved in [4] that R : Ḣ−α(D) →
Hα(D) is an isomorphism, where Hα(D) is the Sobolev space and Ḣ−α(D) its

dual space with respect to the L2(D) inner product, α = s(q−p)
2

. Here the space

Ḣ−α(D) consists of distributions in Hα(Rr) with support in the closure of D.
In this paper we consider a particular type of integral equations of the class
R with D = (−1, 1), r = 1, L = −i∂, ∂ := d

dx
, Λ ∈ (−∞,∞), dρ(λ) = dλ,

Φ(x, y, λ) = eiλ(x−y)

2π
, P (λ) = 1, Q(λ) = λ2+1

2 , s = 1, p = 0, q = 2 and α = 1,
i.e.,

Rh(x) :=

∫ 1

−1

e−|x−y|h(y)dy = f(x), (3)

where h ∈ Ḣ−1[−1, 1] and f ∈ H1[−1, 1]. We denote the inner product and
norm in H1[−1, 1] by

〈u, v〉1 :=

∫ 1

−1

(

u(x)v(x) + u′(x)v′(x)dx
)

dx u, v ∈ H1([−1, 1]), (4)

and

‖u‖2
1 :=

∫ 1

−1

(

|u(x)|2 + |u′(x)|2
)

dx, (5)

respectively, where the primes denote derivatives and the bar stands for complex
conjugate. If u and v are real-valued functions in H1[−1, 1] then the bar nota-
tions given in (4) can be dropped. Note that if f is a complex valued function
then solving equation (3) is equivalent to solving the equations:

∫ 1

−1

e−|x−y|hk(y)dy = fk(x), k = 1, 2, (6)

where h1(x) :=Reh(x), h2(x) :=Imh(x), f1(x) :=Ref(x), f2(x) :=Imf(x) and
h(x) = h1(x)+ih2(x), i =

√
−1. Therefore, without loss of generality we assume

throughout that f(x) is real-valued.
It was proved in [5] that the operator R defined in (3) is an isomorphism

between Ḣ−1[−1, 1] and H1[−1, 1]. Therefore, problem (3) is well posed in the
sense that small changes in the data f(x) in the H1[−1, 1] norm will result in
small in Ḣ−1[−1, 1] norm changes to the solution h(y). Moreover, the solution
to (3) can be written in the following form:

h(x) = a−1δ(x+ 1) + a0δ(x− 1) + g(x), (7)

where

a−1 :=
f(−1) − f ′(−1)

2
, a0 :=

f ′(1) + f(1)

2
, (8)

g(x) :=
−f ′′(x) + f(x)

2
, (9)
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and δ(x) is the delta function. Here and throughout this paper we assume that
f ∈ Cα[−1, 1], α ≥ 2. It follows from (8) that h(x) = g(x) if and only if
f(−1) = f ′(−1) and f(1) = −f ′(1).

In [6, 7] the problem of solving equation (3) numerically have been posed
and solved. The least squares method was used in these papers. The goal of this
paper is to develop a version of the collocation method which can be applied
easily and numerically efficiently. In [8] some basic ideas for using collocation
method are proposed. In this paper some of these ideas are used and new ideas,
related to the choice of the basis functions, are introduced. In this paper the
emphasis is on the development of methodology for solving basic equation (1)
of the estimation theory by a version of the collocation method. The novelty of
this version consists in minimization of a discrepancy functional (26), see below.
This methodology is illustrated by a detailed analysis applied to solving equation
(3), but it is applicable to general equations of the class R. One of the goals
of this paper is to demonstrate that collocation method can be successfully
applied to numerical solution of some integral equations whose solutions are
distributions, provided that the theoretical analysis gives sufficient information
about the singular part of the solutions.

Since f ∈ Cα[−1, 1], α ≥ 2, it follows from (9) that g ∈ C[−1, 1]. Therefore,
there exist basis functions ϕj(x) ∈ C[−1, 1], j = 1, 2, . . . , m, such that

max
x∈[−1,1]

|g(x) − gm(x)| → 0 as m→ ∞, (10)

where

gm(x) :=

m
∑

j=1

c
(m)
j ϕj(x), (11)

c
(m)
j , j = 1, 2, . . . , m, are constants. Hence the approximate solution of equation

(3) can be represented by

hm(x) = c
(m)
−1 δ(x+ 1) + c

(m)
0 δ(x− 1) + gm(x), (12)

where c
(m)
j , j = −1, 0, are constants and gm(x) is defined in (11). The basis

functions ϕj play an important role in our method. It is proved in Section 3 that
the basis functions ϕj in (12) can be chosen from the linear B-splines. The usage
of the linear B-splines reduces the computation time, because computing (12)
at a particular point x requires at most two out of the m basis functions ϕj . For
a more detailed discussion of the family of B-splines we refer to [10]. In Section

2 we derive a method for obtaining the coefficients c
(m)
j , j = −1, 0, 1, . . . , m,

given in (12). This method is based on solving a finite-dimensional least squares
problem ( see equation (33) below ) and differs from the usual collocation method
discussed in [2] and [3]. We approximate ‖f −Rhm‖2

1 by a quadrature formula.
The resulting finite-dimensional linear algebraic system depends on the choice
of the basis functions. Using linear B-splines as the basis functions, we prove
the existence and uniqueness of the solution to this linear algebraic system for
all m = m(n) depending on the number n of collocation points used in the left
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rectangle quadrature rule. The convergence of our collocation method is proved
in this Section. An example of the choice of the basis functions which yields the
convergence of our version of the collocation method is given in Section 3. In
Section 4 we give numerical results of applying our method to several problems
that discussed in [7].

2 The collocation method

In this Section we derive a collocation method for solving equation (3). From
equation (3) we get

Rh(x) = a−1e
−(x+1) + a0e

−(1−x)

+

(

e−x

∫ x

−1

eyg(y)dy + ex

∫ 1

x

e−yg(y)dy

)

= f(x).
(13)

Assuming that f ∈ C2([−1, 1]) and differentiating the above equation, one ob-
tains

(Rh)′(x) = −a−1e
−(x+1) + a0e

−(1−x)

+

(

ex

∫ 1

x

e−yg(y)dy − e−x

∫ x

−1

eyg(y)dy

)

= f ′(x).
(14)

Thus, f(x) and f ′(x) are continuous in the interval [−1, 1]. Let us use the
approximate solution given in (12). From (13), (14) and (12) we obtain

Rhm(x) = c
(m)
−1 e

−(x+1) + c
(m)
0 e−(1−x)

+

m
∑

j=1

c
(m)
j

(

e−x

∫ x

−1

eyϕj(y)dy + ex

∫ 1

x

e−yϕj(y)dy

)

:= fm(x),
(15)

and

(Rhm)′(x) = −c(m)
−1 e

−(x+1) + c
(m)
0 e−(1−x)

+

m
∑

j=1

c
(m)
j

[

ex

∫ 1

x

e−yϕj(y)dy − e−x

∫ x

−1

eyϕj(y)dy

]

:= (fm)′(x).

(16)

Thus, Rhm(x) and (Rhm)′(x) are continuous in the interval [−1, 1]. Since f(x)−
Rhm(x) and f ′(x) − (Rhm)′(x) are continuous in the interval [−1, 1], we may
assume throughout that the functions

J1,m := [f(x) −Rhm(x)]2 (17)

and
J2,m := [f ′(x) − (Rhm)′(x)]2 (18)
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are Riemann-integrable over the interval [−1, 1].
Let us define

q−1(x) := e−(x+1), q0(x) := e−(1−x),

qj(x) :=

∫ 1

−1

e−|x−y|ϕj(y)dy, j = 1, 2, . . . , m,
(19)

and define a mapping Hn : C2[−1, 1] → R
n
1 by the formula:

Hnφ =











φ(x1)
φ(x2)

...
φ(xn)











, φ(x) ∈ C2[−1, 1], (20)

where

R
n
1 :=





























z1
z2
...
zn











∈ R
n | zj := z(xj), z ∈ C2[−1, 1]



















(21)

and xj are some collocation points which will be chosen later. We equip the
space R

n
1 with the following inner product and norm

〈u, v〉w(n),1 :=

n
∑

j=1

w
(n)
j (ujvj + u′jv

′
j), u, v ∈ R

n
1 , (22)

‖u‖2
w(n),1 :=

n
∑

j=1

w
(n)
j [u2

j + (u′j)
2], u ∈ R

n
1 , (23)

respectively, where uj := u(xj), u
′
j := u′(xj), vj := v(xj), v

′
j := v′(xj), and

wj > 0 are some quadrature weights corresponding to the collocation points xj,
j = 1, 2, . . . , n.

Applying Hn to Rhm, one gets

(HnRhm)i = c
(m)
−1 e

−(1+xi) + c
(m)
0 e−(1−xi) +

m
∑

j=1

c
(m)
j

∫ xi

−1

e−(xi−y)ϕj(y)dy+

m
∑

j=1

c
(m)
j

∫ 1

xi

e−(y−xi)ϕj(y)dy, i = 1, 2, . . . , n,

(24)

where m = m(n) is an integer depending on n such that

m(n) + 2 ≤ n, lim
n→∞

m(n) = ∞. (25)

Let
Gn(c(m)) := ‖Hn(f −Rhm)‖2

w(n),1, (26)
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where f and Rhm are defined in (3) and (15), respectively, Hn defined in (20),

‖ · ‖w(n),1 defined in (23) and c(m) =















c−1

c0
c1
...
cm















∈ R
m+2. Let us choose

w
(n)
j =

2

n
, j = 1, 2, . . . , n, (27)

and

xj = −1 + (j − 1)s, s :=
2

n
, j = 1, 2, . . . , n, (28)

so that ‖Hn(f −Rhm)‖2
w(n),1

is the left Riemannian sum of ‖f − Rhm‖2
1, i.e.,

|‖f −Rhm‖2
1 − ‖Hn(f − Rhm)‖2

w(n),1| := δn → 0 as n→ ∞. (29)

Remark 2.1. If J1,m and J2,m are in C2[−1, 1], where J1,m and J2,m are

defined in (17) and (18), respectively, then one may replace the weights w
(n)
j

with the weights of the compound trapezoidal rule, and get the estimate

δn =

∣

∣

∣

∣

∣

∣

∫ 1

−1

(J1,m(x) + J2,m(x))dx−
n

∑

j=1

w
(n)
j (J1,m(xj) + J2,m(xj))

∣

∣

∣

∣

∣

∣

≤ 1

3n2
DJ ,

(30)

where δn is defined in (29) and

DJ := |J ′
1,m(1) + J ′

2,m(1) − (J ′
1,m(−1) + J ′

2,m(−1))|. (31)

Here we have used the following estimate of the compound trapezoidal rule [1, 9]:

∣

∣

∣

∣

∣

∣

∫ b

a

η(x)dx−
n

∑

j=1

w
(n)
j η(xj)

∣

∣

∣

∣

∣

∣

≤ (b− a)2

12n2

∣

∣

∣

∣

∣

∫ b

a

η′′(x)dx

∣

∣

∣

∣

∣

=
(b− a)2

12n2
|η′(b) − η′(a)|,

(32)
where η ∈ C2[a, b]. Therefore, if DJ ≤ C for all m, where C > 0 is a constant,
then δn = O

(

1
n2

)

.

The constants c
(m)
j in the approximate solution hm, see (12), are obtained

by solving the following least squares problem:

min
c(m)

Gn(c(m)), (33)

where Gn is defined in (26).
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A necessary condition for the minimum in (33) is

0 =
n

∑

l=1

w
(n)
l

(

Em,l

∂Em,l

∂ck
+E′

m,l

∂E′
m,l

∂ck

)

k = −1, 0, 1, . . . , m, (34)

where

Em,l := (f − Rhm)(xl), E′
m,l := (f −Rhm)′(xl), l = 1, 2, . . . , n. (35)

Necessary condition (34) yields the following linear algebraic system (LAS):

Am+2c
(m) = Fm+2 , (36)

where c(m) ∈ R
m+2, Am+2 is a square, symmetric matrix with the following

entries:

(Am+2)1,1 := 2

n
∑

l=1

w
(n)
l e−2(xl+1), (Am+2)1,2 = 0,

(Am+2)1,j := 2

n
∑

l=1

w
(n)
l Cl,j−2e

−(xl+1), j = 3, . . . , m+ 2,

(37)

(Am+2)2,2 := 2

n
∑

l=1

w
(n)
l e−2(1−xl),

(Am+2)2,j := 2

n
∑

l=1

w
(n)
l Bl,j−2e

−(1−xl), j = 3, . . . , m+ 2,

(38)

(Am+2)i,j :=

n
∑

l=1

2w
(n)
l (Bl,i−2Bl,j−2 + Cl,i−2Cl,j−2),

i = 3, . . . , m+ 2, j = i, . . . , m+ 2,

(Am+2)j,i = (Am+2)i,j, i, j = 1, 2, . . . , m+ 2,

(39)

Fm+2 is a vector in R
m+2 with the following elements:

(Fm+2)1 :=

n
∑

l=1

w
(n)
l (f(xl) − f ′(xl))e

−(xl+1) = 〈HnRh,Hq−1〉w(n),1

(Fm+2)2 :=

n
∑

l=1

w
(n)
l (f(xl) + f ′(xl))e

−(1−xl) = 〈HnRh,Hq0〉w(n),1,

(Fm+2)i :=

n
∑

l=1

w
(n)
l [f(xl)(Cl,i−2 +Bl,i−2) + f ′(xl)(Bl,i−2 − Cl,i−2)]

= 〈HnRh,Hqi〉w(n),1, i = 3, . . . , m+ 2,

(40)

and

Bl,j :=

∫ 1

xl

e−(y−xl)ϕj(y)dy, Cl,j :=

∫ xl

−1

e−(xl−y)ϕj(y)dy. (41)
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Theorem 2.2. Assume that the vectors Hnqj, j = −1, 0, 1, . . . , m are linearly
independent. Then linear algebraic system (36) is uniquely solvable for all m,
where m is an integer depending on n such that (25) holds.

Proof. Consider qj ∈ H1[−1, 1] defined in (19). Using the inner product in R
n
1 ,

one gets

(Am+2)i,j = 〈Hnqi−2,Hnqj−2〉w(n),1, i, j = 1, 2, . . . , m+ 2, (42)

i.e., Am+2 is a Gram matrix. We have assumed that the vectors Hnqj ∈ R
n
1 ,

j = −1, 0, 1, . . . , m, are linearly independent. Therefore, the determinant of the
matrix Am+2 is nonzero. This implies linear algebraic system (36) has a unique
solution.
Theorem 2.2 is proved.

It is possible to choose basis functions ϕj such that the vectors Hnqj, j =
−1, 0, 1, . . . , m, are linearly independent. An example of such choice of the basis
functions is given in Section 3.

Lemma 2.3. Let ym := c
(m)
min be the unique minimizer for problem (33). Then

Gn(ym) → 0 as n → ∞, (43)

where Gn is defined in (26) and m is an integer depending on n such that (25)
holds.

Proof. Let
h(x) = a−1δ(x+ 1) + a0δ(x− 1) + g(x)

be the exact solution to (3), Rh = f , where g(x) ∈ C[−1, 1], and define

h̃m(x) = a−1δ(x+ 1) + a0δ(x− 1) + g̃m(x), (44)

where

g̃m(x) :=

m
∑

j=1

ajϕj(x). (45)

Choose g̃m(x) so that

max
x∈[−1,1]

|g(x) − g̃m(x)| → 0 as m→ ∞. (46)

Then
Gn(ym) ≤ ‖Hn(f − Rh̃m)‖2

w(n),1, (47)

because ym is the unique minimizer of Gn.
Let us prove that ‖Hn(f − Rh̃m)‖2

w(n),1
→ 0 as n → ∞. Let

W1,m(x) := f(x) − Rh̃m(x), W2,m := f ′(x) − (Rh̃m)′(x).
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Then

W1,m(x) = e−x

∫ x

−1

ey(g(y) − g̃m(y))dy + ex

∫ 1

x

e−y(g(y) − g̃m(y))dy (48)

and

W2,m(x) = ex

∫ 1

x

e−y(g(y) − g̃m(y))dy − e−x

∫ x

−1

ey(g(y) − g̃m(y))dy. (49)

Thus, the functions [W1,m(x)]2 and [W2,m(x)]2 are Riemann-integrable. There-
fore,

δn := |‖f −Rh̃m‖2
1 − ‖Hn(f − Rh̃m)‖2

w(n),1| → 0 as n→ ∞. (50)

Formula (50) and the triangle inequality yield

‖Hn(f − Rh̃m)‖2
w(n),1 ≤ δn + ‖f −Rh̃m‖2

1. (51)

Let us derive an estimate for ‖f − Rh̃m‖2
1. From (48) and (49) we obtain the

estimates:

|W1,m(x)| ≤ max
y∈[−1,1]

|g(y) − g̃m(y)|
(

e−x

∫ x

−1

eydy + ex

∫ 1

x

e−ydy

)

= max
y∈[−1,1]

|g(y) − g̃m(y)|
[

e−x(ex − e−1) + ex(e−x − e−1)
]

= max
y∈[−1,1]

|g(y) − g̃m(y)|
[

(2 − e−1−x − e−1+x)
]

≤ δm,1

(52)

and

|W2,m(x)| ≤ max
y∈[−1,1]

|g(y) − g̃m(y)|
(

ex

∫ 1

x

e−ydy + e−x

∫ x

−1

eydy

)

≤ δm,1,

(53)

where
δm,1 := 2 max

y∈[−1,1]
|g(y) − g̃m(y)|. (54)

Therefore, it follows from (52) and (53) that

‖f −Rh̃m‖2
1 =

∫ 1

−1

|W1,m(x)|2dx+

∫ 1

−1

|W2,m(x)|2dx

≤ 4δ2m,1 ,

(55)

where δm,1 is defined in (54). Using relation (46), we obtain limm→∞ δm,1 = 0.
Since m = m(n) and limn→∞m(n) = ∞, it follows from (51) and (55) that
‖Hn(f −Rh̃m)‖2

w,1 → 0 as n → ∞. This together with (47) imply Gn(ym) → 0
as n → ∞.
Lemma 2.3 is proved.
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Theorem 2.4. Let the vector c
(m)
min :=

















c
(m)
−1

c
(m)
0

c
(m)
1
...

c
(m)
m

















∈ R
m+2 solve linear algebraic

system (36) and

hm(x) = c
(m)
−1 δ(x+ 1) + c

(m)
0 δ(x− 1) +

m
∑

j=1

c
(m)
j ϕj(x).

Then
‖h− hm‖H−1 → 0 as n→ ∞. (56)

Proof. We have

‖h− hm‖2
H−1 [−1,1] = ‖R−1(f − Rhm)‖2

H−1 [−1,1]

≤ ‖R−1‖2
H1 [−1,1]→Ḣ−1[−1,1]

‖f − Rhm‖2
1

≤ C
(

Gn(c
(m)
min) +

∣

∣

∣‖f − Rhm‖2
1 −Gn(c

(m)
min)

∣

∣

∣

)

≤ C[Gn(c
(m)
min) + δn] → 0 as n→ ∞,

(57)

where C > 0 is a constant and Lemma 2.3 was used.
Theorem 2.4 is proved.

3 The choice of collocation points and basis func-

tions

In this section we give an example of the collocation points xi, i = 1, 2, . . . , n,
and basis functions ϕj , j = 1, 2, . . . , m, such that the vectors Hnqj, j =
−1, 0, 1, . . . , m, are linearly independent, where m+ 2 ≤ n,

Hnq−1 =











e−1−x1

e−1−x2

...
e−1−xn











, Hnq0 =











e−1+x1

e−1+x2

...
e−1+xn











(58)

and

Hnqj =













e−x1
∫ 1

−1
eyϕj(y)dy + ex1

∫ 1

−1
e−yϕj(y)dy

e−x2
∫ 1

−1
eyϕj(y)dy + ex2

∫ 1

−1
e−yϕj(y)dy

...

e−xn
∫ 1

−1 e
yϕj(y)dy + exn

∫ 1

−1 e
−yϕj(y)dy













, j = 1, 2, . . . , m. (59)
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x2 x3x1

1

0
x2j−2 x2j−1x2j−3 xn xn+1xn−1x2j x2j+1

ϕ1(x) ϕj(x) ϕm(x)

Figure 1: The structure of the basis functions ϕj

Let us choose w
(n)
j and xj as in (27) and (28), respectively, with an even

number n ≥ 6. As the basis functions in C[−1, 1] we choose the following linear
B-splines:

ϕ1(x) =

{

ψ2(x) x1 ≤ x ≤ x3,
0, otherwise,

ϕj(x) =







ψ1(x− (j − 1)2s), x2j−3 ≤ x ≤ x2j−1,
ψ2(x− (j − 1)2s), x2j−1 ≤ x ≤ x2j+1,
0, otherwise,

j = 2, . . . , m− 1,

ϕm(x) =

{

ψ1(x− (m− 1)2s), xn−1 ≤ x ≤ 1,
0, otherwise,

(60)

where

m =
n

2
+ 1, s :=

2

n
,

and

ψ1(x) :=
x− x1 + 2s

2s
,

ψ2(x) :=
−(x− x1 − 2s)

2s
.

(61)

Here we have chosen x2j−1, j = 1, 2, . . . , n
2 + 1, as the knots of the linear B-

splines. From Figure 1 we can see that at each j = 2, . . . , m−1, ϕj(x) is a ”hat”
function. The advantage of using these basis functions is the following: at most
two basis functions are needed for computing the solution hm(x), because

hm(x) =

{

c
(m)
l , x = x2l−1,

c
(m)
l ϕl(x) + c

(m)
l+1ϕl+1(x), x2l−1 < x < x2l+1,

l = 2, . . . ,
n

2
. (62)

From the structure of the basis functions ϕj we have

ϕ1(x) = 0, x3 ≤ x ≤ 1,

ϕj(x) = 0, −1 ≤ x ≤ x2j−3 and x2j+1 ≤ x ≤ 1, j = 2, 3, . . . , m− 1,

ϕm(x) = 0, −1 ≤ x ≤ xn−1.

(63)
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Let (Hnqj)i be the i-th element of the vector Hnqj, j = −1, 0, 1, . . . , m. Then

(Hnq−1)i = e−(1+xi), i = 1, 2, . . . , n, (64)

(Hnq0)i = e−(1−xi), i = 1, 2, . . . , n. (65)

Using (63) in (59), we obtain

(Hnq1)i =







2s−1+e−2s

2s
, i = 1,

1 − e−s, i = 2,

e1−(i−1)sC1, 3 ≤ i ≤ n,

(Hnqj)i = e−1+(i−1)sDj , 1 ≤ i ≤ 2j − 3, j = 2, 3, . . . , m− 1,

(Hnqj)2j−2 =
e−3s − e−s + 2s

2s
, j = 2, 3, . . . , m− 1,

(Hnqj)2j−1 =
−1 + e−2s + 2s

s
, j = 2, 3, . . . , m− 1,

(Hnqj)2j = (Hnqj)2j−2, j = 2, 3, . . . , m− 1,

(Hnqi)j = e1−(i−1)sCj , 2j + 1 ≤ i ≤ n, j = 2, 3, . . . , m− 1,

(Hnqm)i =

{

e−1+(i−1)sDm, 1 ≤ i ≤ n − 1,
1 − e−s, i = n,

(66)

where

C1 :=

∫ x3

−1

eyϕ1(y)dy =
−1 + e2s − 2s

2es
,

Cj :=

∫ x2j+1

x2j−3

eyϕj(y)dy =
e−1+2(−2+j)s(−1 + e2s)2

2s
, j = 2, 3, . . . , m− 1,

(67)

D1 :=

∫ x3

−1

e−yϕ1(y)dy =
e(2s− 1 + e−2s)

2s
,

Dj :=

∫ x2j+1

x2j−3

e−yϕj(y)dy =
e1−2js(−1 + e2s)2

2s
, j = 2, 3, . . . , m− 1,

Dm :=

∫ 1

xn−1

e−yϕm(y)dy =
−1 + e2s − 2s

2es
.

(68)

Theorem 3.1. Consider qj defined in (19) with ϕj defined in (60). Let the
collocation points xj, j = 1, 2, . . . , n, be defined in (28) with an even number
n ≥ 6. Then the vectors Hnqj, j = −1, 0, 1, 2, . . . , m, m = 1

s
+ 1, s = 2

n
, are

linearly independent, where Hn is defined in (20).

Proof. Let

V0 := {Hnq−1, Hnq0},
Vj := Vj−1 ∪ {Hnqj}, j = 1, 2, . . . , m.

(69)
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We prove that the elements of the sets Vj, j = 0, 1, . . . , m, are linearly indepen-
dent.

The elements of the set V0 are linearly independent. Indeed, Hnqj 6= 0 ∀j,
and assuming that there exists a constant α such that

Hnq−1 = αHnq0, (70)

one gets a contradiction: consider the first and the n-th equations of (70), i.e.,

(Hnq−1)1 = α(Hnq0)1 (71)

and
(Hnq−1)n = α(Hnq0)n, (72)

respectively. It follows from (64), (65) and (71) that

α = e2. (73)

From (72), (64), (65) and (73) it follows that

e−2+s = e2−s. (74)

This is a contradiction, which proves that Hnq−1 and Hnq0 are linearly inde-
pendent.

Let us prove that the element of the set Vj are linearly independent, j =
1, 2, 3, . . . , m−2. Assume that there exist constants αk, k = 1, 2, . . . , j+1, such
that

Hnqj =

j−1
∑

k=−1

αk+2Hnqk. (75)

Using relations (64)-(66) one can write the (2j−1)-th equation of linear system
(75) as follows:

(Hnqj)2j−1 =

j−1
∑

k=−1

αk+2(Hnqk)2j−1

= α1e
−(2j−2)s + α2e

−2+(2j−2)s + e1−(2j−2)s

j−1
∑

k=1

αk+2Ck.

(76)

Similarly, by relations (64)-(66) the (n − 1)-th and n-th equations of linear
system (75) can be written in the following expressions:

(Hnqj)n−1 = e−1+2sCj = α1e
−2+2s + α2e

−2s + e−1+2s

j−1
∑

k=1

αk+2Ck (77)

and

(Hnqj)n = e−1+sCj = α1e
−2+s + α2e

−s + e−1+s

j−1
∑

k=1

αk+2Ck, (78)
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respectively. Multiply (78) by es and compare with (77) to conclude that α2 = 0.
From (78) with α2 = 0 one obtains

α1 = eCj − e

j−1
∑

k=1

αk+2Ck. (79)

Substitute α1 from (79) and α2 = 0 into (76) and get

(Hnqj)2j−1 = e1−(2j−2)sCj. (80)

From (67) and (66) one obtains for 0 < s < 1, j = 1, 2, 3, . . . , m − 2, the
following relation

e1−(2j−2)sCj − (Hnqj)2j−1 =
e−2s(−1 + e2s)2

2s
− −1 + e−2s + 2s

s

=
e2s − e−2s − 4s

2s
=

sinh(2s) − 2s

s
> 0,

(81)

which contradicts relation (80). This contradiction proves that the elements of
the set Vj are linearly independent, j = 1, 2, 3, . . . , m− 2, for 0 < s < 1.

Let us prove that the elements of the set Vm−1, are linearly independent.
Assume that there exist constants αk, k = 1, 2, . . . , m, such that

Hnqm−1 =

m−2
∑

k=−1

αk+2Hnqk. (82)

Using (64)-(66), the (n− 3)-th equation of (82) can be written as follows:

(Hnqm−1)n−3 =e1−4sDm−1 =

m−3
∑

k=−1

αk+2(Hnqk)n−3

=α1e
−2+4s + α2e

−4s + e−1+4s

m−3
∑

k=1

αk+2Ck + αm(Hnqm−2)n−3.

(83)

Similarly we obtain the (n−2)-th, (n−1)-th and n-th equations, corresponding
to vector equation (82):

(Hnqm−1)n−2 = α1e
−2+3s + α2e

−3s + e−1+3s

m−3
∑

k=1

αk+2Ck + αm(Hnqm−2)n−2,

(84)

(Hnqm−1)n−1 = α1e
−2+2s + α2e

−2s + e−1+2s

m−2
∑

k=1

αk+2Ck (85)

14



and

(Hnqm−1)n = α1e
−2+s + α2e

−s + e−1+s

m−2
∑

k=1

αk+2Ck, (86)

respectively. Multiply (86) by es and compare with (85) to get

α2 =
(Hnqm−1)n−1 − es(Hnqm−1)n

e−2s − 1
=

1 − e2s + 4se2s − 2se3s

2s(1 − e2s)
, (87)

where formula (66) was used. Multiplying (86) by e3s, comparing with equation
(83), and using (87), we obtain

αm =
e1−4sDm−1 − e3s(Hnqm−1)n − α2(e

−4s − e2s)

(Hnqm−2)n−3 − e−1+4sCm−2

=
2 + 4s− 2ess+ 4e2ss− 2e3ss+ e4s(−2 + 4s)

−1 + e4s − 4e2ss
.

(88)

Another expression for αm is obtained by multiplying (86) by e2s and comparing
with (84):

αm =
(Hnqm−1)n−2 − e2s(Hnqm−1)n − α2(e

−3s − es)

(Hnqm−2)n−2 − e−1+3sCm−2

=
2 + 4s− 4ess+ e2s(−2 + 4s)

−1 + e2s − 2ess
,

(89)

where α2 is given in (87).
In deriving formulas (88) and (89) we have used the relation m = 1

s
+ 1 and

equation (66). Let us prove that equations (88) and (89) lead to a contradiction.
Define

r1 := 2 + 4s− 2ess+ 4e2ss− 2e3ss+ e4s(−2 + 4s),

r2 := −1 + e4s − 4e2ss,

r3 := 2 + 4s− 4ess+ e2s(−2 + 4s),

r4 := −1 + e2s − 2ess.

(90)

Then from (88) and (89) we get

r3r2 − r1r4 = 0. (91)

We have

r3r2 − r1r4 = 2es(−1 + es)2s(3 + 4s+ (4s− 3)e2s − 2ses) > 0 for s ∈ (0, 1).

(92)

The sign of the right side of equality (92) is the same as the sign of 3+4s+(4s−
3)e2s−2ses := β(s). Let us check that β(s) > 0 for s ∈ (0, 1). One has β(0) = 0,
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β′(0) = 0, β′(s) = 4−2e2s+8se2s−2es−2ses, β′′ = 4e2s+16se2s−4es−2ses >

0. If β′′(s) > 0 for s ∈ (0, 1) and β(0) = 0, β′(0) = 0, then β(s) > 0 for
s ∈ (0, 1). Inequality (92) contradicts relation (91) which proves that Hnqj,
j = −1, 0, 1, 2, . . . , m− 1, are linearly independent.

Similarly, to prove that Hnqj, j = −1, 0, 1, 2, . . . , m, are linearly indepen-
dent, we assume that there exist constants αk, k = 1, 2, . . . , m+ 1, such that

Hnqm =

m−1
∑

k=−1

αk+2Hnqk. (93)

Using formulas (64)-(66), one can write the (n − 5)-th equation:

(Hnqm)n−5 = e1−6sDm =

m−1
∑

k=−1

αk+2(Hnqk)n−5

= α1e
−2+6s + α2e

−6s + e−1+6s

m−4
∑

j=1

αj+2Cj

+ αm−1(Hnqm−3)n−5 + αme
1−6sDm−2 + αm+1e

1−6sDm−1,

(94)

Similarly one obtains the (n − 4)-th, (n − 3)-th, (n − 2)-th, (n − 1)-th and
n-th equations corresponding to the vector equation (93):

(Hnqm)n−4 = e1−5sDm = α1e
−2+5s + α2e

−5s + e−1+5s

m−4
∑

j=1

αj+2Cj

+ αm−1(Hnqm−3)n−4 + αm(Hnqm−2)n−4 + αm+1e
1−5sDm−1 ,

(95)

(Hnqm)n−3 = e1−4sDm = α1e
−2+4s + α2e

−4s + e−1+4s

m−3
∑

j=1

αj+2Cj

+ αm(Hnqm−2)n−3 + αm+1e
1−4sDm−1 ,

(96)

(Hnqm)n−2 = e1−3sDm = α1e
−2+3s + α2e

−3s + e−1+3s

m−3
∑

j=1

αj+2Cj

+ αm(Hnqm−2)n−2 + αm+1(Hnqm−1)n−2,

(97)

(Hnqm)n−1 = e1−2sDm = α1e
−2+2s + α2e

−2s + e−1+2s

m−2
∑

j=1

αj+2Cj

+ αm+1(Hnqm−1)n−1

(98)

and

(Hnqm)n = α1e
−2+s + α2e

−s + e−1+s

m−2
∑

j=1

αj+2Cj + αm+1(Hnqm−1)n, (99)
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respectively. Here we have used the assumption n ≥ 6. From (99) one gets

α1 = (Hnqm)ne
2−s − α2e

2−2s − e

m−2
∑

k=1

αk+2Ck − αm+1(Hnqm−1)ne
2−s. (100)

If one substitutes (100) into equations (98), (97) and (96), then one obtains the
following relations:

α2 = p1 − p2αm+1, (101)

α2 = p3 − p4αm − p5αm+1 (102)

and

α2 = p6 − p7αm − p8αm+1, (103)

respectively, where

p1 :=
e1−2sDm − (Hnqm)ne

s

e−2s − 1
, p2 :=

(Hnqm−1)n−1 − (Hnqm−1)ne
s

e−2s − 1
,

p3 :=
e1−3sDm − (Hnqm)ne

2s

e−3s − es
, p4 :=

(Hnqm−2)n−2 − e−1+3sCm−2

e−3s − es
,

p5 :=
(Hnqm−1)n−2 − (Hnqm−1)ne

2s

e−3s − es
, p6 :=

e1−4sDm − (Hnqm)ne
3s

e−4s − e2s
,

p7 :=
(Hnqm−2)n−3 − e−1+4sCm−2

e−4s − e2s
, p8 :=

e1−4sDm−1 − (Hnqm−1)ne
3s

e−4s − e2s
.

(104)

Another formula for α1 one gets from equation (96):

α1 = e3−8sDm − α2e
2−8s − e

m−3
∑

j=1

αj+2Cj − αm(Hnqm−2)n−3e
2−4s

− αm+1e
3−8sDm−1 .

(105)

Substituting (105) into equations (95) and (94), yields

α2 = p9 − p10αm−1 − p11αm − p12αm+1 (106)

and
α2 = p9 − p13αm−1 − p14αm − p12αm+1, (107)

respectively, where

p9 := eDm, p10 :=
(Hnqm−3)n−4 − e−1+5sCm−3

e−5s − e−3s
,

p11 :=
(Hnqm−2)n−4 − es(Hnqm−2)n−3

e−5s − e−3s
, p12 := eDm−1,

p13 :=
(Hnqm−3)n−5 − e−1+6sCm−3

e−6s − e−2s
, p14 :=

e1−6sDm−2 − e2s(Hnqm−2)n−3

e−6s − e−2s
.

(108)
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Let us prove that the equations (101) and (106) lead to a contradiction.
From equations (101) and (102) we obtain

αm =
p3 − p1

p4
+
p2 − p5

p4
αm+1 . (109)

This together with (103) and (101) yield

αm+1 =

p3−p1

p4
− p6−p1

p7

p2−p8

p7
− p2−p5

p4

. (110)

Equations (106), (107) and (109) yield

αm−1 =
p14 − p11

p10 − p13
αm =

p14 − p11

p10 − p13

(

p3 − p1

p4
+
p2 − p5

p4
αm+1

)

. (111)

This together with (106) imply

α2 = p9 −
(

p10
p14 − p11

p10 − p13
+ p11

)(

p3 − p1

p4
+
p2 − p5

p4
αm+1

)

− p12αm+1, (112)

where αm+1 is given in (110). Let

L1 := p9 −
(

p10
p14 − p11

p10 − p13
+ p11

) (

p3 − p1

p4
+
p2 − p5

p4
αm+1

)

− p12αm+1 (113)

and
L2 := p1 − p2αm+1. (114)

Then, from (101) and (106) one gets

L1 − L2 = 0. (115)

Applying formulas (64)-(66) in (113) and (114) and using the relation es =
∑∞

j=0
sj

j! , we obtain

L1 − L2 =
2e4s[1 + e2s(−1 + s) + s](−1 + e2s − 2ess)

(−1 + e2s)s[3 + 4s− 2ess+ e2s(−3 + 4s)]

=

2e4s

[

∑∞
j=3

2j( 1
2−

1
j
)

(j−1)! s
j

][

∑∞
j=2

2( 2j

j+1−1)

j! sj+1

]

(−1 + e2s)s[3 + 4s− 2ess+ e2s(−3 + 4s)]
> 0,

(116)

because e2s > 1 for all 0 < s < 1, 2j(1
2 − 1

j
) > 0 for all j ≥ 3, 2( 2j

j+1 − 1) > 0 for

all j ≥ 2 and 3+4s−2ess+e2s(−3+4s) > 0 which was proved in (92). Inequality
(116) contradicts relation (115) which proves that Hnqj, j = −1, 0, 1, 2, . . . , m,
are linearly independent.
Theorem 3.1 is proved.
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4 Numerical experiments

Note that for all w, u, v ∈ R
n we have

n
∑

l=1

wlulvl = vtWu, (117)

where t stands for transpose and

W :=

















w1 0 . . . 0 0
0 w2 0 . . . 0
...

. . .
. . .

. . . 0
... . . . 0 wn−1 0
0 0 . . . 0 wn

















. (118)

Then

DP := ‖Hn(f −Rhm)‖2
w(n),1

=

n
∑

l=1

w
(n)
l [(f(xl) − Rhm(xl))

2 + (f ′(xl) − (Rhm)′(xl))
2]

= [Hn(f − Rhm)]tWHn(f −Rhm)

+ [Hn(f ′ − (Rhm)′)]tWHn(f ′ − (Rhm)′),

(119)

where W is defined in (118) with wj = w
(n)
j , j = 1, 2, . . . , n, defined in (27).

The vectors HnRhm and Hn(Rhm)′ are computed as follows.
Using (64)-(66), the vector HnRhm can be represented by

HnRhm = Smc
(m), (120)

where c(m) =

















c
(m)
−1

c
(m)
0

c
(m)
1
...

c
(m)
m

















and Sm is an n × (m + 2) matrix with the following

entries:

(Sm)i,1 = (Hnq−1)i, (Sm)i,2 = (Hnq0)i, i = 1, 2, . . . , n,

(Sm)i,j = (Hnqj−2)i, i = 1, 2, . . . , n, j = 3, 4, . . . , m+ 2.
(121)

The vector Hn(Rhm)′ is computed as follows. Let

Ji,j := exi

∫ 1

xi

e−yϕj(y)dy−e−xi

∫ xi

−1

eyϕj(y)dy, i = 1, 2, . . . , n−1, j = 1, 2, . . . , m.

(122)
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This together with (60) yield

Ji,1 =











e−1 e(2l−1+e−2l)
2l

, i = 1,
e−l(1−el+l)

l
, i = 2,

−e−xi (−1+e2l−2l)
2le

, i ≥ 3,

Ji,j =



























exi e1−2jl(−1+e2l)2

2l
, i ≤ 2j − 3;

2+e−3l−3e−l

2l
, i = 2j − 2;

0, i = 2j − 1;

−2+e−3l−3e−l

2l
, i = 2j;

−e−xi e−1+2(−2+j)l (−1+e2l)2

2l
, i ≥ 2j + 1,

1 ≤ i ≤ n, 1 < j < m,

Ji,m =

{

exi (−1+e2l−2l)
2le

, i ≤ n− 1,
e−l(−1+el−l)

l
, i = n,

(123)

where l = 2
n
.

Then, using (123), the vector Hn(Rhm)′ can be rewritten as follows:

Hn(Rhm)′ = Tmc
(m), (124)

where c(m) =

















c
(m)
−1

c
(m)
0

c
(m)
1
...

c
(m)
m

















and Tm is an n × (m + 2) matrix with the following

entries:

(Tm)i,1 = −e−(1+xi), (Tm)i,2 = e−(1−xi), i = 1, 2, . . . , n,

(Tm)i,j = Ji,j−2, i = 1, 2, . . . , n, j = 3, 4, . . . , m+ 2.
(125)

We consider the following examples discussed in [7]:

(1) f(x) = −2 + 2 cos(π(x + 1)) with the exact solution h(x) = −1 + (1 +
π2) cos(π(x+ 1)).

(2) f(x) = −2ex−1 + 2
π

sin(π(x+1)) +2 cos(π(x+ 1)) with the exact solution
h(x) = 1

π
sin(π(x+ 1)) + (1 + π2) cos(π(x + 1)).

(3) f(x) = cos(π(x+1)
2 ) + 4 cos(2π(x + 1)) − 1.5 cos(7π(x+1)

2 ) with the exact

solution h(x) = 1
2(1+ π2

4 ) cos(π(x+1)
2 )+(2+8π2) cos(2π(x+1))−0.75(1+

12.25π2) cos(7π(x+1)
2 ) + 1.75δ(x+ 1) + 2.25δ(x− 1).

(4) f(x) = e−x + 2 sin(2π(x + 1)) with the exact solution h(x) = (1 +
4π2) sin(2π(x+ 1)) + (e− 2π)δ(x + 1) + 2πδ(x− 1).
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In all the above examples we have f ∈ C2[−1, 1]. Therefore, one may use the
basis functions given in (60). In each example we compute the relative pointwise
errors:

RPE(ti) :=
|gm(ti) − g(ti)|

max1≤i≤M |g(ti)|
, (126)

where g(x) and gm(x) are defined in (9) and (11), respectively, and

ti := −1 + (i− 1)
2

M − 1
, i = 1, 2, . . . ,M. (127)

The algorithm can be written as follows.

Step 0. Set k = 3, n = 2k, m = n
2

+ 1, ǫ ∈ (0, 1) and DP ≥ 10, where DP is
defined in (119).

Step 1. Construct the weights w
(n)
j , j = 1, 2, . . . , n, defined in (27).

Step 2. Construct the matrix Am+2 and the vector Fm+2 which are defined in
(36).

Step 3. Solve for c :=

















c
(m)
−1

c
(m)
0

c
(m)
1
...

c
(m)
m

















the linear algebraic system Am+2c = Fm+2 .

Step 4. Compute
DP = ‖Hn(f −Rhm)‖2

w(n),1. (128)

Step 5. If DP > ǫ then set k = k + 1, n = 2k and m = n
2

+ 1, and go to Step 1.

Otherwise, stop the iteration and use hm(x) =
∑m

j=−1 c
(m)
j ϕj(x) as the

approximate solution, where ϕ−1(x) := δ(1 + x), ϕ0(x) := δ(x − 1) and

ϕj(x), j = 1, 2, . . . , m, are defined in (60) and c
(m)
j , j = −1, 0, 1, . . . , m,

are obtained in Step 3.

In all the experiments the following parameters are used: M = 200 and
ǫ = 10−4, 10−6, 10−8. We also compute the relative error

RE := max
1≤i≤M

RPE(ti), (129)

where RPE is defined in (126). Let us discuss the results of our experiments.

Example 1. In this example the coefficients a−1 and a0, given in (8) and (9),
respectively, are zeros. Our experiments show, see Table 1, that the approximate

coefficients c
(m)
−1 and c

(m)
0 converge to a−1 and a0, respectively, as ǫ → 0. Here

to get DP ≤ 10−6, we need n = 32 collocation points distributed uniformly in
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Table 1: Example 1

n m ǫ a−1 c
(m)
−1 a0 c

(m)
0

24 13 10−4 0 8.234× 10−5 0 −5.826× 10−3

32 17 10−6 0 3.172× 10−5 0 −1.202× 10−3

56 29 10−8 0 3.974× 10−6 0 −6.020× 10−5

n m ǫ DP RE

24 13 10−4 8.610× 10−6 3.239× 10−2

32 17 10−6 7.137× 10−7 1.554× 10−2

56 29 10−8 6.404× 10−9 4.337× 10−3

the interval [−1, 1]. Moreover, the matrix Am+2 is of the size 19 by 19 which
is small. For ǫ = 10−6 the relative error RE is of order 10−2. The RPE at
the points tj are distributed in the interval [0, 0.018) as shown in Figure 2. In
computing the approximate solution hm at the points ti, i = 1, 2, . . . ,M , one
needs at most two out of m = 17 basis functions ϕj(x). The reconstruction
of the continuous part of the exact solution can be seen in Figure 1. One can
see from this Figure that for ǫ = 10−6 the continuous part g(x) of the exact
solution h(x) can be recovered very well by the approximate function gm(x) at
the points tj, j = 1, 2, . . . ,M .

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

approximation (g
m

) vs exact (g)

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

t

RPE

g
m

g

Figure 2: A reconstruction of the continuous part g(x) (above) of Example 1
with ǫ = 10−6, and the corresponding Relative Pointwise Errors (RPE) (below)

Example 2. This example is a modification of Example 1, where the constant
−2 is replaced with the function −2ex−1 + 2

π
sin(π(x + 1)). In this case the

22



Table 2: Example 2

n m ǫ a−1 c
(m)
−1 a0 c

(m)
0

24 13 10−4 0 1.632× 10−4 0 −1.065× 10−2

32 17 10−6 0 5.552× 10−5 0 −2.614× 10−3

56 29 10−8 0 6.268× 10−6 0 −1.954× 10−4

n m ǫ DP RE

24 13 10−4 8.964× 10−6 3.871× 10−2

32 17 10−6 7.588× 10−7 1.821× 10−2

56 29 10−8 6.947× 10−9 4.869× 10−3

coefficients a−1 and a0 are also zeros. The results can be seen in Table 2. As in

Example 1, both approximate coefficients c
(m)
−1 and c

(m)
0 converge to 0 as ǫ→ 0.

The number of collocation points at each case is equal to the number of col-
location points obtained in Example 1. Also the RPE at each observed point
is in the interval [0, 0.02). One can see from Figure 3 that the continuous part
g(x) of the exact solution h(x) can be well approximated by the approximate
function gm(x) with ǫ = 10−6 and RE = O(10−2).
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Figure 3: A reconstruction of the continuous part g(x) (above) of Example 2
with ǫ = 10−6, and the corresponding Relative Pointwise Errors (RPE) (below)

Example 3. In this example the coefficients of the distributional parts a−1 and
a0 are not zeros. The function f is oscillating more than the functions f given
in Examples 1 and 2, and the number of collocation points is larger than in the
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Table 3: Example 3

n m ǫ a−1 c
(m)
−1 a0 c

(m)
0

80 41 10−4 1.750 1.750 2.250 2.236

128 65 10−6 1.750 1.750 2.250 2.249

232 117 10−8 1.750 1.750 2.250 2.250

n m ǫ DP RE

80 41 10−4 4.635× 10−5 2.282× 10−2

128 65 10−6 9.739× 10−7 7.671× 10−3

232 117 10−8 7.804× 10−9 2.163× 10−3

previous two examples, as shown in Table 3. In this table one can see that the

approximate coefficients c
(m)
−1 and c

(m)
0 converge to a−1 and a0, respectively. The

continuous part of the exact solution can be approximated by the approximate
function gm(x) very well with ǫ = 10−6 and RE = O(10−3) as shown in Figure
4. In the same Figure one can see that the RPE at each observed point is
distributed in the interval [0, 8× 10−3).
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Figure 4: A reconstruction of the continuous part g(x) (above) of Example 3
with ǫ = 10−6, and the corresponding Relative Pointwise Errors (RPE) (below)

Example 4. Here we give another example of the exact solution h having
non-zero coefficients a−1 and a0. In this example the function f is oscillating
less than the f in Example 3, but more than the f in examples 1 and 2. As
shown in Table 4 the number of collocation points n is smaller than the the
number of collocation points given in Example 3. In this example the exact
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coefficients a−1 and a0 are obtained at the error level ǫ = 10−8 which is shown
in Table 4. Figure 5 shows that at the level ǫ = 10−6 we have obtained a good
approximation of the continuous part g(x) of the exact solution h(x). Here the
relative error RE is of order O(10−2).

Table 4: Example 4

n m ǫ a−1 c
(m)
−1 a0 c

(m)
0

40 21 10−4 −3.565 −3.564 6.283 6.234

72 37 10−6 −3.565 −3.565 6.283 6.279

128 65 10−8 −3.565 −3.565 6.283 6.283

n m ǫ DP RE

40 21 10−4 8.775× 10−5 3.574× 10−2

72 37 10−6 6.651× 10−7 1.029× 10−2

128 65 10−8 6.147× 10−9 3.199× 10−3
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Figure 5: A reconstruction of the continuous part g(x) (above) of Example 4
with ǫ = 10−6, and the corresponding Relative Pointwise Errors (RPE) (below)
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