Analytical andfinite element buckling solutions of anisotropic laminatechposite
columns/plates under axial compression with various boundary conditions

by

RundAhmadAl-Masri

B.S.,Jordan University of Science and Technola2@12
M.S.,Jordan University of Science and Technolo2g14

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the requirements for the degree

DOCTOR OF PHILOSOPHY

Department oCivil Engineering
College ofEngineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2017



Abstract

The use of laminated composites in aerospace, automotive, and civil engineering
applications is ever growing due to their distinguishexperties (High stiffnest-weight ratio,
high strengtkto-weight ratio, fatigue and corrosion resistance). This growth has resulted in
increasing the demand for better understanding the mechanics of laminated composites. Composite
columnsand wide plateslike any traditional members subjected to axial compression, undergo
stability issues prior to failuréimited amount ofesearch studies siocused on the buckling of
laminated anisotropic composite membémsalytical formula for the buckling load gfenerally
anisotropic laminated composite simply supported thin coltendswide platess derived using
the Rayleigh Ritz approximatioand bifurcation approactThe effective axial, coupling and
flexural stiffness coefficients of the anisotropic layup determined from the generalized
constitutive relationship using dimensional reduction by static condensation of the 6x6 composite
stiffness matrix. The resulting explicit formukexpressed in terms of the generally anisotropic
material properties asel as the member geometry. The developed forrmdg be considered
an extension to Euler buckling formula using Rayleijtz approximation and the first of its kind
since Euler This formula reduces down to Euler buckling formula once the effectiupling
stiffness term vanishes for isotropic and certain classes of laminated compdstesalytical
results are verified against finite element Eigen value solutions for a wide range of anisotropic
laminated layups yielding high accuracy. Compassaith experimentsconducted aKansas
State Universityor the simply supported cas@ge also performed showing good correspondence.
A brief parametric study is then conducted to examine the effect of ply orientations and material
properties including ybrid carbon/glass fiber compositedement thickness, and element type in

FE analysisRelevance of the numerical and analytical results is discussed for all these cases
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an extension to Her buckling formula using RayleigRitz approximation and the first of its kind
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Chapterl-l nt roducti on
1.1 Background

Composites are defined as a composition of two or more constituents combined at a macroscopic
scale to form a new material with enhanced properties. Laminated composite consists of two main
constituent, fiber and matriEibers are defined as the reinforcement agent that has the major
contribution to strength and stiffness in composites. On the other hand, matrix can be described as
the binder that bonds the fibers together, distributes the load, as well as protettsrthérdm
chemical and environmental attacks. Composite materials are known for their high sivength
weight ratio, high stiffnesto-weight ratio, electromagnetically inert characteristic, as well as
fatigue and corrosion resistance. Laminated compaosatterial is a stack of laminas in different
orientations in which each lamina is described as flat or curved thin layer of unidirectional fibers
or woven fabric in a matrix that behaves as an orthotropic material. As a result, the laminated
composite matéal will generally have anisotropic behavior where the material properties are

different in each direction.

In the past few decades, a growth in the use of laminated composite materials in various industrial
applications such as aerospace engineering hmaautomotive, and civil engineering has been
noticed. Accordingly, an increase in the demand to understand the mechanical behavior of
laminated composite has been realized. Stability (i.e. buckling) issues prior to failure are some of
the problems thateeded to be investigated. Limited amount of research has focused on the
buckling of anisotropic laminated composite members. However, sufficient amount of research
has been performed to predict the stability response of plates, shells, cylinders andTheams.
research investigates the stability of anisotropic laminated composite columns and wide plates

under axial compression with various boundary conditions. RayRiighdisplacement field
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approximation and bifurcation approaches are attempted to gewddsed form buckling
solutions. Furthermore, finite element analysis is conducted to validate the derived formulas. A
parametric study is performed to investigate the effect of changing material properties including
hybrid (steelcomposite) material, plgrientations, element thickness, and element type in FE
analysis. In relation to the simply supported anisotropic and hybrid columns, experimental work
is additionally performedFurthermore different definitions are used to describe tasultsin

which excellent agreement refers to ervafues less than 5 %. Results with error values less than
10 %are listed in the very good agreement categdigreover, a good agreement reflects error

with values less than 15 %.

1.2 Objectives

The present research is @d at developing generalized analytical buckling solutions for
anisotropic laminated composite columns and wide plates under axial compression with various
boundary conditions. Furthermore, parametric studies are conducted to assess the effect of
differentaspects such as material properties including hybrid material, ply orientations, element

thickness, and element type in finite element analysis.

1.3 Scope of Dissertation

This dissertation consists of thirteen chapters. The first chapter presents introdiittie topic,
objectives of this work and dissertation scope. Chapter two includes the literature review
undertaken on the topics related to the dissertation scope. Chapter three introduces the work
conducted on simply supported anisotropic laminatedpomite columns in which a closed form
buckling solution is developed using Rayleighz method. Finite element analysis is performed

to verify the analytical results for different stacking sequences. Moreover, the effect of various



parameters on the buakd load is studied. Experimental technique is performed to predict the
buckling load of folayer EGlass/Epoxy composite simply supported columns. In chapter four,

a generalized analytical buckling formula is presented for simply supported anisamimated

wide plates utilizing RayleigRitz approximation. Additionally, the proposed formula is
confirmed against numerical analysis. Different aspects are taken into account while predicting the

stability response.

Chapter five addresses RayleiBitz methods for developing the analytical buckling formula of
fixed-fixed anisotropic laminated composite columns based on the energy approach. The presented
formula is expressed in terms of the flexural stiffness and the column geometry. In order to
decreasesome of the discrepancy between the analytical and finite element analysis results, the
bifurcation approach of the plaickling deformation is attempted yielding a new formula with an
additional term that includes the coupling and axial coefficients. ranpetric study is then
conducted to examine the effect of different parameters. In chapter six, a similar procedure to the

one in chapter five is presented for the anisotropic laminated composite wide plates.

Chapter seven reports on buckling solutions of fiked@ anisotropic laminated composite
columns under axial compression using Rayldfta formulation and finite element analysis.
The developed formula is expressed in terms of flexural, extensionapaplihg stiffness along

with the column geometry. The effect of ply orientations, element thickness, and material
properties including hybrid carbon/glass fiber composites. In chapter eight, Reglegiolution

is addressed for anisotropic laminatedmposite wide plates with clampége boundary
conditions under uniaxial compression loading. Finite element solution is also attempted to

validate the proposed buckling formula.



In chapter nine, prbuckling deformation is substituted into the bifurcatapproach to derive a
generalized closed form buckling solution for clamypathed anisotropic laminated composite
columns under axial compression. The presented analytical explicit formula reproduces Euler
buckling expression while it furnishes extraotierms which are functions of the effective
coupling, flexural and axial stiffness. Eigenvalue and nonlinear geometry analysis is conducted to
predict critical buckling load values and the stability response of the composite columns for a wide
range of sicking sequences, respectively. Moreover, the analytical and numerical results are
compared with previous work. Chapter ten presents closed form stability solution of clamped
pinned anisotropic laminated composite wide plates under uniaxial compressiparedmith
numerical (FE) analysis. A study is also performed to assess the effect of material properties,
element thickness, and element type in FE analysis on the stability response. In chapter eleven,
buckling of simply supported anisotropic St&&P lybrid columns using RayleigRitz
formulation with numerical and experimental verification is introduced. Two categories of
anisotropic steegjlass fiber reinforced polymer (GFRP) columns are tested under axial
compression loading in which category A hteetssandwiched Hbetween the composite layers

and category B has steel on the side of the composite I@gmelusions, recommendations, and

future work are discussed in chapiselve



Chapter2-Li t erature Review
2.1 Overview

A brief overview regarding the work conducted on the stability of laminated composite structures
is introduced in this chapter. Section 2.2 presents work performed to develop analytical
formulations of the buckling of laminated composite memhiétsnerical solutions and finite
element analysibased papers are presented in section 2.3. Furthermore, section 2.4 introduces

experimental work performed on the composite laminated structures.

2.2 Analytical Studies

Rasheed and Yousif [1] studied the bucklofgthin laminated orthotropic composite rings and
long cylinders under external pressure. A generalized analytical buckling formula was developed
for a multtangle laminated orthotropic rings and long cylinders. The developed formula is
expressed in termef the generally orthotropic extensional, flexural, and coupling stiffness

coefficients. The following equation represents the critical buckling formula:

= >{:|><Hu ol | 1
ST NI @
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In which ' R PAT & are simply the extensional, coupling, and flexural stiffness
coefficients, respectively, obtained from the dimensional reduction of orthotropic behavior. The
developed formula yielded impved results compared to some design codes. Rasheed and Yousif
[2] derived a generalized closed form buckling formula of anisotropic laminated thin rings and
long cylinders subjected to external hydrostatic pressure. The formula is presented in teems of t
generally anisotropic material and the member geometry. The developed formula was confirmed
against finite element solutions and the results showed that the buckling modes are symmetric with

respect to rotated axes of the twisted section of thdyechking solution in case of anisotropy.
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Silva et al. [3] presented a formulation of a generalized beam theory (GBT) to predict the local
and global buckling behavior of fiber reinforced polymer (FRP) composite-ggion thiA
walled columns. The solutionrfdouckling using GBT included solving the following eigenvalue

problem:
L 7 ™ )

Where K is the global linear stiffness matrix; G is the geometric stiffness matrixd anthe

eigenvector. The paper presented finite element beam to solve the generalized beam theory (GBT).

Silvestre and Camotim [4] studied the buckling behavior of thin walled arbitrary orthotropic
members by developing a second order generalized beamry ttGBT). The second order GBT
formulation was also compared with Bauld and-Bitiyng theory [5]. The results showed that the
critical load exists for all isotropic or crepty orthotropic members. Furthermore, Forear

primary path is exhibited andrspecific bifurcation is detected for asymmetric orthotropie lay

ups. Xu et al. [6] presented an approximate analytical method based on the equivalent anisotropic
plate approach to study the buckling ofaxial woven fabric composite structures sulgddb bt

axial loading. The presented method was verified againstimear finite element analysis. It was
observed that the analytical solution gives upper bound results for buckling loads and can be used
to predict the buckling behavior for real wopdoblems subjected to-bixial loading. Shukla et

al. [7] presented an analytical formulation to predict the stability of glyssand angleply
laminated composite rectangular plates undgaame uniaxial and biaxial loading based on the
ReissneiMindlin first order shear deformation theory and AKeraman type nonlinearity for
various combinations of boundary conditions. The-donensional critical load parameter is

expressed in the following:



J
fu, Je gt (3)
Ll |
In which. is the uniform iRplane mechanical loading, b is the width of the pl&eis the

modulus of elasticity in transverse direction, and h is the plate thicksyeas.to thicknessatio,
plate aspect ratio, lamination scheme, number of layers and modulus ratio effects were considered
in estimating the buckling behavidrhe analytical formulation results showed a good agreement

with the numerical analysis results.

Herencia et al. [8] presented a closed form solutions for buckling of long anisotropic plates with
various boundary conditions under axial compression using RayReiglapproximation method.

The following equation defines the closed from solution:

ke ﬁ.i— T 4)

Where$ i s the bending stiffnessjisthenordimensiorl wi dt t
buckling coefficient related to the boundary cdiwmdis. The results showed an excellent agreement

with existing solutions (Weaver [9] [10], Qiao and Shan [11]) and finite element results. Sun and
Harik [12] studied the buckling of stiffened antisymmetric laminated composite plates with
bendingextensioncoupling by extending the analytical strip method (ASM) developed by Harik

and Salamoun [13] to analyze bending of thin orthotropic and stiffened rectangular plates. The
results showed that plates with free boundary conditions contribute the weakeasingtiéfiéect.

Moreover, the number of layers of ply orientations equal to 0 and 90 had no effect on the critical
buckling load since the coupling stiffness matrix vanishes. Shufrin et al. [14] presented a semi
analytical solution for buckling of symmetriballaminated rectangular plates with general

boundary conditions under combined tension, compression, and shear depending on multi term



Kantorovich method developed by Kerr [15]. The results showed that the stability ofpangle
laminated plates improvadhder biaxial compression/tension, shear and additioraime forces

were created due to theptane restrains.

Weaver and Nemeth [16] developed rdimensional parameters and governing equations to study
the buckling behavior of rectangular symmethicdaminated composite plates with different
boundary conditions under uniform axial compression, uniform shear, or pplane bending
loading. Furthermore, bounds for adimensional parameters were presented as an indication of
percentage gained ihé buckling resistance for laminated plates. The results exhibit86%6
increase in the buckling resistance for tailored simply supported orthotropic plates; with respect to
isotropic plates. Moreover, clamped laminated plates exhibHEZP® increase ithe buckling
resistance. Using polar representation of the feortter flexural stiffness tensor, Kazemi [17]
presented a new exact seamalytical approach to predict the buckling of laminated composite
plates under biaxial compression. The developeahdila can be used easily to predict buckling
problems, optimization and design of laminated plates unga@aie loading. Thai and Kim [18]
proposed a closed form solution for buckling of orthotropic plates with two opposite simply
supported edges usigo variable refined plate theories. State space concept was used based on
Levy type solution to solve the governing equations. The results showed more accurate solutions
than the higher order shear deformation theory. Ovesy et al. [19] investigatedhitiey sif
laminated composite plates under uniaxial uniform compression. Based on the higher order plate
theory (HOPT), a semanalytical finite strip formulation was presented. A parametric study was
conducted to study the effect of plate aspect raifoy, width to thickness ratioiff’Q), material
properties, boundary conditions, and number of layers. The results showed that the critical

buckling load increases as the plate width to thickness ratio increases and plate aspect ratio



decreases. Moreovethe results obtained from the presented formulation exhibited a good

agreement with the-B elasticity theory.

Abramovich and Livshits [20] studied the free vibrations of-sgmmetric cross ply laminated
composite beams based on the first order shefarndation theory. Longitudinal, transverse
displacement, rotary inertia, and shear deformation were taken into account in the analysis. The
following equation of motion of cross ply laminated composite beams was solved for different

boundary conditions:
E Ao A a (5)

Where - is the generalized mass matri%, is the matrix differential operator; anfll is the

vector of the generalized displacements. The new approach and BeEuwetlitheory were
verified against numerical solutions. Abramovich et al. [21] used the exact method based on
Timoshenko equation to study the vibrations and buckling of -grilgsson-symmetric rectangular
laminated composite beams. The effects of material properties, number of layers, and boundary
conditions were considered. Analytical results showed a good agreement with the numerical
results. Moreover, the nesymmetric layushowed a coupling effect between the axial and lateral
motion of the beam. Based on Hellingeeissner principal, Cortinez and Piovan [22] proposed a
theoretical model to investigate the buckling of composite-wdled beams with shear
deformability usng nonlineardisplacement field The governing equations were solved using
finite elements with fourteen degrees of freedom per element. Based on the results, shear flexibility
had a significant effect on the stability of the composite beams. Using Ripanéydogdu [23]

studied the stability of crogay laminated beams with general boundary conditions depending on

the unified three degrees of freedom shear deformable beam theory. The results were verified with



previous work for various lengtto-thickness ratios and various layups. Pandey and Sherbourne
[24] proposed a general formulation to predict the buckling of rectangular anisotropic symmetric
angle ply composite plates under linearly varying uniaxial compressive loading with clamped and
simply suported boundary conditions based on energy method and orthogonal polynomial
sequences obtained by Gr8uhmidt. Ghaheri et al. [25] studied the bucking and vibration of
symmetrically laminated composite elliptical plates on a Wirklpe elastic foundatio under
uniform in-plane force for various boundary conditions based on the variational approach and Ritz
method. The effect of having different layup stacking sequences, aspect ratamerioad, and
foundation parameter was also considered. The seshiiwed that as the foundation parameter
increases and the aspect ratio decreases, the critical buckling load increasesRdeataet al.

[26] investigated the effect of angidy and crossly layups on the stability of Hglass/epoxy
square compod®tlaminated plates under axial compression with SFSF (S: simply supported, F:
Free) boundary conditions analytically, numerically, and experimentally. Using RaRémh
approach based on energy method, a sermalytical solution was developed to predicée
buckling load values. Eigenvalue and nonlinear analysis (Riks Analysis) were conducted to predict
buckling load values and the stability response of the laminates using finite element software
Abaqus. Eight node quadratic shell element (S8R) was adswittemesh size equal to 2.5 mm

and line load in the-gdirection of value 1 N/m was assigned to the edge of the laminates. Moreover,
Hashin, TsaWu, and TsaHill failure criteria were attempted in the numerical analysis to study

the layer failure of theaminated composites. -glass/epoxy plates of four layers were made with
angleply ([v 30]s, [ 45]s) and crossly ([0/90]s) stacking sequences using hand layup method.

V-shape fixture was assembled to implement the simply supported boundary conddiplexead

in the universal testing machine. The test was conducted under displacement control with rate
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equal to 0.5 mm/min. The analytical results showed an excellent agreement with the numerical
(FE) results. On the other hand, the samalytical and nuerical buckling load values were
overestimated compared to the experimental ones. Furthermore, Hashine failure criteria were not
able to predict the failure of the laminated composite plates efficiently. HoweveiWTlsand
TsatHill failure criteria hadhe same failure mode as the tested plates in which the failure started
from the plate edge then developed along the plate. Lopatin and Morozov [27] proposed an
analytical formula to predict the buckling of composite cantilever circular cylindrical stagku
uniform external lateral pressure based on the generalized Galerkin method. Finite element
software COSMOS/M was used to perform the eigenvalue and eigenvector computations with
SHELLA4L element and was verified against the analytical results yieddhragcurate estimate of

the buckling load values.

2.3 Numerical Studies

Debski [28] presented numerical analysis of buckling and-Ipasitling of thirwalled simply
supported laminated composite columns with channel section under axial compression. Eight
symmetrical layered Carbon/Epoxy columns were analyzed using finite element software Abaqus
and Ansys, which was verified with analyticaimerical method [29]. Linear four node shell
element with reduced integration schemes (S4R) and eight node shell e(Simelif9) were
utilized in Abaqus and Ansys, respectively. A good agreement was observed between the finite
element results and results obtained from the analioaerical method. Kumar and
Mukhopadhyay [30] presented a new finite element to predidiubkling of laminated stiffened

plate for different boundary conditions based on the first order shear deformation theory. The

presented element eliminated any addition of extra nodes in the mesh assignment step at the
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stiffener locations. Moreover, theahsverse shear deformation was taken into account in the plate
and stiffener element. The new finite element captured the critical buckling behavior of thin and
thick plate without shear locking. The results showed a good agreement of the developed finite
element compared with previous work conducted by Loughlan [31]. Rikards et al. [32] developed
a triangular finite element to investigate the buckling and vibration of laminated composite
stiffened plates and shells. Equivalent layer shell theory witbegixees of freedom based on the

first order shear deformation theory with transverse shear stiffness correction was used. The
critical buckling load results obtained from the new triangular element were verified against
existence solutions (Jaunky et aB3]) yielding a good agreement. Depending on full three
dimensional elasticity formulation and layeise finite element, Setoodeh and Karami [34]
proposed a refined layavise finite element formulation and computer code named L3WD to
predict static, fre@ibration, and buckling of anisotropic thick laminated composite plates resting
on Winkler and Pasternak elastic foundatietastic lineand point support. The results were
confirmed against classical laminated plate theory (CLPT), first order sheamd&tm theory
(FSDT), and higher order shear deformation theory (HSDT) yielding a good agreement. The
computer code L3WD yielded accurate results for thick composite plates with different boundary
conditions, iAplane and oubf- plane deformation. BaseWin t he refined Reddy?od
theory, Nayak et al. [35] developed nine node shear deformable plate bending element to study
buckling and vibration of initially stressed composite sandwich plate with various boundary
conditions under different iplare loading conditions. To prevent shear locking phenomena,
assumed strain concepas used with full integration schemes. The effect of loading conditions,
stacking sequence, boundary conditions, and thickness ratio was studied. The results observed a

goodagreement compared to exact results conducted by Noor et al. ([36] and [37]), higher order
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shear deformation theory (HSDT), and classical laminated plate theory (CLPT). Grover et al. [38]
presented a new inverse hyperbolic shear deformation theory (IH8Biidy static and buckling

of laminated composite and sandwich plates depending on the shear strain shape function to ensure
a nonlinear distribution of transverse shear stresses and satisfies traction at free boundary
conditions. Principal of virtual ark with linear kinematics was used to derive the governing
differential equations. Analytical solution was solved using Navier type solution of simply
supported composite sandwich plate. Several numerical examples were solved using the presented
theory. The developed theory accurately predicted the critical buckling load for simply supported
thick plates with minimal numerical error and computational cost. Kidane et al. [39] investigated
the stability of grid stiffened composite cylinders. Depending onasssemethod, analytical

model was developed where the equivalent material properties were determined of grid stiffened
composite cylindrical shells. The moment and force effects due to stiffeners were considered for a
unit cell in the analysis procedureitRmethod was performed to calculate the buckling load
analysis of simply supported composite cylinders [40] using Matlab code. Experimental work was
conducted to verify the developed analytical model results. The results showed that the buckling
load deceases as the stiffener spacing increases. Furthermore, stiffener orientation, cylindrical
shell thickness, and shell winding angle had a significant effect on the buckling load values of

symmetrical and unsymmetrical composite layups in the cylinders.

Basd on three dimensional elasticity considerations, Jiangiao Ye and Soldatos [41] studied the
stability of simply supported thick laminated crgig composite hollow cylinders and open
cylindrical panels under combined external loading. Initial zero Stesses were assumed in the
pre-buckling solution. Three dimensional sets of linearized buckling equations were solved using

recursive method of a successive approximation approach. The results of ttayertaminated
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composite cylinder under axiabmpression were compared with previous work conducted by
Noor and Peters [42] yielding an excellent agreement. Moreover, the results showed that Ref. [42]
formulation is computationally expensive for problems with high number of degrees of freedom
comparedto the presented method. Additionally, the buckling analysis was conducted for

symmetric and antisymmetric creghy layups.

2.4 Experimental Studies

Debski et al. [43] investigated the buckling and gmstkling behavior of simply supported thin
walled conposite channel column sections under axial compression loading experimentally.
Carbon/Epoxy thin walled channel section columns with cross sectional dimensions &gual to

40 x 1.048 mmand length of 300 mm were tested using Zwick Z100/SN3A univerdaiges
machine, moreover, columns were composed of eight symmetrical pt&s/&/90}. The results

were compared with numerical solutions obtained from finite element software Abaqus and
ANSYS using 4node linear shell element (S4R) with reduced intégmaschemes and-i@de

shell element, respectively. Additionally, the experimental results were confirmed against the
analyticalnumerical method (ANM) based on Koiter theory-f4]. MeyerPiening et al. [48]
presented a project performed by Institut&trfictural Mechanics, Braunschweig (DLR), former
Institute of Lightweight Structures and Ropeways (ETH Zurich), and Department of
Polymers/Composites (EMPA Dubendorf) to study the stability of-whahed carbon fiber
reinforced polymer (CFRP) laminatedliiogers under combined axial compression and torsional
loading experimentally and numerically. Carbon/Epoxy cylindrical shells were tested at DLR
buckling test facility under axial compression and at EMPA universal testing machine under
combined loading. fie experimental results were compared with two analytical solutions, shallow

shell theory [49] and deep shell theory (using BACCUS program). Furthermore, experimental
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results were confirmed against finite element results obtained with MARC K7 yieldingageccu
results. Isoparametric shell element No. 75 was used in the finite element analysis with element
size equal to 60 x 180 mm. The results showed that the analytical solutions predicted accurate
buckling load compared with experimental ones for ecceatitri@minated circular cylinders with

small initial imperfection. Moreover, the stacking sequences of the laminated cylinder had a
significant effect on imperfection. Aslan and Sahin [50] studied the bucklinggthds/Epoxy
crossply laminated compositaectangular plates with multiple delamination under axial

compression. Experimental work was conducted to test-fixed composite plates of stacking
sequence [0/90/0/99vith and without delamination. The following dimensions were attempted

for length width, and thickness: 100 mm x 30 mm x 2.4 mm, respectively. Axial compression test
was performed using Shimazdu AGtesting machine under displacement control with rate equal

to 0.1 mm/min. Finite element analysis was carried out to verify the expgalresults using

Ansys 11.0. Solid elements with six degrees of freedom (SOLID46) were assumed in FE analysis.
A parametric study was conducted to study the effect of having different stacking sequences. The
numerical (FE) results exhibited a good agreetagainst the experimental results. In general, it
was observed that increasing the number of delamination defects led to a decrease in the buckling
load values. For composite plates without delamination, buckling load values of antisymmetric
stacking squences were lower than symmetric ones. On the other hand, antisymmetric stacking
sequences observed higher buckling load for composite plates with multiple delamination. Baba
and Baltaci [51] investigated the buckling characteristics of symmetricallgrgirsymmetrically
laminated composite rectangular plates made gaflaBs/Epoxy with central cutout using
experimental and numerical techniques. Different laminate configurations, cutout shape, boundary

conditions, and length to thickness ratio were taikém consideration. Composite plates were
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analyzed using finite element software Ansys. Eight nodded multilayered shell element
(SHELL91) was assumed and axial compression loading was attempted. The experimental results
were confirmed against finite elemteanalysis yielding a higher buckling load values than the
numerical ones. Moreover, the buckling load decreased as the length to thickness ratio increased.
For symmetric and antisymmetric laminated composite plates, the buckling load values decreased
due to the existence of cutouts. The antisymmetric stacking sequences and clamped boundary
conditions showed a higher buckling loads compared to symmetric and simply supported boundary

conditions, respectively.
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Chapter3-Anal ytical and Fi ot etEloeame
Simply Supported Anisotropic Lami
under Axi al Compression Compare

Hayder A. Rasheed and Rund Al-Mastri?

3.1 Abstract

Analytical formula for the buckling load of generally anisotropic laminated composite
simply supported thin columns is derived using the Rayleigh Ritz displacement field
approximation. The effective axial, coupling and flexural stiffness coefficients of the
anisotropic layup is determined from the generalized constitutive relationship using
dimensional reduction by static condensation of the 6x6 composite stiffness matrix. The
resulting explicit formula has an additional term which is a function of the effective coupling
and axial stiffness. This formula reduces down to Euler buckling formulance the effective
coupling stiffness term vanishes for isotropic and certain classes of laminated composites.
The analytical results are verified against finite element Eigen value solutions for a wide
range of anisotropic laminated layups yielding high accuracy. Comparisons with
experiments are also performed showing good correspondence. A brief parametric study is
then conducted to examine the effect of ply orientations and material properties including
hybrid carbon/glass fiber composites. Relevance dfie numerical and analytical results is
discussed for all these cases.

Keywords: Buckling of Composite Columns, Simply Supported Boundary Conditions,
Anisotropic Laminated Composites, Axial Compression.

! Professor, Department of Civil Engineering, Kansas State University, Manhattan, KS 66506

2Ph.D. Candidate, Department of Civil Engineering, Kansas State University, Manhattan, KS 66506

17



3.2 Introduction

The use of laminated composites in aerospace, automotive, marine and civil engineering
applications is ever growing due to their distinguished properties (High stitimegsight
ratio, high strengtho-weight ratio, fatigue and corrosion resistance)sgrowth has resulted
in increasing the demand for better understanding the mechanics of laminated composites.
Composite columns, like any traditional members subjected to axial compression, undergo
stability issues prior to failure. Not many reseastindes have focused on the buckling of
columns, however, a significant amount of research has been performed to study the buckling
behavior of composite memberdates and shelis the recent years {13]. Silva et al. [1]
developed a formulation of a geakzred beam theory (GBT) to study local and global
buckling behavior of fiber reinforced polymer composite open sectionntsiled columns.
The solution for buckling using GBT included solving the following eigenvalue problem:

L ™ (1)
Where K is the global linear stiffness matrix; G is the geometric stiffness matrix; and d is the
eigenvector Silvestre and Camotim [2] developed a second roggmeralized beam theory
(GBT) to predict buckling behavior for thin walled arbitrary orthotropic-thaled members.
Thesecond order GBTormulaion was also compared with Bauld akith-Shyngtheory [3].
The results showed that the critical load exisis all isotropic or crosply orthotropic
members. On the other hand, Aorear primary path is exhibited and no specific bifurcation
is detected for asymmetric orthotropic days. Rasheed and Yousif [4] used the energy
approach to develop a closedrfosolution to predict buckling of thin laminated orthotropic

composite rings/long cylinder under external pressure:

=u><ﬁ'=|><Hu><| 2
ST T NI 2)

18



Whered M hdé Q constants are simply the extensional, coupling, and bending
stiffness coefficients obtained from dimensional reduction of orthotropic behavior. The
developed formula yielded improved results comparesiotoe design codes. Rasheed and
Yousif [5], developed a closed form solution for buckling of anisotropic laminated composite
rings and long cylinders subjected to external hydrostatic pressure. They confirmed their
analytical results against finite elemeolutions and also concluded that the buckling modes
are symmetric with respect to rotated axes of the twisted section of thegkleng solution

in case of anisotropy. Xu et al. [6] developed an approximate analytical solution to predict
buckling of a ti-axial woven fabric composite structure undegakial loading based on the
equivalent anisotropic plate method. They concluded that the analytical solution gives an upper
bound solution for buckling load and it can be used to predict buckling behawvreaf world
problens subjected to baxial loading. Using first order shear deformation and-Karman

type nonlinearity, Shukla et al. [7] estimated critibatkling loads for laminated composite
plates with various boundary conditions undepiane uiaxial and biaxial loading. Span to
thickness ratio, plate aspect ratio, lamination scheme, number of layers and modulus ratio
effects were considered in estimatintpe buckling behavior. Sun and Harik [8] developed
analytical buckling solution of stiffead antisymmetric laminated composite plates with
bendingextension coupling using analytical strip method (ASM) which was first developed
by Harik and Salamoun [9] to analyze bending of thin orthotropic and stiffened rectangular
plates. The results showddhat plates with free boundary conditions contribute the weakest
stiffening effect Moreover, the number of layeo$ ply orientations equal to 0 and 90 had no
effect on the critical buckling load since the coupling stiffness matrix vaniBlebski et al.

[10] studied buckling and poestckling behavior of thiswalled composite channel column
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sections experimentally. The results were compared with numerical solutions obtained from
finite element models (Abaqus and ANSYS) and analyticaherical method (ANI). Based

on multi term Kantorovich method developed by Kerr [11], Shufrin et al. [12] developed a
semtanalytical solution for buckling of symmetrically laminated rectangular plates with
general boundary conditions under combined tension, compressioshead The results
showed that the stability of anghdy laminated plates improved under biaxial
compression/tension and shear. Moreover, additiorplane forces were created due to the
in-plane restrains. Thai and Kim [13] proposed a closed formtisoldor buckling of
orthotropic plates with two opposite simply supported edge using two variable refined plate
theories. State space concept was used on Levy type solution to solve the governing equations.
The results showed more accurate solutions tifamigher order shear deformation theory.

In this work, a generalized analytical formula for buckling of simply supported laminated
composite columns subjected to axial compression is developed. Ragkeigh Ritz
approximation was used to obtain theckling formula. Axial, coupling and flexural rigidities

in 1D are determined using dimensional reduction by the static condensation approach starting
with the 3D rigidity matrix. Moreover, finite element models for the columns are established
using the ommercial software Baqus Furthermore, glass fib@poxy columns were made

and tested in the laboratory. The finite element numerical solution was compared to the
analytical solution resulting in excellent agreement. The experimental results also showed
reasonable comparison with the newly developed analytical results. A good agreement
between all three types of results was observed, regardless of the complexity of the composite

lay-ups used.
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3.3 Analytical Formulation
A generalized closed form buckling formaufbr simply supported anisotropic laminated composite
columns under axial compression is derived using RaylRighapproximation.
1.1 Assumptions:
1. Buckling takes place in theyxplane about the weak axis#xis).
2. The yaxis runs through the thicknesstbé column where the composite lamination
takes placefrigure3.1
3. The lamination anglea() is measured with respect to theaxis (i.e. 0° fibers run
parallel to thex-axis and 90° fibers run parallel to thexs). Accordingly, the angle
(a ) is rotated about the-gxis.
4. Plane sections before bending remain plane after bending and perpendicular to the mid
surface (i.e. simple beam theory holds).

5. Classical laminatiotheory is applicable with shear deformations ignored.

3.3.1Kinematics

Figure3.lillustrates geometry and the Cartesian coordinates of the simply supported column used.
The zaxis is the weak axis of the column about which bending takes place. The following

displacementalations were assumed based on the isotopic Euler first buckling mode:
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Lamination

Figure3.1 The column geometry.

oo o [Pec; o0 EiF ®3)

Whered w, andb @ is the axial, and lateral displacements; B, and G are constants to be
solved; and x is the distance along the axis of the colurhe. second term in thexial
displacement expression is neglected since the % variation in cross section axial displacement is
found from the finite element analysis below to be very small. More specifically, this percentage
varies between 0.074.00% for materials with highiffness ratio (E/E>2) (e.g. Graphite/Epoxy)

and between 0.052.00% for materials with lower stiffness ratioi{(f£22) (e.g. S Glass/Epoxy).

For an intermediate class of deformation, the axial straamd curvaturd are defined as follow.

m, ., A

t. ._. - ._. ¢ -0 3 ¢o -_. o (4)



3.3.2Constitutive equations

The principal material directions were transformed into the column coordinate system, tles stress

and strains are then related in the following equation

o 00
» r r
W bk

Where 0

©)

matrix represents the transformed reduced stiffness matrix as defined in standard

composite textbooks [14Accordingly, the coupled forestrain relationship is established as

follows:
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In whicho ,6 andO aretheaxial, coupling, and flexural rigiditgoefficients @ = thickness

of the kth ply; and N = number of different plies in the stacking sequence.
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The tiree dimensioa (3D) rigidity matrixis establishedirst usingthematerial poperties anthe

fiber orientatiors into equation (7)Then the dimension is reduceid 1D anisotropicaxial,

coupling and flexural rigidities using static condensation apprateh applying the zero forces

and moments

r
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Equation (8) is solved first for the axial strain and axial curvatuyed() in terms of the rest of

the deformation components by extracting the second, third, fifth and sixth linear equations from

the matrix.

;
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Inverting the matrix Q to the other side of equation (9), the condensed deformation components

are obtained in terms of the axial strain and curvature:

E,

o ) t.
A Sy
¢. >
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Substituting equation (10) into the first and fourth linear equation of the matrix (8); the axial force
and inplane moment vs. the axial strain aneplane curvature relationship can be expressed in
terms of the generally anigopic material properties

e

_ v_ 11
1. ”+ G Ao (11)

Where
- ”=|= w = || 1L 1
||=|=- AT || I =| |F =| (12)

3.3.3Energy Formulation
A generalized buckling formula was deriveding RayleighRitz approximation based on the
energy approach. Strain energy can be expressed in terms of the integration of the applied loads

multiplying the correspondingeflormations.

d

—d &
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The potential of external loads can be expressed as shown in equation (14)
T e (14)
Taking the total potential energy function and substituéiggatiors (13) and (14) into equation

(15)

T T Rl L (15)
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Minimizing the total potential energy function with respect t@aBd G and setting the resulting

expressions to zerperformingtheintegration byparts and manipulatintpe equations to give:

F 7 =.F7 2 Z g
. =. | 4 I l+. £ T IF
- 5
z g =1. d =1, g4 Led
= &J& L% l4. | § ||=|=-.;E§ Mé
(17)

Solving equation(16) for B; then substituting the resulting expression in equation (17), the

following cubic equation is formulated in terms of @lue

l+.-r2 ¢ 2 I
” =4 4 4 ; (18)
AF AF AF A (29)

Where
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Equation (19) does not lend itself to a closed form solution. Therefore, considering the critical

stability matrix:

W z ” ZF (20)
Fel F
Where
z J
=9
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Setting the determinant of the matrix in Equation (20) to zero, substitutieg@ession from

equation (18) and solving fori@sing the general solution of a quadratic equation:

=

b g e F =t I+-

(22)

In order for the € value to be real, the discriminant must be at least zero. By setting the
discriminant to zero and manipulating its expression, a closed form solution for the critical

buckling load is derived:

L || 4. 23)

In the case of isotropic or speciatbythotropic materials, the coupling term vanishes riuc
the equation to that of Euler buckling.

3.4 Numerical Formulation

Finite elemenbuckling analysisvas used to verify the analytical solutjaerived in the previous
section, using the commercial softwargackageAbaqusfor laminatedanisotropic columns.

Columns composed of four layers of composites were modeled with simply supported ends, in
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which roller and pin supports were introduced on the top and bottom of the column, respectively.
Moreover,a concentrated load was applied at the top of the colunmeak elastic laminate
materialwasused fororthotropic andanisotropidayups, respectivelyMoreover, graphite/epoxy
material was mainly used to simulate the composite colu@uadrilateral eighhode doubly

curved thick shell element (S8R) and 3Did@0-node quadratic brick element (C3D20R) were
utilized for modeling the columns in 3§pace. Element size equal to 0.5 x 0.5 mm with total
number of elements equal to 400 were used for a column size of 100 mm x 1 mm x 0.4 mm after
conducting a convergea study to select the appropriate mesh dtrgure 3.2 illustratesthe

model 6s boundar yfoctheshelietementa s and mesh

Figure3.2 Left: Boundary conditions and applieddd. Right: Meshed Model.
Two types of analy®s were undertaken in thiudy First, a buckling analysis using Lanczos
solver to simulate eigenvalgemputatiorwas undertaken. Lanczos method is one of the msthod
used to solve for eigenvalues and eigenvectors for complex Hermitian matrix using power
methods. Lanczos method reduced @& symmetric matrix using recurrence relations

(multidimensional array valug$o a tridiagonal matrix15].

28



Secontly, a nonlineargeometryanalysis usinghe modified Riks formulationwas performedto
predict thenonlinearstability responsépre-buckling andouckling) of the composite colummihe
modified Riks analysis uses the Arc length method to follow the equilibrium pepnegnting
either thebifurcation pointsor thelimit points. Load incremestareapplied duringheanalysis in
which equilibrium iterations converge alotige arclength,forcing the constraint equation to be

satisfiedat every arc length incremejis].

3.5 Experimental Program

3.5.1 Specimen Preparation
Twelve Eglass fiber/epoxy columns were made in the laboratory with four different sequences.
V-Wrap EG50 unidirectional fabric was cut at different angles 30, 0, and 90) as shown in

Figure3.3. Properties of WNrap EG50 fabric are shown Trable3.1 [17].

| ‘ | K 5 : : -
f = E:‘ 4
‘ e —
i | X =
/R "ﬁ | ) ==
-30 0 30 90
Figure3.3 Glass fiber orientations
Table3.1 Dry fiber properties [17].
Tensile Strength 3240 MPa (470,000 psi)
Tensile Modulus 72,400 MPg10.5 x 16 psi)
Elongation 4.5 %

29



Density 2.55 g/cnd (0.092 Ibs/if)

Epoxyresinand hardener were mixed together to middeematrix materialvith 100to 34.5ratio

by volume respectively, using mechanical rotampixer as shown ifrigure3.4. The epoxy resin
was first applied to the nestick preparatiorsheet themply of fiber is laid by a paint roller against
theresin A second layer of nwas appliedvith the roller on top of the fiber ply and the process

is repeated as many times as the number of fiber plies in the stacking segiugned,5.

Figure3.4 Resin preparation Figure3.5 Specimen preparatior

Four differentstacking sequences were constructed by the wet layup probesstipswerethen

left to harden for one week room temperature then were cut to column final sizes using a table

saw seeFigure3.6.

Figure3.6 Compoite trip after the wet layup process.
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Thickness and width of the hardened specimens were measuredaudigital @liper at three
locations to takéhe average. Layer thicknesg (¢ assumeckqual toonequarter of the average
S peci men 0gsncetehch arkime svas composed of four pkéser and matrix volume
fractiors (V+ and \n) were calculated using equation (22). Using rule of mixdaralthe Halpin-
Tsai equation, elastipropertiesin the fiber transverseand inplane sheadirectionswere
obtained.

O QLN & 06 QAR
O QEEAD 6 | OO VI

(22)

Where the thicknedgswas measured to be 0.305 mm, the thickhessied based on the
different laminates as shown in Table 6 below
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In which &, and B, are fiber and matrix modulu&:, andGn are fiber and matrisheammodulus
3 value was taken equal t dl8oHkygeation @4) getemnisghel e mo r «

minor Poisso6 s r at i o:

(24)

3.5.2TestSetup

After one weelof curing the four different stacking sequences, showiahle 3.2, were tested.

Columns were tested undsxial compression using the Shimad&G-IC 50 kN testing machine,
operating with Trapezium X software following dsplacement control protocol with a
displacement rate of 1 mm/minute

Table3.2 Sampleof the four differenstacking sequense

Sample Number Stacking Sequence
1 30/-30/0/90
2 30/-30/90/0
3 0/30£30/90
4 30/0/90£30
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E-Glass Fiber /Epoxy Composite

Simply supportedoundaryconditions were applied at the ends of the composite columns, see
Figure 3.7. Columns were loadeth axial compressive displacemeutil the load dropped

indicating the attainment of a limit load.

Moveable
Compression
Head

Gripping Head

Testing Specimen \

Gripping Head

Fixed
Compression
Head

Figure3.7 Axial Compressiormest Setup
3.6 Results and Applications:

3.6.1Numerical Validation

Table3.3 presentshematerial properties of High Strength Graphite/Epmtytained frontypical
values in an FRP textbook [1&hat was used to simulate the analytical and numerical results for
different stacking sequenc®f composite columns with the following dimension: 100 mm x 1.0
mm x 0.4 mm for length, width, and thickness, respebtiwith length to thickness ratio equal to
250 The comparison between the analytical and numebigektling loagis reported inTable3.4

for variouslayup stackig sequenced he results matcheasonablyvith a minimum error equal

to 0.0038%or the single specially orthotropic layer (90/90/90/90) amdaximum error equal to
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11.2121% for the symmetric angle ply laminate {3@/30/30).1t is important to note thahe

layup with the maximum error yields the analytical buckling load on the conservative side.

Table3.3 High Strength Graphite/Epoxy Material Proper{i&3].
Material En E22 G2 312

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

Table3.4 Comparison of analytical and numerical buckling load for various layup sequences
Graphite/Epoxy Composite Column

Ply Analytical Numerical % Error Layup Type
Orientation Results, N Results, N
0/0/0/0 0.76325 0.76289 0.0472 Single Specially Orthotropic
90/90/90/90 0.052638 0.05264 0.0038 Single Specially Orthotropic
0/90/90/0 0.67612 0.67573 0.0577 Symmetric Cross Ply
0/90/0/90 0.34631 0.35089 1.3226 Antisymmetric Cross Ply
90/0/0/90 0.14182 0.1418 0.0142 Symmetric Cross Ply
30/-30/30+30 0.23915 0.23909 0.0251 Antisymmetric Angle Ply
45/-45/45F45 0.088707 0.08871 0.0034 Antisymmetric Laminates
60/-60/60£60 0.05689 0.05688 0.0176 Antisymmetric Laminates
30/-30/60+£60 0.09435 0.10161 7.6948 Balanced Angle Ply
60/-60/45/45 0.06968 0.07126 2.2676 Balanced Angle Ply
30/-30/45+45 0.13098 0.13452 2.7028 Balanced Angle Ply
30/-30/0/0 0.36506 0.39188 7.3468 Anisotropic
30/30/-30/30 0.19256 0.21415 11.2121 Symmetric Angle Ply
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-45/30£30/45 0.11408 0.11407 0.0088 Antisymmetric Angle Ply

30/30£30/30 0.16171 0.1615 0.1299 Antisymmetric Angle Ply

30/30/0/90 0.17569 0.18431 4.9064 Anisotropic

Figure 3.8 shows the load versus mid heigfisplacementurve for three different stacking
sequences obtained from the finite element Abaqus Riks analysis along with the analytical
buckling load marked for comparison. An excellent agreement between the results is seen in
which the antisymmetric cross ply stawl sequence exhibit higher buckling load than the two
other sequences. On the other handptlanced anisotrop@ngle ply layup showed the lowest
buckling load. Single specialgrthotropic layer (0/0/0/0) exhibits the highest buckling load due

to havng all fibers aligned with the loading axis while the coupling coeffidiq,_n.t vanishes.

Load vs. Deflection

0.4
0/90/0/90
0.3 beesees=mees==a=
0.3 FE Numerical Solution
= = = Analytical Solution
> 0.25
'%" 0.2 30/-30/0/90
o I EE I E I Y Y YN E S
—10.15
30/-30/60+60
01 fea === === =—====—=—=—===——
0.05 ﬁ
0
0 1 2 3 4 5 6 7

Mid -Height Deflection, mm

Figure3.8 Analytical versus numerical solutisn
3.6.2Experimental Results

Table 35 lists the average thickness and width of the tested specimens in four different stacking

sequences in which the difference in the columns sizes is due to the wet layup pritecechas
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a limited control over the amount of epoxy applied for each layer. Composite mechanical

properties are illustrated ifable3.6.

Table3.5 Geometry of column specimen

Average
Thickness, mm Width, mm Length, mm

12 5.7997 10.4733 295

13 5.7277 8.145 2925

21 6.3458 10.6342 294

22 6.1976 10.5537 294.5

31 5.7997 10.0288 293.3

4 1 5.2959 8.6022 284

4 2 5.6812 10.4013 287

Table3.6 Composite properties of-glass/epoxyised in experiments.
Vf Vm E1,MPa E2MPa  Gi2MPa 312 321

12 0.5344 0.4657 40546.569 11336.196 4175.05 0.322 0.0901
13 0.5411 0.459 41005.765 11514961 4241.67 0.3214 0.0903
21 0.4884 0.5117 37401.468 10214.439 3757.51 0.3261 0.0891
2 2 0.5 0.5 38200 10483.413 3857.55 0.325 0.0892
31 0.5344 0.4657 40546.569 11336.196 4175.05 0.322 0.0901
4 1 0.5852 0.4149 44023.022 12801.836 4721.9 0.3174 0.0923
4 2 0.5455 0.4546  41309.091 11635.349 4286.55 0.321 0.0904
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The column limit loads of the four stacking sequences, list@ainle 3.2, were compared with
analytical and numerical buckling loads as showitable 3.7. The highest bucklig load was
observed in (3680/90/0) layup stacking sequence with a value equal to 562.5 N and the lowest
value equal to 242.2 N for the (380/0/90) columnsGenerally speaking goodcorrespondence
between experimental, analytical and numeniealls wasobservedThe experimental buckling
loads for columns witlayups (30/30/0/90) and (30B0/90/0) were consistentlpwer than the
analytical and numerical results which is to be expected due the inherent initial imperfections in
the tested column$levertheless, experimental results for columns with lay@f39+30/90) and
(30/0/90£30) were slightly higher than the analytical and numerical values. This can only be
attributed to variations in thickness and width for which the average value ofreapci€olumn

may not render accurate estimates of the buckling IBadexample, column 4_2 had a non
prismatic section with thickness values at the top, bottom, and middle of the column equal to:
5.4356, 5.8674, and 5.7404 mm, respectively.

Table3.7 Comparison of experimental results with analytical and numerical résuks
glass/epoxy composite column

Ply-Orientation Pcr Experimental,  Pc Analytical, Pcr Numerical, N
N N
30/-30/0/90 11 300 337.004 342.927
13 242.1875 264.665 268.583
30/-30/90/0 2.1 553.125 647.82 659.35
2.2 562.5 610.518 621.479
0/30£30/90 31 424.219 407.132 412.208
30/0/90£30 4 1 303.125 280.202 279.743
4 2 471.094 408.572 376.057
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Out of the twelve columns cut frothe four strips of various stacking sequences, five had evident
thickness imperfections at the ends and were accordingly excluded from testingpErfectiors

in these fivecolumns were noticed due to personal ercansng the cutting process shown in
Figure3.9. Moreover, local delamination between layers was observed after testing the columns
due tothe rise of interlaminaghear stregsduring the ésting of columns with out of straightness

imperfection, se€&igure3.10.

Figure3.9 Initial Imperfection incolumn Figure3.10 Local delamination after testing
specimen

Figure3.11 andFigure3.12 illustrates the critical buckling mode shape obtained from numerical

analysis and exggimental work.
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Figure3.11 Numerical critical buckling mode shape Figure3.12 Experimental critical

buckling mode shape

3.6.3Parametric Study

3.6.3.1Effect of Ply Orientation

Parametric study was done to study the effect ofnigadifferent stacking sequencesth the
following dimensions for length, width and thickness: 100 mm x 1 mm x 0.4 mm, respectively.
Table4.4in the previous section shows buckling load values for different stacking segudice
values range between 0288 N and 0.763 N.

3.6.3.2Effect of Material Properties

Two types of materiaglwereused to study the effect of changing material properties on the stability
of the composite columns. High Strength Graphite/Epoxy a@thSs/Epoxy were used to conduct
this study and their propertiggere implemented from typical values reported by an EeR#®ook

are illustrated imrable3.3 andTable3.8 [18].

Table3.8 S-Glass/Epoxynaterialpropertieg18].
Material En E22 G2 312

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

Table3.4 andTable3.9 presents results of High Strength Graphite/ Epoxy aGdaS$Epoxyfor
different stacking sequencés.general,tiwas observed thatSlass/Epoxy exhibits much lower
buckling load than High Strength Graphite/Epoxgince it has lower stiffness values along the

fiber direction.
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Table3.9 Analytical and numerical results for various layup sequences@&aSs/Epoxy.

Ply Analytical Numerical % Error Layup Type
Orientation Results, N Results, N
0/0/0/0 0.28951 0.28948 0.0104 Single Specially
Orthotropic
90/90/90/90 0.08423 0.08422 0.0119 Single Specially
Orthotropic
0/90/90/0 0.26483 0.26477 0.0227 Symmetric Cross Ply
0/90/0/90 0.17651 0.17734 0.4703 Antisymmetric Cross Ply
90/0/0/90 0.11029 0.110283 0.0064 Symmetric Cross Ply
30/-30/30£30 0.1741 0.17408 0.0115 Antisymmetric Angle Ply
45/-45/45+45 0.11478 0.11477 0.0088 Antisymmetric Angle Ply
60/-60/60+60 0.09054 0.09053 0.0111 Antisymmetric Angle Ply
30/-30/60+£60 0.11953 0.12148 1.6314 Balanced Angle Ply
60/-60/45+45 0.10108 0.1015 0.416 Balanced Angle Ply
30/-30/45+45 0.13887 0.13947 0.433 Balanced Angle Ply
30/-30/0/0 0.21601 0.22062 2.135 Anisotropic
30/-30/-30/30 0.16021 0.17015 6.205 Symmetric Angle Ply
-45/30+30/45 0.12408 0.12407 0.009 Antisymmetric Angle Ply
30/30£30/-30 0.15288 0.15285 0.02 Antisymmetric Angle Ply
30/~30/0/90 0.13764 0.14035 1.969 Anisotropic

Table3.10 presentghe buckling results when-&lass and High Strength Graphite/Epdwyprid

material properties/ere usedor the composite column in which Graphite/Epoxy properties were
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used for layes with @ and 30° orientation and $lass/Epoxy for theother orientatiors.
Combining two materials showed a higher error values between numerical and analytical results
than using one material therefore more terms might need to be added to the RRiykeigh
approximation to capture the complexity in behavior. This was beyonsctpe of the present
paper.

Table3.10 Analytical vs. numerical buckling loads for various layup sequences of hybrid
Graphite and $slass/Epoxy composites.

Orientation Analytical Results, N Numerical Results, N % Error
30/-30/60+60 0.12748 0.1341 5.193
30/30/0/90 0.19 0.19643 3.3843
0/90/90/0 0.67942 0.67856 0.1266
0/90/0/90 0.3704 0.3732 0.756
90/0/0/90 0.16905 0.16926 0.1243

3.6.3.3Effect of Element Type in FE Analysis

As mentioned earlier, twtypes of elements were utilized in the analysis of High Strength
Graphite/Epoxy columns discussed earliéable 3.11 presents the comparison between the
analytical and numerical results using the quadratic shell element (S8R) and quadratic solid
element (C3D20R) both with reduced integration schemes halengent mesh size equal to 0.5

x 0.5 mm. An excellent agreement between analytical and shell element results is observed for all
stacking sequences. On the other hand, solid element results showed excellent agreements with the

analytical and shell elemergsults for single specially orthotropic and antisymmetric angle ply.
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However, solid elements results were off for the antisymmetric cross ply and anisotropic layups,

Table3.11
Table3.11 Analytical and numerical results with shell and solid elements
Ply Orientation Analytical Shell Element S8R, Solid Element
Results, N N C3D20R, N
0/0/0/0 0.763 0.76289 0.76289

90/90/90/90 0.05264 0.05264 0.0526358
0/90/90/0 0.676 0.67573 0.409173
0/90/0/90 0.346 0.35089 0.409124
90/0/0/90 0.14182 0.1418 0.409175
30/-30/30£30 0.239 0.23909 0.238503
45/-45/45}45 0.08871 0.08871 0.0886286
60/-60/60£60 0.05688 0.05688 0.0568754
30/-30/60£60 0.0943 0.10161 0.154953
30/-30/0/90 0.1757 0.18431 0.329724

3.7 Conclusions

A generalizectlosed form buckling formula for anisotropic laminated composite columns with
simply supporte@ndcondition under axiadompression wagerivedwhich may be considered an
extension to thdzuler bucklng formula of isotropic columns. The buckling load formula was
expressed with respect to the composite material axial, coupling, and flexural rigidities as well as
the column geometry. An extent agreement between the analytical formula and the finite
element analysis results is observed. Limit Loads of buckled laminated composite columns gave

generally good correspondence with the analytical and numerical results. On the other hand, some
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of the experimental results differed from the analytical and numerical solutions due to
imperfections or dimension variations in the composite column which reduced or increased the
buckling load, respectively. The parametric study showed that using a songb®site material

type per column yielded less deviation of the analytical solution from the numerical results
compared to using a twmaterial hybrid composite. Also, the use of shell finite elements was
found to yield very accurate buckling lodds all stacking sequences compatedhe use of solid

finite elementsvhen benchmarked against the present analytical solution
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Chapter4-Anal yti cal and Finite EI emen
Simply Supported AComptorsopiec WL @mi I
under Axi al Compressi on

Rund Al-Masrit, Hayder A. Rasheed
4.1 Abstract

Rayleigh-Ritz approximation was used to derive analytical buckling formula of generally
anisotropic laminated composite simply supported thin plates. Effectivaxial, coupling, and
flexural stiffness coefficients of the anisotropic layup are determined from the generalized
constitutive relationship using dimensional reduction of the 6x6 composite stiffness matrix.
The resulting explicit formula has an additionalterm which is a function of the effective
coupling and axial stiffness. For isotropic and certain classes of laminated composite, the
analytical buckling formula reduces down to isotropic buckling formula once the effective
coupling stiffness term vanishesThe analytical results are verified against finite element
Eigen value solutions for a wide range of anisotropic laminated layups yielding high
accuracy. A parametric study is then performed to examine the effect of ply orientations and
material properties including hybrid carbon/glass fiber composites. Relevance of the
numerical and analytical results is discussed for all these cases.

Keywords: Buckling of Composite Plates, Simply Supported Boundary Conditions, Anisotropic
Laminated Material, Axial Conrpgssion.
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4.2 Introduction

The use of laminated composite is increasingly growing in different applications in industry
because of their distinguished properties (High stretggtireight ratio, high stiffnesto-weight

ratio, corrosion resistance, afatigue). Due to this growth, an increase in demand for better
understanding the mechanics of laminated composites has resulted. Wide plates undergo stability
(i.e. buckling) issues prior to failure. In recent years, a significant amount of researatehas b
conducted to study the buckling behavior of plates and shellg][Herenica et al. [1] developed

a closed form solution for buckling of long anisotropic plates under axial compress)omiitN

various boundary conditions. The closed form solutemloe expressed as:

b ?{.i— mor 1)

the bending stiffness; b is the width of the plate; ant the nondimensional

buckling coefficientrelated to the boundary conditions. The results were validated with existing
solutions (Weaver [2] [3], Qiao and Shan [4]), finite element solutions and showed an excellent
agreement. Mahesh et al. [5] presented a general buckling formulation of plagedineally

varying uniaxial compressive load with general-ofiplane boundary conditions. Rayleigitz

method based on the energy approach was used to present this formula along with orthogonal
polynomials generated by a Gra&echmidt process. Resultxtgbit a good agreement with
differential quadrature (DQ) models [6]. Silva et al. [7] studied local and global buckling of fiber
reinforced polymer composite open section 4hadled columns by presenting a formulation of
generalized beam theory (GBT)\&stre and Camotim [8] predicted buckling behavior for thin
walled arbitrary orthotropic thivalled members by developing a second order generalized beam

theory (GBT).The second order theory was compared with Bauld aneShyng theory [9].
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According toresults, the critical buckling load exists for all isotropic or ciagsorthotropic
members. Moreover, no specific bifurcation is detected for a symmetric orthotropic layups along
with nonlinear path. Using RayleigRitz method, Ghaheri et al. [10] sfied the stability of
symmetrically laminated composite elliptical plates on elastic foundation under unifqiamni
loading with various boundary conditions. Weaver and Nemeth [11] presentetinmemsional
parameters and governing equations to prdalickling behavior of rectangular symmetrically
laminated composite plates with different boundary conditions under uniform axial compression,
uniform shear, or pure iplane bending loading. Bounds for rdimensional parameters were
also presented to inthte percentage gained in the buckling resistance for laminated plates. The
results showed 286% increase in the buckling resistance for tailored simply supported
orthotropic plates; with respect to isotropic plates. On the other hand, clamped lamiated p
exhibited 912% increase in the buckling resistance. Xu et al. [12] presented an approximate
analytical solution to investigate the buckling of eatxial woven fabric composite structure under
bi-axial loading using equivalent anisotropic platemet The results showed that the analytical
solution provides an upper bound solution for buckling; moreover, the solution can be used to
predict buckling behavior for real life problem underakial loading. Sun and Harik [13]
presented analytical solah to predict buckling of stiffened antisymmetric laminated composite
plates with bendingxtension coupling. Analytical strip method (ASM); developed by Harik and
Salamoun [14], was used to present the analytical solution. Based on the results, pidtes wi
ends contribute to the weakest stiffening effects. Furthermore, since the coupling stiffness matrix
vanishes, layers with ply orientatiofdhd 90 had no effect on the buckling load. Shufrin et al.
[15] proposed a senranalytical solution for buding of symmetrically laminated rectangular

plates with various boundary conditions under combined tension, compression, and shear based
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on multi term Kantorovich method [16]. Stability of the anglg laminated plates improved
compared to free iplanerestraint plates under biaxial compression/tension, and shear. Also extra
in-plane forces were created because of th@ane restraint. Using state space concept on Levy
type solution, Thai and Kim [17] presented a closed form solution for bucklingtfadtapic

plates with two opposite simply supported edges using two variable refined plate theories. The

results showed more accurate solutions than the higher order shear deformation theory.

In this work, a generalized closed form solution of simply sueplolaminated composite wide
plates subjected to axial compression was developed. The RaRigzghpproximation was used

to obtain the buckling formula. Extensional, coupling, and flexural rigidities in 1D are determined
using dimensional reduction dtiag with 3D rigidity matrix. Furthermore, finite element models

for the plates are established using commercial software Abaqus. The finite element numerical
solution was compared to the analytical solution resulting in excellent agreement regardiess of t

complexity of the composite layps used.

4.3 Analytical Formulation

A generalized closed form buckling solution for simply supported anisotropic laminated composite

wide plates under axial compression is derived using RaykRighapproximation.

4.3.1Assumptions:
6. Buckling takes place in theyxplane about the weak axis#xis).
7. The yaxis runs through the thickness of the plate where the composite lamination takes

place,Figure4.1
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8. The lamination anglea() is measured with respect to theaxis (i.e. 0° fibers run
parallel to the xaxis and 90° fibers run parallel to thexxs). Accordingly, the angle
(2 ) is rotated about the- gxis.

9. Plane sectionkefore bending remain plane after bending and perpendicular to the mid
surface (i.e. simple beam theory holds).

10. Classical lamination theory is applicable with shear deformations ignored.

4.3.2Kinematics
Geometry and Cartesian coordinates are presentadune4.1 for simply supported wide plates.
The zaxis is the weak axis of the plate about which bending tak&seplThe following

displacement relations were assumed based on the isotopic Euler first buckling mode:
P

/ Infinite
y

Lamination|

Infinite’

Figure 4.1The wide plate geometry.
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O e || e O o F"Iiéj-. 2)
Whered w, andb o is the axial, and lateral displacements;a@®d G are constants to be solved;

and x is the distance along the axis of the plate. For an intermediate class of deformation, the axial

strain- and curvaturdl are defined as follow.

. w - § o -of Ae @, © 3)
4.3.3Constitutive equations
The principal material directions were transformed into the plate coordinate system, the stresses

and strains are then related in the following equation

- A
» r r r ’ 4)
LCO T T Y

Where 0 matrix represents the transformed reduced stiffness matribefirged in standard

composite textbooks [18Accordingly, the coupled forestrain relationship is established as

follows:
J ° — — — > °
v J v ﬂ’_ _ _ | v v
l’vJ ' I’p :E ; ; .:.l’v " I’p
e ) o )
n 5
v o T T T orede ®)
el e T T r A, e
U’-” ° L~J’ u T T T Uffs’zi. W
Where:

(6)
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t ‘B ‘B
g ‘E ‘B
In whichd ,6 , andO are the axial, couplingnd flexural rigidity coefficientsd = thickness

of the kth ply; and N = number of different plies in the stacking sequence.

The three dimensional (3D) rigidity matrix is established first using the material properties and the
fiber orientations into equation (5). Then the dimension is reduced to 1D anisotropic axial,
coupling and flexural rigidities using static condensatigoragch after applying the zero forces

and moments.

JJ — — — 'Y
I;I’ JJ ° I:I’ n’= — — I,I',u |:u
IPJ..:P :I_ _ _ :::l Pﬁ. ' 1P 7
vl o T in T e Ae v (7)
cedl e T T T A, e
U’J'I ° fl’ u T T T Uﬂ’fi. » lj’

Equation (7) is solved first for the axial strain and axial curvatye#(,) in terms of the rest of
the deformation components by extractinggbeond, third, fifth and sixth linear equations from
the matrix. Since the rest of the deformation components for wide plate are equal zero resulting in

eqguation (8):

4 = k.
1 [ (8)

The axial force and #plane moment vs. the axial strain angblane curvature relationship can be

expressed in terms of the generally anisotropic material properties

J. p—t
oo
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It may be observed that equation 9 the material properties for wide plate is expressed in terms

extensional, coupling, and bending stiffness in the principal directions.

4.3.4Energy Formulation
RayleighRitz approximation method was usedd&velop a generalized buckling solution based
on the energy approach. . Strain energy can be expressed in terms of the integration of the applied

loads multiplying the corresponding deformations.

? _J o#—o

A oo u,

5 J (10)
- = to ” #—oao .. - || #—oao T ao ..

The potential of external loads can be expressed as shown in equation (11)
T e (11)

Taking the total potential energy function and substituting equations (10) and (11) into equation
(12)
ST
¢ . -= s | kA 1 A, We |0 (12)
Minimizing the total potential energy function with respect iaBd G and setting the resulting

expressions to zero, performing the integration by parts and manipulating the equations to give:

\\
Q,
Il

F 3

2 s (13)

Q,
Il
—
w
LN
Il
—
w
LN
LN

z
] (14)
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Solving equation (13) for Bthen substituting the resulting expressionequation (14), the

following cubic equation is formulated in terms of @lue

Z Z
I Lo L (15)
AF AF AF A (16)
Where
=42z | Z ¢ 4z I 2 g It
A — 3 ha =3ha =% 5 -} ha ——F

Consideringhe critical stability matrix since equation (16) does not lend itself to a closed form

solution:
Ll an
Fe : F
Where
z J _ g
L
z 5|= =l =I
z J Z:I Z
—r =fF7 - | 7 (18)
/F/
e =14z =fdz 2 2
. F I I
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Setting the determinant of the matrix in Equation (18) to zero, substitutiegpBession from

equation (15) and solving fori@sing the general solution of a quadratic equation:

= 4 = 4
=4 =4y =4 =5 | I

F ]

(19)

In order for the @ value to be real, the discriminant must be at least zero. By setting the
discriminant to zero and manipulating its expression, a closed form solution for the critical

buckling load is derived:

by 5 —d (20)

The equation is reduced to Euler buckling in the case of isotropic or specthlbgropic materials

since the coupling term vanishes.
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4.4 Numerical Formulation

Analytical buckling results were verified with finite element buckling analysis for laminated
anisotropic plates using software package Abaqus. Plates of four layers were constructed with
simply supported ends, in which roller and pin supports were irteatdan the top and bottom

edge of the plate, respectively. Additionally, translation-glirection and rotation in y direction

is prevented, moreover, a shell edge load was applied at the top of the plate as shguva4r?.

Figure4.2Boundary conditions and applied load.

Figure43i | l ustrates model 6s mesh. Linear el astic
and anisotropic layups, respectively wherglass/epoxy material was assumed to simulate the
composite mtes. Quadrilateral eight node doubly curved thick shell element (S8R) was used for
modeling the plates in 3Bpace. Additionally, 3D solid 20ode quadratic brick element
(C3D20R) was also attempted. Mesh size of 10.0 mm was attempted with total nuetberarits

eqgual to 1000 for plate size of 1000 mm x 100 mm x 0.4 mm after performing a convergence study

to select the appropriate mesh size.
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Figure4.3 Meshed Model.
Two types of analyses were attempted in this study. Buckling analysis using Lanczos solver was

performed to simulate eigenvalue computation. Lanczos method is one of the methods used to
solve for eigenvalues and eigenvectors for complex Hermitian magnng ypower methods.
Lanczos method reducgs & symmetric matrix to a tridiagonal matrix using recurrence
relations (multidimensional array values) [19].

Additionally, nonlinear geometry analysis was conducted using the modified Riks analysis to
predict he nonlinear stability response (greckling and buckling) of the composite plates. The
modified Riks analysis follows the equilibrium path, representing either the bifurcation points or
the limit points using the Arc length method. Load increments grgedpduring the analysis in

which equilibrium iterations converge along the arc length, forcing the constraint equation to be

satisfied at every iteration [20].
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4.5Results and Applications:

4.5.1Numerical Validation

S-Glass/Epoxy material properties; obtainezhirtypical values in FRP textbook [21], were used

to simulate the analytical and numerical results for different stacking sequences of composite
plates; sedable4.1, with the following dimensions fawidth, length and thickness: 1000 mm x

100 mm x 0.4 mm, respectively. The comparison between the analytical and numerical buckling
loads is reported ifable 4.2 for different layup stacking sequences. The results match closely
with a minimum error equal to 0.0102% for single specially orthotropic layer (0/0/0/0) and a
maximum error equal to 4.6853%rfthe antisymmetric angle ply (380/30+30). It is important

to note that the layup with maximum error yield the analytical buckling load on{benservative

side.
Table4.1 S-Glass/Epoxy material pperties [21].
Material (=1 B2 G2 M2
S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

Table4.2 Analytical and numerical results for different layup sequences-félaSs/Epoxy.

Ply Orientation Analytical Numerical % Error Layup Type
Results, N Results, N
0/0/0/0 0.29627 0.2963 0.0102 Single Specially
Orthotropic
90/90/90/90 0.08619 0.0862 0.0117 Single Specially
Orthotropic
30/-30/30+30 0.21109 0.2012 4.6853 Antisymmetric Angle Ply
45/-45/4545 0.14769 0.142 3.8527  Antisymmetric Angle Ply
60/-60/60+60 0.10605 0.1045 1.4616 Antisymmetric Angle Ply
60/-60/45+45 0.1241 0.1209 2.5786 Balanced Angle Ply
30/-30/45+45 0.17485 0.1676 4.1465 Balanced Angle Ply
30/-30/60+60 0.14447 0.1407 2.6096 Balanced Angle Ply
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30/-30/0/0 0.24789 0.2451 1.1255 Anisotropic

30/-30/0/90 0.15649 0.1539 1.6551 Anisotropic
30/30/30/30 0.21109 0.2099 0.5638 Single anisotropic layer
30/-30/30/30 0.21109 0.2109 0.0901 Symmetric angle Ply
0/90/90/0 0.27001 0.27 0.0038 Symmetric Cross Ply
30/-60/-60/30 0.19796 0.1976 0.1819 Symmetric Multiple
Angle Ply
0/90/0/90 0.17954 0.1804 0.4791 Antisymmetric Cross Ply
-45/30+£30/45 0.15561 0.1508 3.0911 Antisymmetric Multiple
Angle Ply
90/0/0/90 0.11245 0.1125 0.0445 Symmetric Cross Ply

Load versus mid height deflection curve for three different stacking sequences obtained from the
finite element nonlinear Riks analysis along with the analytical solution are illustrated in
Figure4.4 for comparison. Results show excellent agreement between analytical and numerical
(FE) solutions. Antisymmetric cross ply (0/90/0/90) exhibit higher buckling load with minimal
error betweenhte analytical and numerical results as well. On the other hand, balanced angle ply
(60/-60/45+45) show the maximum error between results. Single speoihptropic layer
(0/0/0/0) exhibits the highest buckling load due to having all fibers alignédthétioading axis

while the coupling coefficienf . .. Vanishes.
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Load vs. Deflection

0.2

0/90/0/90
0.18 mrececcccccccccccrcccccccccncccccccccccccccccccaaooas

0.16

0.14
0.12 60/-60/45+45

Load, N

0.08

0.06

Numerical (FE) Solutiorr

ooa ®# | ==== Analytical Solution

0.02

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Mid -Height Deflection, mm

Figure4.4 Analytical versus numerical solutions.

4.5.2Parametric Study

4.5.2.1 Effect of Ply Orientation

The effect of having different stackingequences was studied for plateshwiite following
dimensions for widtHength and thickness: 1000 mm x 100 mm x 0.4 mm, respectively. Buckling
load values for different stacking sequences are showalite 4.2with values range between
0.0862 N and 0.2963 Nigure4.5 presents buckling shape of the simply supported plztared

from the numerical analysis.
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Figure4.5 Buckling shape of simply;'supported plate.

4.5.2.2Effect of Material Properties

A parametric study was conducted to study the effect of changing material properties on the
stability of the composite plate using two types of materialSleé8s/Epoxy and High Strength
Graphite/Epoxy were used to conduct this study and their propegipsesented imable4.1and
Table4.3 obtained from typical values reported by FRP textbook [21].

Table4.3 High Strength Graphite/Epoxy Material Properties [21].
Material B =93 Gr2 Ao

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

S-Glass/Epoxy and High Strength Graphite/Epoxy buckling load results for different stacking
sequences are presentedleible 4.2 and Table4.4. In general, High Strength Graphite/Epoxy
exhibits higher buckling loads th&Glass/Epoxy since it has higher stiffness values along the
fiber direction. Furthermore, the error value between the numerical and analytical results reduces
for the SGlass/Epoxy since it has lowerniH22 ratio compared to that of High Strength

Graphie/Epoxy.
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Table4.4 Comparison of analytical and numerical buckling load for different layup sequences.

Ply Analytical Numerical % Error Layup Type
Orientation Results, N Results, N
0/0/0/0 0.76656 0.7663 0.034 Single Specially Orthotropic
90/90/90/90 0.05287 0.0529 0.0568 Single Specially Orthotropic
30/-30/30~£30 0.4584 0.3966 13.4817 Antisymmetric Angle Ply
45/-45/45}45 0.23673 0.2076 12.3052 Antisymmetric Angle Ply
60/-60/60£60 0.10156 0.0945 6.9516 Antisymmetric Angle Ply
60/-60/45£45 0.14725 0.1319 10.4245 Balanced Angle Ply
30/-30/45+45 0.31892 0.277 13.1444 Balanced Angle Ply
30/-30/60£60 0.18781 0.1658 11.7193 Balanced Angle Ply
30/-30/0/0 0.58106 0.55 5.3455 Anisotropic
30/-30/0/90 0.27616 0.2527 8.4951 Anisotropic
30/30/30/30 0.4584 0.4186 8.6824 Single anisotropic layer
30/-30/30/30 0.4584 0.4564 0.4364 Symmetric angle Ply
0/90/90/0 0.67735 0.677 0.0517 Symmetric Cross Ply
30/-60/-60/30 0.4138 0.4001 3.3108 Symmetric Multiple Angle
Ply
0/90/0/90 0.34673 0.3514 1.3469 Antisymmetric Cross Ply
-45/30£30/45 0.26444 0.2406 9.0153 Antisymmetric Multiple
Angle Ply
90/0/0/90 0.14208 0.1421 0.0141 Symmetric Cross Ply

Buckling results for hybrid plates using@ass and High Strength Graphite/Epoxy material
properties are illustrated ifable4.5. Graphite/Epoxy properties were dder layers with ©and

3(° orientation and $slass/Epoxy for the other orientatiofombining two materials showed
a lower error values between analytical and numerical solution than using High Strength
Graphite/Epoxy material properties since ¢verall E1/Ezzratio is reduced when combining two
material therefore more terms might need to be added to the RaRligzghpproximation to
capture the complexity in behavior which was beyond the scope of the present paper.

Table4.5 Analytical vs. numerical buckling loads for different layup sequences for hybrid
Graphite and $slass/Epoxy composites.

Ply Orientation  Analytical Results, N  Numerical Results, % Error
N

30/-30/60+60 0.18829 0.1741 7.5363

30/30/0/90 0.29611 0.2723 8.041

0/90/90/0 0.68151 0.6812 0.0455

0/90/0/90 0.37137 0.3754 1.0852
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90/0/0/90 0.17124 0.1713 0.0351

4.5.2.3Effect of Element Type in FE Analysis

A parametric study was performed to study the effect of using different element types in the finite
element analysis of-6lass/Epoxy plates. Using quadratic shell element (S8R) and quadratic solid
element (C3D20R) both with reduced integration scheme®lanaent size equal to 10.0 mm x

10.0 mm, comparison between analytical and numerical solution is presertable®.6. An
excellent agreement between analyticall @hell element results is observed for all stacking
sequences. On the other hand, solid element results were off in most of the different stacking
sequences. Accordingly, it might be argued that the solid element (C3D20R) is less reliable than
the shell @ment (S8R) for this type of analysis.

Table4.6 Analytical and numerical results with shell and solid element

Ply Orientation Analytical Shell Element Solid Element
Results, N S8R, N C3D20R, N
0/0/0/0 0.29627 0.2963 0.295798
90/90/90/90 0.08619 0.0862 0.0859608
30/-30/30£30 0.21109 0.2012 0.208625
45/-45/45F45 0.14769 0.142 0.145028
60/-60/60£60 0.10605 0.1045 0.104616
60/-60/45+45 0.1241 0.1209 0.124857
30/-30/45£45 0.17485 0.1676 0.176787
30/-30/60£60 0.14447 0.1407 0.156566
30/-30/0/0 0.24789 0.2451 0.252257
30/-30/0/90 0.15649 0.1539 0.199848
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30/30/30/30 0.21109 0.2099 0.204145

30/-30/-30/30 0.21109 0.2109 0.208886
0/90/90/0 0.27001 0.27 0.190941
30/-60/-60/30 0.19796 0.1976 0.156534
0/90/0/90 0.17954 0.1804 0.19082
-45/30£30/45 0.15561 0.1508 0.176957
90/0/0/90 0.11245 0.1125 0.190942

4.6 Conclusion

RayleighRitz approximation was used to derive a generalized analytical buckling formula for
anisotropic laminated compositplates with simply supported conditions under axial
compression.. The buckling formula was expressed in terms of the composite material axial,
coupling, and flexural rigidities as well as the plate geometry. The analytical formula exhibited
an excellent agement with the numerical results. It was observed from the parametric study that
using single composite material type with high stiffness ratigik) per plate generally yielded

more deviation of the analytical solution from the numerical resultgaced to using a two
material hybrid composite. Therefore, more terms need to be added to the RRyteigh
approximation in the case of composite material with high stiffness ratio. Additionally, the use of
shell finite elements was found to be more t8acompared to the use of solid finite elements in

the buckling predictions.
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5.1 Abstract

A generalized analytical brmula is developed to predict buckling of anisotropic laminated
composite fixedfixed thin columns by using the RayleighRitz displacement field
approximation. Based on the generalized constitutive relationship, the effective extensional,
coupling and flexural stiffness coefficients of the anisotropic layup are determined using
dimensional reduction by static condensation of the 6x6 composite stiffness matrikhe
resulting explicit formula is expressed in terms of the flexural stiffness since the coupliagd
extensional stiffness coefficients drop out of the formulation for this boundary condition
when following the standard RayleighRitz formulation steps. This formula is similar to the
Euler buckling formula in which the flexural rigidity is expressed in terms of the flexural
stiffness coefficient of laminated compositedMotivated by reducing some of the discrepancy
with the finite element results, the prebuckling solution was substituted into the bifurcation
expression to yield an updated formula that includes the coupling and extensional stiffness
coefficients. The amlytical results are verified against finite element Eigen value solutions
for a wide range of anisotropic laminated layups yielding high accuracy. A parametric study
is then conducted to examine the effect of ply orientation and material properties incluag
hybrid carbon/glass fiber composites. Relevance of the numerical and analytical results is
discussed for all these cases. In addition, comparisons with an earlier buckling solution for
crossply laminated columns are made.

Keywords: buckling of compd® columns, fixeefixed boundary conditions, anisotropic

laminated material, axial compression.
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5.2 Introduction

Laminated composite applications in aerospace, automotive, marine, and civil engineering are ever
growing due to their excellent properties sushhah stiffnesgo-weight ratio, high strengtto-
weight ratio, fatigue and corrosion resistandecordingly, an increase in demand for better
understanding of the mechanics of laminated composites has been realized due to this growth.
Composite columnslike any traditional members subjected to axial compression, undergo
stability issues prior to failure. Not many reseasthdieshave focused on the buckling of
compositecolumns However in recent yearsraextensivemount of research has been perfatme
to study the buckling behavior othercomposite membersike plates and shel[4-15]. Silva et
al. [1] establisheda formulation of a generalized beam theory (GBT) to study local and global
buckling behavior of fiber reinforced polymer composite opection thiawalled columns. The
solution for buckling using GBT included solving the following eigenvalue problem:

+ 'Q o’ (1)
where K is the linear stiffness mairi is the geometric stiffness matrix adds the eigenvector.
Silvestre and Camotim [2] developed a second order generalized beam theory (GBT) to predict
buckling behavior for thin walled arbitrary orthotropic membédise developed theory was
comparedwith Bauld and LikShyng theory [3]. Based on the results, the critical buckling load
exists for all isotropic or crogdy orthotropic members. Additionally, ndimear primary path is
showed and no specific bifurcation is detected for symmetric orthottapups. Rasheed and
Yousif [4] developed a closed form solution to predict buckling of thin laminated orthotropic

composite rings/long cylinders under external pressure based on the energy approach:

0 o 2

67



whered M hdoé Q constants are theffective extensional, coupling, and bending
stiffness coefficients obtained fromme dimensional reduction obrthotropic behavior. The
developed formula yielded improved results compared to some design codes. Rasheed and Yousif
[5] generated a closed form solution to predict buckling of anisotropic laminated composite
rings/long cylinders under external hydrogtgiressure. The analytical solution was verified with
finite element solutionsnd concluded that the buckling modes are symmetric with respect to
rotated axes of the twisted section of thelpuekling solution in case of anisotrop§u et al. [

used guivalent anisotropic plate method to develop an approximate analytical solution to predict
buckling of trtaxial woven fabric composite structure undeekial loading. The results showed

that the analytical solution gives an upper bound buckling lodditacan be used to predict
buckling behavior for real world problems undesalzial loadingShukla et al. [7lsed first order
shear deformation and vdfarman type nonlinearity to estimate the critical buckling loads for
laminated composite plates widarious boundary conditions subjected teplane uniaxial and
biaxial loading. The effects of span to thickness ratio, plate aspect ratio, lamination scheme,
number of layers and modulus ratio were considered in estimating bucklingkagd.analytical

strip method (ASM) which was first developed by Harik and Salam8yrSun and Harik [9]
developed analytical buckling solution of stiffened antisymmetric laminated composite plates with
bendingextension couplingp analyze bending of thin orthotropicdastiffened rectangular plates.
Plates with free boundary conditions contribute the weakest stiffening .efféditionally, the
number of layersf ply orientations equal to 0 and 90 had no effect on the critical buckling load
since the coupling stiffnessatrix vanishes.

Debski et al. [10] studied buckling and ptsickling behavior of thirwalled composite channel

column sectios experimentally. The experimental esults were verified with the numerical
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solutions obtained from finite element models (A andANSYS) and analyticahumerical
method (ANM). Shufrin et al. [l used multi term Kantorovich method [12] develop a semi
analytical solution for buckling of symmetrically laminated rectangular plates with general
boundary conditions under combuh tension, compression, and shear.yT¢@encludedthat the
stability of angleply laminated plates improved under biaxial compression/tension and shear
compared to free iplane restraint-urthermoredue to the irplane restraingdditional inplane
forces were createdlhai and Kim [13] suggested a closed form solution for buckling of
orthotropic plates with two opposite simply supported edges usingdwnable refined plate
theories. Using state space concept on Levy type solution to solve theigg\ezraations, their
results showed more accurate solutions than the higher order shear deformation theory. Using first
order shear deformation theory, Abramovich and Livshits [14] studied the free vibrations of non
symmetric cross ply laminated compodieams. Longitudinal, transverse displacement, rotary
inertia, and shear deformation were taken into account in the analysis. The following equation of
motion of cross ply laminated composite beams was solved for different boundary conditions:
- #noom 3)
where - is the generalized mass matri¥, is the matrix differential operator; ang is the
vector of the generalized displacements. The new approach and BeEuwer theory were
verified against numerical solutions. Abramovich et al. [15] used the exact method based on
Timoshenko equation to study the vibrations and buckling of -grigsson-symmetric rectangular
laminated composite beams. The effects of nadtproperties, number of layers, and boundary
conditions are considered. Analytical results showed a good agreement with the numerical results.
Moreover, the notsymmetric layup showed a coupling effect between the axial and lateral motion

of the beam.
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In this work, a generalized analytical formula for bucklingiréd-fixed laminated composite
columns subjected to axial compression is developedRakkeigh Ritz approximation was used

to obtain the buckling formul&xtensional coupling and flexuratigidities in 1D are determined
using dimensional reduction by the static condensation approach starting with the 3D rigidity
matrix. Moreover, finite element models for the columns are established using the commercial
software Aaqus The finite elementumerical solution was compared to the analytical solution
resulting in excellent agreement regardless of the complexity of the composifeslaged.

5.3 Analytical Formulation

RayleighRitz approximation is used to derive a generalized closed form buddingjon for
fixed-fixed anisotropic laminated composite columns under axial compression
5.3.1Assumptions:

11.Buckling occurs in the-y plane about the weak axis#xis).

The yaxis is perpendicular to the composite lamination surface,
12.Figureb.1

13.The lamination anglea() is measured with respect to theaxis (i.e. 0° fibers run
parallel to the xaxis and 90° fibers run parallel to thexs). Accordingly, the angle
(2 ) is rotated about the-gxis.

14.Plane sections before bending remain plane after bending and perpendicular to the mid
surface (i.e. simple beam theory holds).
15. Classical lamination theory is applicable with effect of transverse shear deformation

ignored.
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5.3.2Kinematics

Geometry and the Cartesian coordinates of the fiked column are presented in
Figure5.1. Bending occurs about the weak axis of the column which is-#xész Depending on

the isotropic buckling mode, the following displacement relations were assumed:

O o |e; o F Hl < (4)
whered w is the axial displacemeni, @ the lateral displacemer®1 and G areconstants to
be solvedor andx is the distance along the axis of the colymn
Figure5.1. For intermediate class of deformation, the axial straBnd curvaturd are presented

given by

te w, ~®m, ¢ -° Ao w, © (5)

Lamination

z

Figure5.1Column geometry.
5.3.3Constitutive equations

The principal material directions waransformed into the column coordinate system. The stresses

and strains are then related in the following equation
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where 0 matrix represents the transformed reduced stiffness matrix as defined in standard

composite textbooks [16Accordingly, the coupled forestrain relationship is established as
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where

(8)

In whicho , 6 , andO arethe extensionalcoupling, and flexural rigiditgoefficientso =
thickness othe kth ply; andN = number of different plies in the stacking sequence.

Material properties and the fiber orientations are used in Eq. (7) to generate the three dimensional
(3D) constitutive matrix. Applying the zero forces and moments then by using static condensation,
the 3D classical lamination matrix is reduced into 1D anisotregtensional, coupling and

flexural stiffness coefficients.
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Extracting the second, third, fifth, and sixth linear equations from matrix (9) to solve the axial

strain and axial curvaturé f ,4,) with respect to the other deformation components.

e
R T DS
1] [ 2
. (10
I N
Ao »

Inverting the matrix Q to the other side of Eq. (10), the condensed deformation components are

obtained in terms of the axial strain and curvature:
£,
AR 1)
Ao
By substituting Eq. (11) into the first and fourth linear equation of the matrix (9); the axial force

and inplane moment versus the axial strain anglane curvature relationship can be expressed

in terms of the generally anisotropic material properties

(12)

where

N e




5.3.4Energy Formulation

RayleighRitz approximation was used to derive a general buckling formula based on the energy
approach. Strain energy can be expressed in terms of the integration of the applied loads

multiplying the corresponding deformations.

d
T . ~d ot - .ﬁi. -,

d d
- =k faobede Mo - [pibid. g Mo
(14)
The potential of external loads can be expressed as

v hod (15)

In view of Egs. (14) and (15) , the total potential energy function is given by

J
s F T . - =k |ftede 4.4 Mo |04 (16)
z Z Z

o = =lrFr7F = 7T i HI @

By minimizing the total potential energy function with resped@tandC,and setting the resulting

expressions to zergoerformingthe integration by parts and manipulatitige equations, one

obtains
- d fr] f oo J
F 7 4 THET 4 I
z | +' “f;f T
(18)
A “ Fd Z - F 47 T+- F 47
: F I - T - I (19)

In view of Egs.(18) and (19), we have
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and solving Eqg. (21), we get @s
F Ti i HMITE N HITI T

(22

In order for theC; value to be real, the discriminant must be at least zero. By setting the

discriminant to zero, a closed form solution for the critical buckling load is derived:

s (23

It may be observed that Eq. (23) reduces to the Euler buckling formula of thdifieedsotropic
column with an effective length factor of 0.5 thpq: . ts replaced withEl of the column.
5.3.5Pre-buckling Solution

All the terms having the coupling eftg® ) in the previous derivation lent to zero, therefore to
produce the effect of the coupling on the stability of the laminated composite column,-the pre

buckling solution is considered. Theplane moment(( ) is set to zero during pteucklingand

before reaching the buckling load.

SR FU Sy T4 (24)
(U S
o A (25)
4
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By substituting Eq. (25) into the axial force equation, the axial force versus the axial strain can be

expressed in terms of the generally anisotropic material properties

b =0 4.4 (26)
”'o +- e — .
ke = (27)
where
— N FO
C1 | Bl g (28)

The axial force § ) is positive and in compression based on the assumed sign convention.
However, the axial straif () is negative although it is in compression as follow:

o | e (29)
Using the axial strain in Eq. (5), setting the lateral displacement term to zero, and substituting
equaion (29), the axial strain can be expressed as

o (30
By substituting Eq. (30) into Eq. (27), a relationship between the axial force and the unknown

constant@ ) is obtained, i.e.

e
1l

(31

5.3.6Bifurcation Solution in terms of Pre-buckling Deformation

By substituting Eq. (31) into the total potential energy function given by Eq.da&€)obtains

_Z |Hi
- =il

(32)
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Minimizing the total potential energy with respect to the unknOwnsetting the rsulting

expression to zero, and manipulating the equation, one gets

: ¢ ’ =.F1 _Z  m4-pd _Z
— T T T (33)
By solving Eqg. (33), one gets
F T HMITTE N HTI T
. 4 A (39
LT F =. Z T+- = R
+' e Ill

In order for the @€ value to be real, théiscriminant must bet least zero. By setting the
discriminant to zero and substituting Eq. (28), a new closed form solution for the critical buckling

load is derived considering the coupling effect:

|H% | I3 _||JF:;:Z=: (35)
-
B> — 4o lf (36)
|PJL = (37)
r> J Tl
where
ls.
Tml@l T+- i (38)

It is observed that Eg. (36) reduces down to Euler buckling formula of thefivesbisotropic

column in the case of isotrapor speciallyorthotropic materials.
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5.4 Numerical Formulation

The derived analytical solution was verified by applying finite element buckling anasysgthe
commercial softwar@ackageAbaqusfor laminatedanisotropic columnsFixedfixed columns
wereassembled with a fixed support at theitomand fixedroller support on top ahe column,
Figure5.2. Moreover columns were subjected to axial compression loatlegppt the top of the
columns Linear elastic laminate material was used fororthotropic andanisotropiclayups,
respectively.Columns were modeled in 3D space usingdyilateral eight node doubly curved
thick shell element (S8RJhe Mo d e | 6 s loraitionsthadrmgsére presented iRigure5.2.

In addition, 3D énode quadratic triangular thin shell element (STRI65) was also attempted.

Furthermore, a graphite/epy material was mainly used to simulate the composite columns.

Figure5.2 Left: Boundary conditionsRight: Meshed Model.
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In this study, two types of analyses were attempted. Buckling analgsislone at the beginning

to simulate eigenvalue computation. Lanczos method is used to solve for eigenvalues and
eigenvectors for complex Hermitian matrix using power metBgadoptingecurrence relations
(multidimensional array valugsd wd symmaeric matrix is reducetb a tridiagonal matrix17].
Secondly, a nonlinear stability analysis (plkeickling and buckling) of the composite column was
predicted by performing nonlinear geometry analysis using the modified Riks computatiens
modified Riks analysis uses the Arc length method to follow the equilibrium pepiesenting

either thebifurcation pointsor thelimit points. Load incremestareapplied duringheanalysis in

which equilibrium iterations converge alotige arclength,forcing the constraint equation to be

satisfied aeveryiteration[18].

5.5Results and Applications:

5.5.1Numerical Validation

To simulate the analytical and numerical results for different stacking sequences of composite
columns; High Strength Graphite/Epoxy materiagarties was usedable5.1 [19]. Composite
columns were simulated with the following dimensions for length, width, and thickness: 100 mm

x 1.0 mm x 0.4 mm, respecély.

Table5.1 High Strength Graphite/Epoxy Material Properties [19].
Material E11 E22 Gi12 312

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

The comparison between the analytical anthericalbuckling load is reported inTable5.2 for
different layup stacking sequencé&se resultof Eq. (23)match closely witta minimum error
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equal to 0.0993% for the single specialgrthotropic layer (90/90/90/90) ardmaximum eror

equal t014.34%% for the antisymmetric cross plgminate(0/90/0/9Q. On the other hand, the
analytical results of Eq. (36) showed an excellent agreement with the numerical results with
minimum error equal t0.0237%% for the single specialgrthotropc layup (90/90/90/90anda
maximum error equal th.109% for the single anisotropi@aminate(30/30/30/30) Moreover, it is
observed that the error significantly reduced down using Eqg. (36) since the coupling and
extensional effects are considered.

Theload versus mid height deflection curves are plotted for three different stacking sequences
obtained from finite element nonlinear Riks analysis along with the analytical solution for
comparison. Riks analysis is useful to indicate the existence dfugkéng deformation in the
transverse direction. Isotropic columns buckle through bifurcation where there is no transverse
deformation prior to buckling, s€égure5.3. Results for symmetric angle ply (380/-30/30) and
anisotropic layup (3630/0/90) show excellent agreement. On the other hand, the antisymmetric
angle ply (30/30/30£30) exhibits higherickling load with minimal error between the analytical

and numerical results as well.
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Figure5.3 Analytical versus numerical solutions.
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Table5.2 Comparison of analytical and numerical buckling load for different layup sequences.

Analytical Analytical
_ Ply _ Resu%t_s, N, Resu):t_s, N, Numerical (I)EA)qILEJ;rt(i)c:’n ?qﬁ;?é’n Layup Type
Orientation Equation Equation Results, N 23) (36)
(23) (36)
0/0/0/0 3.053 3.053 3.04733 0.18572 0.18572 Single Specially Orthotropic
90/90/90/90 0.210552 0.21056 0.21051 0.01995 0.02375 Single Specially Orthotropic
0/90/90/0 2.70446 2.70446 2.69824 0.23 0.23 Symmetric Cross ply
90/0/0/90 0.56728 0.56728 0.56698 0.05289 0.05289 Symmetric Cross ply
0/90/0/90 1.63686 1.40404 1.40209 14.34271  0.13889 Antisymmetric Cross Ply
60/-60/45+45 0.29002 0.27956 0.28093 3.13427 0.49006 Balanced Multiple Angle Ply
30/~-30/30+30 0.9566 0.9566 0.9613 0.49133 0.49133 Antisymmetric Angle Ply
45/-45/4545 0.35483 0.35483 0.3574 0.7243 0.7243 Antisymmetric Laminates
60/-60/60£60 0.22753 0.22753 0.22822 0.30326 0.30326 Antisymmetric Laminates
30/30/30/30 0.43373 0.43373 0.43854 1.10899 1.10899 Single anisotropic layer
30L60/60/30  0.46286  0.46286 0.46777 1.0608  1.0608 Symmet”fa'\;é‘r';'p'e Angle
30/-30/30/30 0.77024 0.77024 0.77585 0.72835 0.72835 Symmetric angle Ply
45/30/30/45  0.4563 0.4563 0.45972 0.74951  0.74951 A”tisymmetrgly“'“p'e Angle
30/30£30/-30 0.64682 0.64682 0.64489 0.29839 0.29839 Antisymmetric Angle Ply
30/30/0/90 0.70276 0.70273 0.70451 0.24902 0.2533 Anisotropic
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5.5.2Parametric Study

5.5.2.1 Effect of Ply Orientation

The effect of having different stacking sequences was studied for columns with the following
dimensions: 100 mm x 1.0 mm x 0.4 mm for length, width, and thickness, respectively. Results
for buckling load values for different stacking sequences are prdsefitable5.2 in the previous
section with a range values between 0.2106 N and 3.053 N.

5.5.2.2Effect of Material Properties

A parametric study was performed to investigate the effect of changing materialipoperthe
stability of the composite column using two types of materilgh Strength Graphite/Epoxy and

S-Glass/Epoxymaterialwere used to conduct this study and their properties are illustrated in

Table5.1 andTable5.3 [19].

Table5.3 S-Glass/Epoxynaterialpropertieg19].
Material Eun E22 G2 312
S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

Table5.2 andTable5.4 illustrateresults of High Strength Graphite/ Epoxy an@GB&sgEpoxyfor
different stackingsequences. In general, it was observed that High Strength Graphite/Epoxy
exhibits much higher butikg loads than $5lass/Epoxy since it has higher stiffness values along
the fiber directionlt is also observed that the amount of error between the analytical and numerical
results reduces for ti2Glass/Epoxy since it hdgwer E11/Ez> ratio comparedo that of theHigh
Strength Graphite/Epoxyoreover, it was observed that Eq. (36) decreased the amount of error

compared to the error value using Eq. (23).
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Table5.4 Analytical and numerical relta for different layup sequences foiGdass/Epoxy.

Ply Orientation Analytical Analytical Numerical % % Error, Layup Type
Results, N, Results, N, Results, N Error, Eq. (36)
Eq. (23) Eq. (36) Eq. (23)
0/0/0/0 1.15804 1.15804 1.15778 0.0225  0.02246 Single Specially Orthotropic
90/90/90/90 0.33689 0.33689 0.33681 0.0238 0.02375 Single Specially Orthotropic
0/90/90/0 1.05931 1.05931 1.05857 0.0699  0.06986 Symmetric Cross ply
90/0/0/90 0.44116 0.44116 0.44111 0.0114  0.01134 Symmetric Cross ply
0/90/0/90 0.752 0.70945 0.70915 5.6982  0.04229 Antisymmetric Cross Ply
60/-60/45£45 0.40891 0.40463 0.40508 0.9367  0.11122 Balanced Multiple Angle Ply
30/-30/30£30 0.69638 0.69638 0.69709 0.102  0.10196 Antisymmetric Angle Ply
45/-45/45F45 0.45911 0.45911 0.45982 0.1547  0.15465 Antisymmetric Laminates
60/-60/60+60 0.36215 0.36215 0.36241 0.0718 0.0718 Antisymmetric Laminates
30/30/30/30 0.57068 0.57068 0.57243 0.3067 0.30666 Single anisotropic layer
30/-60/-60/30 0.56547 0.56547 0.56685 0.2441 0.24405 Symmetric Multiple Angle

Layers
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30/-30/-30/30 0.64083 0.64083 0.64219 0.2123  0.21223 Symmetric angle Ply
45/30+£30/45 0.49629 0.49629 0.49706 0.1552  0.15516 Antisymmetric Multiple Angle
Ply
30/30£30/30 0.6115 0.6115 0.61163 0.0213  0.02126 Antisymmetric Angle Ply
30/-30/0/90 0.55642 0.55097 0.5513 0.9202 0.0599 Anisotropic
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Buckling load results using-Slass and High Strength Graphite/Epoxy hybrid material properties
for the composite columns are presentetidhle5.5. High Strength Graphite/Epoxy material was
used for layers with®and 30° and SGlass/Epoxy for the rest of the orientations. Higher error
values between the analytical and numerical results were exhibited when combining two materials
using Eq. (23). Considering the coupling and extensional effect in Eq. (36) to capture the
conplexity in behavior of hybrid carbon/glass fiber composites, the error values are decreased and
the analytical results showed an excellent agreement with the numerical results.

Table5.5 Analytical vs. numedal buckling loads for different layup sequences for hybrid
Graphite and $slass/Epoxy composites.

Ply Orientation  Analytical Analytical Results, Numerical % Error, %

Results, N, N, Eq. (36) Results, N Eqg. (23) Error,

Eq. (23) Eq.

(36)
30/-30/60£60 0.61347 0.51765 0.5222 14.8777 0.87898
30/-30/0/90 0.76152 0.76011 0.75809 0.4505 0.26576
0/90/90/0 2.71765 2.71765 2.7096 0.2963 0.29622
0/90/0/90 1.70108 1.49791 1.49092 12.3546 0.46666
90/0/0/90 0.67617 0.67617 0.67678 0.0903 0.09022

5.5.2.3Effect of Element Type in FE Analysis

The effect of using different element types in the finite element analysis was also studied.
Comparisons between the analytical and numerical results using the quadratic shell element (S8R)
and 6node quadratitriangularthin shell element (STRI65)othwith reduced integration schemes

having element size equal to 2.5 x 2.5 mm are presenieabie5.6. Results of the quadrilateral
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shell dement showed an excellent agreement with the analytical solution for all stacking
sequence$n the other hand, the triangular element results showed a good agreenséightly
less accurate comparisaith the analytical results.

Table5.6 Analytical and numerical results with shell and triangular element

Ply Orientation Analytical Shell Element  Triangular Thin
Results, N S8R, N Shell Element
STRIG5, N
0/0/0/0 3.053 3.04733 3.0408
90/90/90/90 0.2106 0.21051 0.2105
0/90/90/0 2.7045 2.69824 2.6939
90/0/0/90 0.5673 0.56698 0.56681
60/-60/45£45 0.2901 0.28093 0.2809
30/-30/30£30 0.9566 0.9613 0.96156
45/-45/45+45 0.3549 0.3574 0.35746
60/-60/60+60 0.2276 0.22822 0.22822
30/30/30/30 0.4338 0.43854 0.43859
30/60/-60/30 0.4629 0.46777 0.4681
30/30/30/30 0.7703 0.77585 0.77609
_45/30430/45 0.4563 0.45972 0.4595
30/30£30/-30 0.6469 0.64489 0.64742
30/-30/0/90 0.7028 0.70451 0.70503
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5.5.2.4Comparison with Other Solutions

The results of the analytical formula (Equation 36) were compared with previous work conducted
by Abramovich et al. [15] for neeymmetric cross ply rectangular laminated composite beams.
Table 5.7 presents the results for Ref. [15] and the present analytical solution compared with
numerical solution for three different material properties (GEssxy, and Carbon Epoxy,
Kevlar-Epoxy).It was observed that the present analytical formula yields generally more accurate
results when compared to finite element results for different material properties and number of

layers.
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Table5.7 Comparison of the analytical formula with previous work.

Glassepoxy
Layup D1y, Non- Ref. [15], Analytical Numerical Error % Error %, Analytical
orientation MPa  dimensional N solution, N solution, Ref.[15] solution
buckling N
parameter,
>
0/90/0/90 19.94326  37.601  0.22496613€ 0.221430227 0.22146 1.558518 0.013445608
0/90/90/0 27.42504 39.44 0.324493412 0.318907912 0.31896 1.705246 0.016333131
0/90 2.492907 32.052  0.09588328Z 0.094093782 0.0941201 1.838885 0.02796915
0/90/0  12.31033 39.438  0.258945644 0.254059007 0.25404 1.894469 0.00748125
Carbon-epoxy
Layup Dy, Non- Ref.[15], Analytical  Numerical Error % Error %, Analytical
orientation MPa  dimensional N solution, N solution, Ref.[15] solution
buckling N
parameter,
&
0/90/0/90 36.48873 33.211  0.36354853z 0.364464655 0.36401 0.126934 0.124745968
0/90/90/0 61.44029 39.21 0.72272282E 0.72662090€ 0.72557 0.393951 0.144629146
0/90 4561092 14.842  0.08123494z 0.081193574 0.0810311 0.250929 0.200107074
0/90/0  28.38929  39.185 0.59333307 0.59617839¢ 0.59492 0.26746 0.211077582
Kevlar-epoxy
Layup D1y, Non- Ref. [15], Analytical  Numerical Error % Error %, Analytical
orientation MPa  dimensional N solution, N solution, Ref.[15] solution
buckling N
parameter,
>
0/90/0/90 15.85597 33.666  0.16014229t 0.16051713€ 0.16004 0.063878 0.297249221
0/90/90/0 26.25641 39.14 0.30830310€ 0.309976261 0.30912 0.264964 0.276234448
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0/90 1.981996 16.794  0.03994281¢ 0.039860352 0.0397581 0.462452 0.256527868

0/90/0 12.10614  39.109 0.252526201 0.25356488€ 0.25233 0.077695 0.487009836

L/r =500, k=5/6,c=1 mm
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5.6 Conclusions

RayleighRitz approximation was used to derive a generalized closed form buckling formula for
anisotropic laminated composite columns with fefe@d end conditions under axial compression
which may be considered an extension to the buckling formusatbpic columnsThe buckling
load formula was expressed in terms of the composite material effective flexural stiffness
coefficient as well as the column geometryorder to decrease some of the discrepancies in the
results with the numerical analysibe prebuckling solution was substituted into the bifurcation
expression to yield a new formula that includes the coupling and extensional stiffness coefficients.
This new analytical formula exhibited an excellent agreement with the finite elementianalys
results.The parametric study showed that using a single composite material type per column
generally yielded less deviation of the analytical solution from the numerical results compared to
using a twematerial hybrid compositehile both cases yieldadinimal levels of error when Eq.

(36) is used Additionally, the use of thin triangular and thigkadrilaterakhell finite elements
was found to be reliable in the buckling predictidfigally, the present analytical formula yielded

excellent correspatence to earlier buckling solutions of crgdg laminated columns.
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Chapter6-Anal yti cal and Finite EI emen

Fi xkeidxed Ani sotropic Laminated
Axi al Compression

Hayder A. Rasheed, Rund Al-Masri?
6.1 Abstract

Using RayleighRitz approximation, a generalized analytical buckling formula was
developed of generally anisotropic laminated fixedixed composite plates. Using the
generalized constitutive equation, the effective extensional, coupling, and flexural stiffness
coefficients of the anisotropic layup are diermined using dimensional reduction of 6x6
composite stiffness matrix. The resulting explicit formula is expressed in terms of the flexural
stiffness coefficients as well as the plate geometry. In order to decrease some of the
discrepancy in some of the esults, the coupling and extensional effect was considered
through the substitution of the pre-buckling solution into the bifurcation expression to yield

a new formula. The analytical results are verified against finite element Eigen value solutions
for a wide range of anisotropic laminated layups yielding high accuracy. A parametric study
is then conducted to examine the effect of ply orientations, material properties and type of
element in FE analysis. Relevance of the numerical and analytical resultsdiscussed for all
these cases.

Keywords: Buckling of Composite Plates, Fixetked Boundary Conditions, Anisotropic

Laminated Material, Axial Compression.

! Professor, Department of Civil Engineering, Kansas State University, Manhattan, KS 66506

2Ph.D. Candida, Department of Civil Engineering, Kansas State University, Manhattan, KS 66506
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6.2 Introduction

Laminated composite material use is ever growing in industrial applicationsasuwarospace,
automotive, and civil engineering due to their distinguished properties (High sttengénght

ratio, high stiffnesgo-weight ratio, fatigue, and corrosion resistance). Accordingly, this growth

has resulted in increasing the demand fatebeunderstanding the mechanics of laminated
composites. Wide plates undergo stability (i.e. buckling) issues prior to failure. An extensive
amount of research has been conducted to study buckling behavior of plates and shells in recent
years [117]. Heenica et al. [1] presented a closed form solution for buckling of long anisotropic
plates under axial compressionyWith various boundary conditions. The closed form solution

was expressed as:

Ay > ¢'1Z+_ mor 1)

Where :::is the bending stiffness; b is the width of the plate; ang the nordimensional

buckling coefficient related to the boundary conditions. Results validatibrewisting solutions
(Weaver [2] [3], Qiao and Shan [4]) and finite element solutions was conducted, the results
showed an excellent agreement. Mahesh et al. [5] developed a general buckling formulation for
plates under linearly varying uniaxial compressioad with general owdf-plane boundary
conditions. Formula was presented using Raykgh method based on the energy approach
along with orthogonal polynomials generated by a G&imidt process. Results showed a good
agreement with differential qdeature (DQ) models [6]. Silva et al. [7] presented a formulation

of generalized beam theory (GBT) to study local and global buckling of fiber reinforced polymer

composite open section thwalled columns. Silvestre and Camotim [8] presented a second order
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generalized beam theory (GBT) to predict buckling behavior of thin walled arbitrary orthotropic
thin-walled membersThe second order theory was compared with Bauld andhiyng theory

[9]. The critical buckling load exists for all isotropic or crqdg orthotropic members according

to results. Moreover, no specific bifurcation is detected for a symmetric orthotropic layups along
with nontlinear path. Ghaheri et al. [10] used RayleRjtz method to conduct a study on the
buckling behavior of symmetridgllaminated composite elliptical plates on elastic foundation
under uniform iAplane loading with various boundary conditions. Weaver and Nemeth [11]
developed a nedimensional parameters and governing equations to study buckling behavior of
rectangulasymmetrically laminated composite plates with different boundary conditions under
uniform axial compression, uniform shear, or purpleme bending loading. Furthermore, bounds
for nondimensional parameters were presented as an indication of perceaiage i the
buckling resistance for laminated plates. The results exhibit8626increase in the buckling
resistance for tailored simply supported orthotropic plates; with respect to isotropic plates.
Moreover, clamped laminated plates exhibitet?9 increase in the buckling resistance. Xu et

al. [12] developed an approximate analytical solution to predict buckling behavior abaatri
woven fabric composite structure underalzial loading using equivalent anisotropic plate
method. The results shod¢hat the analytical solution provides an upper bound solution for
buckling; moreover, the solution can be used to predict buckling behavior for real life problem
under btaxial loading. Using analytical strip method (ASM) developed by Harik and Salamoun
[13], Sun and Harik [14] developed analytical solution to predict buckling of stiffened
antisymmetric laminated composite plates with bendixignsion coupling. According to results,
plates with free ends contribute to the weakest stiffening effects.oMemesince the coupling

stiffness matrix vanishes, layers with ply orientatidar®d 90 had no effect on the buckling load.
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Shufrin et al. [15] presented a seamalytical solution for buckling of symmetrically laminated
rectangular plates under comhbinéension, compression, and shear with various boundary
conditions using multi term Kantorovich method [16]. Stability of the apbjiédaminated plates
improved compared to free-plane restraint plates under biaxial compression/tension, and shear.
Additionally, extra inplane forces were generated because of tpdaime restraint. Using state

space concept on Levy type solution, Thai and Kim [17] developed a closed form solution for
buckling of orthotropic plates with two opposite simply supported edgeg two variable

refined plate theories. The results exhibited more accurate solutions than the higher order shear

deformation theory.

In this work, a generalized analytical buckling formula for fefis@d laminated composite wide
plates subjected to axial compression is developed using RajRémhpproximation method.
Starting with 3D rigidity matrix and usirdimensional reductiogpproach, extensional, coupling,

and flexural rigidities in 1D are determined. Moreover, finite element models for the plates are
generated using commercial software Abaqus. The finite element numerical solution was
compared to the analytical solution reésg in excellent agreement regardless of the complexity

of the composite layps used.

6.3 Analytical Formulation

A generalized analytical buckling formula for fixéided anisotropic laminated composite wide
plates under axial compression is derived usingdigh-Ritz approximation.
6.3.1Assumptions

1 Buckling occurs in the-y plane about the-axis (weak axis).
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1 The yaxis runs through the thickness of the plate where the composite lamination takes

place,Figure6.1

1 The lamination anglea() is measured with respect to theaxis (i.e. 0° fibers run
parallel to the xaxis and 90° fibers run parallel to thexxs). Accordingly, the angle
(2 ) is rotated abut the yaxis.

1 Plane sections before bending remain plane after bending and perpendicular to the mid
surface (i.e. simple beam theory holds).

1 Classical lamination theory is applicable with shear deformations ignored.

6.3.2Kinematics

Figure6.1 presents geometry and the Cartesian coordinates of thefifveeplate. Bending takes
place around the-axis which is the weak axis. The following displacement relations were assumed

basedon the isotopic Euler first buckling mode:

Infinite
y Pl

Lamination 7

Infinite“

Figure6.1The wide plate geometry.
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Whered w, andb w is the axial, and lateral displacem&&: and G areconstants to be solved;

(2)

and x is the distance along the axis ofpitege For an intermediate class of deformation, the axial

strain- and curvaturd are defined as follow.
e w, “wm, ¢ -°

6.3.3Constitutive equations

3)

Transforming the principle material directions into the plate coordinate system, the stresses and

strains are then related in the following equation
L L L
c P b
a |k
Weo b bk

Where 0

(4)

matrix represents the transformed reduced stiffness matrix as defined in standard

composite textbooks [18RAccordingly, the coupled forestrain relationship is established as

follows:
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By | 2 (6)
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In whicho ,6 , andO aretheaxial, coupling, and flexural rigiditgoefficients ® = thickness
of the kth ply; and N = number of different plies in the stacking sequence.

To generate the three dimensional (3D) rigidity matrnxaterial properties andhe fiber
orientatons are used in equation (Bfter dimensional reductioapproach andpplying the zero

forces and moments, the dimension is reducedD anisotropicaxial, coupling and flexural

rigidities.
J ° = = - 2 t.

v 1 v ﬂ’= — — | v v
II’J'IP :|_ _ _ |:|IP I’p
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Extractingthe second, third, fifth, and sixth linear equations from equation (7), the axial strain and
axial curvaturet, ,#,) is solved in terms of the rest of the deformation components. Since the

rest of the deformation components for wide plate are egualrgsulting in equation (8):
o = | & ®
o 5 4
The axial force and #plane moment vs. the axial strain angblane curvature relationship can be

expressed in terms of the generally anisotropic material properties

T |
1B ?i. ()
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It may be observed that equation 9 the material properties for wide plate is expressed in terms
extensional, coupling, and bending stiffnesses in the principal directions.

6.3.4Energy Formulation

A generalized analytical buckling formula sveerived using RayleigRitz approximation based

on the energy approach. Strain energy can be expressed in terms of the integration of the applied

loads multiplying the corresponding deformations.

’ ~d oto -4 oao -.

T
. .-, ° [
=k, | td.We - || LA, 1 A. We
(10)
Equation (11) expresses the potential of external loads
T |ted (11)

Taking the total potential energy function and substituéiggatiors (10) and (11) into equation
(12)

ST T . -= bt | td ¢ oA Me [0 (12)

coo= 4 =l F = r et HA

Minimizing the total potential energy function with respect toaBd G, setting the resulting

expressions to zerperformingtheintegration by parts and manipulatitige equations to give:

L i ¥

T = T
T 14
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e =1fd 2 =Fd 72 m Fd 7%
z F N D I (15)

Solving equatior{14) for B: then substituting the resulting expression into equation (15), equation

(17) is formulated in terms ofiC

S (19

d
- - (17

(18

In order for the € value to be real, the discriminant must &teleast zero. By setting the

discriminant to zero, a closed form solution for the critical buckling load is derived:

b 19

Euler buckling formula for the fixetixed isotropic plate is reduced down with an effective length
factor of 0.5 whef© is replaced witfO3Qwhere ‘OF p ' ) of the plate in equation (19).
6.3.5Pre-buckling Solution

In order to decrease somescliepancy between the analytical and numerical results, the pre

buckling solution of the laminated composite plate is considered since the couplingéeffext (
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in all terms in the standard Rayleigtitz approximation lent to zero. During ghoeickling and

prior reaching the buckling load, thephane moment is set to zero

o | "e 1 4 (20)
I e r #
4. ﬂ— . (21)

The axial force versus the axial strain is expressed in terms of the generally anisotropic material

properties when substituting Eq. (21) into the axial force equation (22)

b =" | # (22)
||-o = Io "_I °
1
I | (23)
Where
= e2)

Based on the assumed sign convention, the axial forgés(positive and in compression. On the
other hand, the axial strain () is negative even though it is in compressiotillastrated in Eq.
(25)
0 ” ° (25)
Using the axial strain in Eq. (3), setting the lateral displacement term to zero, and substituting

equation (25), the axial strain cha expressed as

o (26)
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A relationship between the axial force and the unknown consgianis(obtained by substituting

Eq. (26) into Eq. (23), i.e.

” I

27
—=lll 27)

6.3.6Bifurcation Solution in terms of Pre-buckling Deformation

By substituting Eq. (27) into the total potential energy function given by Eq. (13), one obtains

e+ -z __ _1_z _ 1l _Z 11
¢ —an =_“I= ] F= 3 T F= 3 Ik — 1
(28)

Minimizing the total potential energy with respectitq setting the resulting expression to zero,

and manipulating # equation, one gets

. = J R J
it 29
|
By solving Eqg. (29), one gets
F T HMITE N HTT T
: 2 = =
[l — — -1 T
"=z T T e

Thediscriminant must be at least zero to have a real value:f@yCsetting thediscriminant to
zero and substituting Eq. (24), a new analytical critical buckbngula is developed considering

the coupling effect:

he s G L (31)
beo 2— ¢ L (32)
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Z
™ | (33)
Where

TR @)

The newformula reduces down to Euler buckling formula of the fikigdd isotropic plate in the

case of isotropic or specialtyrthotropic materials.
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6.4 Numerical Formulation

Using commercial software package Abaqus, analytical buckling formula was verified wtéh fin
element buckling analysis for laminated anisotropic pl&tedeswith four layersvereassembled
with fixed supports at théottom and fixeeroller support at the top of the plate. Moreover,

translation in xdirection and rotation in y direction isgventedFigure6.2 presents the boundary

conditions and shell edge load which was applied at the top of the plate

Figure6.2 Boundary conditions and applieddd.

Linear elastic laminatematerialwasused fororthotropic andanisotropiclayups, respectively.
Additionally, SGlass/epoxy material was mainly used to simulate the composite plates
Quadrilateral eight node doubly curved thick shell element (S8R) was used for mtukejitates

in 3D-spaceas shown inFigure 6.3. Moreover, 3D solid 2tode quadratic brick element
(C3D20R) was also attempted. Mesh size equal to 10 mm x 10 mm with total number element
equal to 1000 was used after conducting convergence study to select the appropriate size for plates
with dimension ér width, length and thickness equal to: 1000 mm x 100 mm x 0.4 mm,

respectively.
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Figure6.3 Meshed Model.

In this study, wo types of analygs wereundertaken.To simulate eigenvalue computation,
buckling analysis using LanczeslverwasconductedEigenvalues and eigenvectors are solved
using Lanczos method for complex Hermitian matrix using power methgddisg recurrence
relations (multidimensional array values), Lanczos method reducest symmetric matrixo a
tridiagonal matriq19].

To predict the nonlinear stability response {puekling and buckling) and indicate the existence
of prebuckling deformation in the transverse directiomgnlinear geometry analysis was
conductedusingthe modified Riks analysis of the composipates Arc length method which is
used in the mdified Riks analysis follows the equilibrium patiepresenting either th@furcation

pointsor thelimit points. During the analysisold incremerstareapplied inwhich equilibrium
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iterations converge alontpe arc length,forcing the constraint equation to be satisfie@\atry
iteration[20].
6.5 Results and Applications:

6.5.1Numerical Validation

Table6.1 illustrates SGlass/Epoxy material properties; obtained from typical values in an FRP
textbook [21], used to simulate the analytical and numerical results for different stacking
sequences of composite plates with the following dsiens forwidth, length and thickness:

1000 mm x 100 mm x 0.4 mm, respectivelyable 6.2 presents the comparison between the
analytical and numerical buckling results for different layup stacking sequences using equations
(19) and (31). In general, it was observed that resualis Eg. (19) showed a good agreement with
numerical results with a minimum error equal to 0.0026% for single specially orthotropic layer
(0/0/0/0) and a maximum error equal to 11.4776% for the balanced angle ply (6081)/30/
Furthermore, results from E{B1) yielded an excellent agreement with numerical results with
maximum error equal to 4.8984% for the antisymmetric angle ply3@@0£30). In general,
considering the coupling and extensional effect in Eq. (31) reduced the error value significantly.
It is important to note that the layup with maximum erretd/the analytical buckling load on the
un-conservative side.

Table6.1 S-Glass/Epoxynaterialpropertieg21].
Material En E22 G2 312

S-GlassEpoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

108



Table6.2 Comparison of malytical andhumericalbuckling loadfor different layup sequense

Ply Analytical Analytical Numerical % Error, Eq. % Error, Eq. Layup Type
orientation Results Eq. Results Eq. (31), Results, N (29) (31)
(19), N N
0/0/0/0 1.18507 1.18507 1.1851 0.0026 0.0026 Single Specially
Orthotropic
90/90/90/90 0.34475 0.34475 0.3448 0.0146 0.0146 Single Specially
Orthotropic
30/-30/30£30 0.84436 0.84436 0.803 4.8984 4.8984 Antisymmetric Angle
Ply
45/-45/4545 0.59074 0.59074 0.5668 4.0526 4.0526 Antisymmetric Angle
Ply
60/-60/60+£60 0.4242 0.4242 0.4173 1.6266 1.6266 Antisymmetric Angle
Ply
30/-30/0/0 1.01471 0.99326 0.9796 3.4602 1.3753 Anisotropic
30/30/0/90 0.64708 0.62754 0.6141 5.0968 2.1417 Anisotropic
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30/30/30/30 0.84436 0.84436 0.8465 0.2535 0.2535 Single anisotropic layetr
30/30/-30/30 0.84436 0.84436 0.8461 0.2061 0.2061 Symmetric angle Ply
0/90/90/0 1.08003 1.08003 1.0796 0.0399 0.0399 Symmetric Cross Ply
30/-60/-60/30 0.79184 0.79184 0.7928 0.1213 0.1213 Symmetric Multiple
Angle Ply
0/90/0/90 0.76491 0.72164 0.7216 5.6622 0.0056 Antisymmetric Cross
Ply
-45/30+30/45 0.62244 0.62244 0.6024 3.2196 3.2196 Antisymmetric Multiple
Angle Ply
90/0/0/90 0.44979 0.44979 0.4499 0.0245 0.0245 Symmetric Cross Ply
30/-30/45+45 0.71755 0.70074 0.669 6.7661 4.5295 Balanced Angle Ply
60/-60/45+45 0.50747 0.49722 0.48273 4.8752 2.9143 Balanced Angle Ply
60/-60/30+£30 0.63428 0.5821 0.56148 11.4776 3.5424 Balanced Angle Ply

110



Figure6.4 presents load versus mid height deflection curve for two different stacking sequences
obtained from the finite element nonlinear Riks analysis along with the analytical solution Eq. (31)
for comparisonResults exhibits an excellent agreement between analytical and numerical (FE)
solutions. Anisotropic layup (3€B0/0/0) exhibit higher buckling load with minimal error between

the analytical and numerical results. Furthermore -8800/90) layip showdower buckling load

value.

Load vs. Deflection

1.2
30/-30/0/0
Z
ze]
©
o
-l
0.4
Numerical (FE) Solution
0.2 . .
----- Analytical Solution
0
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Mid -Height Deflection, mm

Figure6.4 Analytical versus numerical solutions.

6.5.2Parametric Study
6.5.2.1 Effect of Ply Orientation
Studying the effect of having different stacking sequences was conducted for plates with the

following dimensions: 1000 mm x 100 mm x 0.4 mmvadth, length and thickness, respectively.
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Table6.2 reports buckling load values for different stacking sequences with values range between
0.3448 N and 1.1851 N. As observedrigure 6.5, the buckling mode shape of the fixixied
anisotropic plate for symmetric cross ply layup (0/90/0/90) is uniform along the plate. On the other
hand, some of the stacking sequences such as the balanced angle g30A$0f15/45) exhibit

an edge effect during buckling as showifrigure6.6 which may contribute to a slight difference

between analytical and numerical results.

Figure6.5 Buckling shape of théxed-fixed Figure6.6 Buckling shape of the fixedixed
plate for symmetric cross ply (0/90/0/90) plate for balanced angle ply (380/45£45).

6.5.2.2Effect of Material Properties
To study the effect of changing material properties on the stability of the laminated composite
plate, two types of material were usedGBss/Epoxy and High Strength Graphite/Epoxy were

used to conduct this study and their properties; reported in anexBi®ok [21], are reported in

Table6.1andTable6.3.

Table6.3 High Strength Graphite/Epoxy Material Proper{2s].
Material Eu E22 G2 312
High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25
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Table 6.2 and Table 6.4 illustrates buckling load values for&ass/Epoxy and High Strength
Graphite/Epoxy matrial with different stacking sequences. In generagl&s/Epoxy exhibits

lower buckling load values than High Strength Graphite/Epoxy because of its lower stiffness
values in the fiber direction. Additionally, the error value between analytical andricame
solution increases for High Strength Graphite/Epoxy since it has high&Jatio compared

with S-Glass/Epoxy. As mentioned earlier, Eq. (31) reduced down the error significantly since
the coupling and extensional effect was taken into account compared with Eq. (19). Single
speciallyorthotropic layup (0/0/0/0) exhibited the miaxim buckling load value which is equal

to 3.06622 N since all fibers are aligned along the loading axis due to the vanish of the coupling

term.
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Table6.4 Analytical andnumericalresults for different layup sequencesifigh Strength GraphitdEpoxy.

Ply orientation Analytical Analytical Numerical % Error, % Error, Layup Type
Results Eq. Results Eq. Results, N Eq. (19) Eq. (31)
(19), N (31), N
0/0/0/0 3.06622 3.06622 3.0617 0.1475 0.145 Single Specially Orthotropic
90/90/90/90 0.21147 0.21147 0.2116 0.0615 0.065 Single Specially Orthotropic
30/-30/30£30 1.83359 1.83359 1.5798 13.8412 13.847 Antisymmetric Angle Ply
45/-45/45+45 0.94692 0.94692 0.8281 12.5481 12.548 Antisymmetric Angle Ply
60/-60/60+60 0.40621 0.40621 0.3766 7.2894 7.28% Antisymmetric Angle Ply
30/30/0/0 2.4499 2.33362 2.2216 9.3188 4.80027 Anisotropic
30/-30/0/90 1.20095 1.11183 1.0028 16.4995 9.80636 Anisotropic
30/30/30/30 1.83359 1.83359 1.8336 0.0006 0.00(6 Single anisotropic layer
30/-30/-30/30 1.83359 1.83359 1.8279 0.3104 0.3104 Symmetric angle Ply
0/90/90/0 2.70938 2.70938 2.7043 0.1875 0.1875 Symmetric Cross Ply
30/-60/-60/30 1.65517 1.65517 1.6496 0.3366 0.33®% Symmetric MultipleAngle

Ply
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0/90/0/90 1.63884 1.40574 1.4044 14.3053 0.09533 Antisymmetric Cross Ply
-45/30£30/45 1.05776 1.05776 0.9601 9.2328 9.2338 Antisymmetric Multiple
Angle Ply
90/0/0/90 0.56831 0.56831 0.5683 0.0018 0.008 Symmetric Cross Ply
30/-30/45+45 1.39026 1.28423 1.109 20.2308 13.6448 Balanced Angle Ply
60/-60/45+45 0.67657 0.59554 0.5638 16.6679 5.3297 Balanced Angle Ply
60/-60/30+30 1.1199 0.77879 0.66467 40.6492 14.6536 Balanced Angle Ply
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6.5.2.3Effect of Element Type in FE Analysis

The effect of wusing different element types in finite element analysis of
S-Glass/Epoxy was studied. Using quadratic shell element (S8R) and quadratic solid element
(C3D20R) both with reduced integration schemes and mesh size equal to 10.0 mm x 10.0 mm.
Table6.5 presents comparison between analytical and numerical solution. An excellent agreement
between analytical and shell element results is observed for all stacking sequences. Additionally,
solid element results were off in most of the different stacking sequences. Accordingly, it might
be argued that for this type of analysis the shell element (S8R) is more reliable than solid element

(C3D20R).

Table6.5 Analytical and numerical results with shell and solid element

Ply Orientation Analytical Results, Shell Element S8R, Solid Element
N N C3D20R, N
0/0/0/0 1.18507 1.1851 0.739497
90/90/90/90 0.34475 0.3448 0.2149
30/-30/30+£30 0.84436 0.803 0.521911
45/-45/45+45 0.59074 0.5668 0.362858
60/-60/60+60 0.4242 0.4173 0.261628
30/-30/0/0 0.99326 0.9796 0.630799
30/30/0/90 0.62754 0.6141 0.498114
30/30/30/30 0.84436 0.8465 0.534503
30/-30/-30/30 0.84436 0.8461 0.522302
0/90/90/0 1.08003 1.0796 0.47738
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30/-60/-60/30 0.79184 0.7928 0.401967

0/90/0/90 0.72164 0.7216 0.476869
-45/30£30/45 0.62244 0.6024 0.44262
90/0/0/90 0.44979 0.4499 0.477378

6.6 Conclusion

Using RayleighRitz approximation, a generalized closed form buckling formula was derived for
anisotropic laminated composite plates under axial compression witHfifbegldconditionsThe
buckling load formula was expressed in terms of the compositeriatadéfective flexural
stiffness coefficient as well as tiptate geometry A new formula was developed in terms of
extensional, coupling, and flexural coefficients using the-bpiekling solution. The new
analytical formulashowedan excellent agreementth the numerical results. From the parametric
study, it was shown that usimgmposite material with high1#E>> ratio the analytical solution
yielded more deviation of the analytical solution from the numerical solution compared with low
stiffness compsite material. Moreover, some stacking sequences showed an edge effect during
buckling therefore a slight difference between the analytical results and numerical results was
observed Additionally, the use o$olid elementsn the finite element analysigas found to be

lessreliable compared to the use bl elements in the buckling predictions.
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Chapter7-Buckl ing Sol-kimdeinsotfr &pixedLan
Composite Columns under Axi al Co mg
For mul ati on

Hayder A. Rasheed and Rund Al-Mastri?

7.1 Abstract

A generalized analytical buckling formula for anisotropic laminated composite fixeeree
columns under axial conpression is presented on the basis of Rayleigh Ritz displacement
field approximation. The effective axial, coupling and flexural stiffness coefficients of the
anisotropic layup is determined from the generalized constitutive relationship using
dimensionalreduction by static condensation of th& dimensionalcomposite stiffness matrix.
The developed formula is expressed in terms of the generally anisotropic material properties
as well as the column geometry. For isotropic and certain classes of laminatezhgposites,
the derived formula reduces down to Euler buckling formula.The analytical results are
verified against finite element Eigen value solutions for a wide range of anisotropic laminated
layups vyielding high accuracy.A brief parametric study is then conducted to examine the
effect of ply orientations, element thicknessfinite element type,and material properties
including hybrid carbon/glass fiber composites. Relevance of the numerical and analytical
results is discussed for all these cases.

Keywords: Buckling of Composite Columns, Clamgege Boundary Conditions, Anisotropic

Laminated Composites, Axial Compression.
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7.2 Introduction

The demand to understand the stability mechanism of laminated composite members has increased
in the last fewdecades due to the growth of using composites in different industrial applications
such as aerospacmarine, automotive, and civil engineering. Composite materials have many
advantages such as high stiffnréssveight ratio, high strengtto-weight ratio,as well as fatigue

and corrosion resistance. Although limited amount of research has focused on the buckling of
anisotropic laminated composite columns, significant amount of studies have been conducted on
the stability of composite shells, plates, andinclers [E11]. Based on HellingeReissner
principal, Cortinez and Piovan [1] developed a theoretical model to study the stability of composite
thin-walled beams with shear deformability using nonlinear displacement Aididite element

with fourteen eégrees of freedom was used to solve the governing egsiddased on the results,

shear flexibility had a significant effect on the stability of the composite beams. Depending on the
unified three degrees of freedom shear deformable beam theory, Ay@pgtiudjed the buckling

of crossply laminated beams with general boundary conditions using Ritz method. The use of the
shape function satisfied the requirements for continuity conditions between symmetrplgross
layers of the beam. The results were panmed with previous work for various lengththickness

ratios and various laysp Abramovich and Livshits [3] studied the free vibrations of -non
symmetric cross ply laminated composite beams based on the first order shear deformation theory.
Longitudinal transverse displacement, rotary inertia, and shear deformation were considered in
the analysis. The following equation of motion of cross ply laminated composite beams was solved

for different boundary conditions:

[MK Ak+[C] {n} = {0} (1)
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Where [M] is the generalized mass matrix, [C] is the matrix differential operator;arnis the
vector of the generalized displacements. The new approach and BeEuweitlitheory were
verified against numerat solutions Abramovich et al. [4] studied the vibrations and buckling of
crossply nonsymmetric rectangular laminated composite beams using the exact method based on
Timoshenko equation. A good agreement between analytical and numerical results waslobse
considering the effect of material properties, number of layers, and boundary conditions.
Additionally, a coupling effect was observed between the axial and lateral motion of the non
symmetric layup in the beams. Based on the response surface medh®ld@te Carlo method,
Schanbl [5] presenteal model to study buckling of twlayer composite columns with interlayer
slip, random material properties, and loading parameters. Using Raidgmmethod, Herencia
et al. [6] presented closddrm solutionsfor buckling of long plates with flexural anisotropy of
simply supported short edges and various boundary conditions for longitudinal edges under axial
compression. The closed form solution was expressed with respect to minimuimemsional
buckling codficient and stiffnesparametersThe results showed an excellent agreement with
previous solution and finite elemeamalysis Ovesy et al. [7] studied the buckling of laminated
composite plates with simply supported boundary conditions under uniax&lcpmpression
using higher order semi analytical finite strip methoddase Reddy 6s hi gher ord
Matsunga [8] investigated the free vibration and stability of aplyldaminated composite and
sandwich plates under thermal loading. Usiwg tlimensional global higher order deformation
theory, the following eigenvalue problem can be expressed as:

Lo d o= @
Where [K] is the stiffness matrix which includes the initial thermal stresses term, [M] is the mass

matrix, and {U} is the generalized displacement vector. Using energy method and orthogonal
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polynomial sequences obtained by a Giaommidt process, PandeydaSherbourne [9] presented

a general formulation for buckling of rectangular anisotropic symmetric angle ply composite plates
under linearly varying uniaxial compression loading with clamped and simply supported boundary
conditions. Based on the energypagach, Rasheed and Yousif [10] derived a closed form
buckling solution to investigate the stability of thin laminated orthotropic composite rings/long
cylinders under external pressufemarci and Aydogdu [11$tudied the buckling of symmetric
crossply square plates with various boundary conditions under uniaxial, biaxial compression, and
compressiofiension loading based on the unified five degree of freedom shear deformable plate
theory. The results were verified with existing work for various lemgthickness ratios.

In this study, a closed form buckling solution was derived of anisotropic laminated composite
fixed-free columns under axial compression using Rayl&igh approximation field based on the
energy approach. Three dimensional 6 x 6 caitpcstiffness matrix is converted to 1D axial,
coupling, and flexural rigidities using static condensation method. Furthermore, the analytical
results were verified against finite element analysis using commercial software Abaqus yielding

an excellent agement between the results.

7.3 Analytical Formulation

7.3.1Assumptions and Kinematics

An analytical buckling formula is developed using Rayldrjtz approximation field for fixed

free anisotropic laminated composite columns under axial compression. Severaltiassuanp
taken into consideration prior to deriving the analytical formula and can be illustrated in the
following points:

1 Buckling occurs in the-y plane about the-axis (weak axis).
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1 The yaxis runs through the thickness of the plate where the corapasiination takes

place,Figure7.1.

1 The lamination anglea() is measured with respect to theaxis (i.e. 0° fibers run
parallel to the xaxis and 90° fibers ruparallel to the zaxis). Accordingly, the angle
(2 ) is rotated about the-gxis.

1 Plane sections before bending remain plane after bending and perpendicular to the mid
surface (i.e. simple beam theory holds).

1 Classical lamination theory is applicable wittear deformations ignored.

Figure7.1 presents the Cartesian coordinates and the geometry of thdréeectblumn. Bending
takes place about theaxis which is theweak axis of the column. Equation (3) presents the

assumed displacement field based on the isotropic buckling mode:

O e || o, O o F “HTEE 3)
Where6 w, v @ are the axial and laterdisplacement, Band G are constants to be solved and
X is the distance along the axis of the column as showngure 7.1. The axial straik, and

curvatured, are presented in equation (4) depending on the intermediate class of deformation:

t. &, “nm o -0 Ae @, © (4)
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Lamination

Figure7.1 Column geometry

7.3.2Constitutive equations
The stresses and strains are related by the transformed reduced stiffnes$ mateisented in
equation (5); as defined in standard composite textlb?l in order to transform the principle

material directions into the column coordinate system.

S N
g r Ir ' (5
We b b oA

Accordingly, the coupled forcstrain relationship is established as
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Whered , 6 , and’O arethe extensionalcoupling, and flexural rigiditycoefficientsd =
thickness othe kth ply; andN = number of different plies in the stacking sequence.

In order to generate the three dimensional (3D) constitutive matrix, material properties and the
fiber orientations are used in equation (6). The 3D classical lamination matrix is reduced to 1D
anisotopic extensional, coupling, and flexural stiffness coefficients using static condensation after

applying the zero forces and moments.

J ° == == == > t.
v 1 v {Y_ _ _ | v v
I’l’J ’ T - - ru’vt' 'y
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Extracting the second, third, fifth, and sixth lineguations from matrix (8) to solve the axial

strain and axial curvaturé J ,4,) with respect to the other deformation components.

e
R I LA
1] ror A
. 9)
15 b3
Ao »

Inverting the matrix Q to the other side of Eq. (9), the condensed deformation components are

obtained in terms of the axial strain and curvature:

£,
o ) t.
3 L4 g (10)

The axial force and #plane moment versus the axial strain an@lane curvature relationship is
developed in terms of the generally anisotropic material properties by substituting Eq. (10) into

the first and fourth linear equation of mat(8)

(11)

Where

7.3.3Energy Formulation
A generalized analytical buckling formula was developed using RayRiighapproximation
based on the energy approach. Strain energy can be expressed in terms of the integration of the

applied loads multiplying the corresponding deformations.
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T . ~d o#—o -4 oao = L
(13)
E d
- =t [potede Mo - kA rpad Mo
The potential of external loads can be expressed as
T o4 (14)
In view of EqQ. (13) and (14), the total potential energy function is given by
J
J T F . - =+f.. |J,|=t.¢. |'|'=|=¢. ., ||'<> :] (15)
Z Z Z
7 = I} = L I} F- T T i T Z||+- | ¢ —
Z Z
—l+5d = -meerd = HIHA (16)

Minimizing the total potentiakenergy with respect to the unknown Bnd G, setting the
differential expressions to zero, performing integration by parts and manipulating the expressions,

the following equations are developed

|+ Fd 2 [
Z
17)
. s k-4 2 l4.6d 2 g
— > 7 | (18

Solving equation(17) for B1 then substituting theesulting expression in equation (18), the

following cubic equation is formulated in terms of@lue

128



" F 4 z e B (19
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Where
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Equation (20) does not lend itself to a closed form solution. Therefore, considering the critical

stability matrix:

W ﬁ (21
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Setting the determinant of the matrix in Equation (21) to zero, substitutiegpBession from

equation (19) and solving fori@sing the general solution of a quadratic equation:

4

- _ 3
B

4 4

In order for the € value to be real, thdiscriminant must be at least zero. By setting the
discriminant to zero and manipulating its expression, a closed form solution for the critical

buckling load is derived:

. Z .
| T T+ = — ||=|= — (24)

The general critical buckling formufar columns with different width values other than unity
is:

by, e

(25)

Where w is the width of the columequation (%) reduces down to Euler buckling formula of
fixed free columns when the coupling term vanishes in case of isotropic or spediadliropic

materials.
7.4 Numerical Formulation

In order to validate the analytical formula for laminated anisotropic fiseslcolumns derived in

the previous section, finite element analysis was conducted using commercial software package
Abaqus. Column models were constructed with four layers eatielastic laminated material.
Moreover, fixed support and free end were provided at the bottom and top of the column,
respectively. Axial compression load was applied at the top of the model as presEigacein?2.

Quadrilateral eight node doubly curved thick shell element (S8R) amb®® quadratic solid
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element (C3D20R) were used to model the anisotropic columns in 3D space. The mesh contains
0.5 x 0.5 mm elment size in the analysis of a column size of 100 mm x 1.0 mm x 0.4 mm for
length, width, and thickness, respectively.

To solve for eigenvalue and eigenvector numerically, buckling analysis was conducted using
Lanczos solver. Based on the power methodckas technique is used to simulate eigenvalue
computation for complex Hermitian matrix in which a symmetric matrix is reduced to tridiagonal

matrix using multidimensional array values (recurrence relat{a3$)

Figure7.2 Left: Boundary conditions and applieddd. Right: Meshed Model.

To indicate the existence of pbeickling deformation in the transverse direction and predict the
nonlinear stability response of the anisotropic columns, nonlinear geometry analysis using the
modified Riks technique was performed. Based on the arc |lengfihod, Riks analysis follows

the equilibrium path (bifurcation points or the limit points) while applying a load increment during
the analysisEquilibrium iterations converge alottige arclength,forcing the constraint equation

to be satisfiedt everyarc length incremerji4].
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7.5Results and Applications:

7.5.1Numerical Validation

High Strength Graphite/Epoxy material was mainly used to simulate the composite columns and
its properties are illustrated ifable 7.1; obtained from typical values in an FRP textbdbl].

Table 7.2 presents the comparison between #malytical and numerical results for different
stacking sequences of composite column with the following dimensions for length, width, and
thickness: 100 mm x 1.0 mm x 0.4 mm, respectively. The analytical results showed an excellent
agreement with the fite element results with a maximum error equal to 3.60 % for the balanced
angle ply layup (3080/60/60) and a minimum error equal to 0.00076% for single specially
orthotropic layup (90/90/90/90). It is important to note that the layup with maximumyestds

the analytical load on the conservative side.

Table7.1 High Strength Graphite/Epoxy Material Proper{i&s].
Material Eun E22 G2 312

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

Table7.2 Comparison of analytical and numerical buckling load for various layup sequences
Graphite/Epoxy Composite Column (t = 0.4 mm)

Ply Orientation Analytical Numerical % Error Layup Type

Results, N Results, N

0/0/0/0 0.19082 0.1908 0.01049 Single Specially
Orthotropic

90/90/90/90 0.0131595 0.0131594 0.00076 Single Specially
Orthotropic
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30/-30/30£30 0.05979 0.05997 0.30106 Antisymmetric
Angle Ply
45/-45/45}45 0.02218 0.02226 0.36069 Antisymmetric
Angle Ply
60/-60/60£60 0.01423 0.01425 0.14055 Antisymmetric
Angle Ply
60/-60/45+45 0.01742 0.01752 0.57406 Balanced Angle
Ply
30/-30/45+45 0.03275 0.03337 1.89313 Balanced Angle
Ply
30/-30/60+60 0.02359 0.02444 3.60323 Balanced Angle
Ply
30/-30/0/0 0.09127 0.09369 2.65148 Anisotropic
30/30/0/90 0.04393 0.04401 0.18211 Anisotropic
30/30/30/30 0.02711 0.02726 0.55331 Single Anisotropic
Layer
30/30/-30/30 0.04814 0.04833 0.39469 Symmetric Angle
Ply
0/90/90/0 0.16903 0.16901 0.01184 Symmetric Cross
Ply
30/-60/-60/30 0.02893 0.02909 0.55306 Symmetric
Multiple Angle
Layers
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0/90/0/90 0.08658 0.08775 1.35136 Antisymmetric

Cross Ply

-45/30£30/45 0.02852 0.02863 0.3857 Antisymmetric

Angle Ply

90/0/0/90 0.035455 0.03546 0.01411 Symmetric Cross

Ply

30/30£30/-30 0.04043 0.04046 0.07421 Antisymmetric

Angle Ply

Load versus free end displacemeumtve is plotted for three different stacking sequences obtained
from the nonlinear finite element Riks analysis along with the analytical solution as shown in
Figure7.3. The analytical results showed an excellent agreement with the Riks analysis where the
anisotropic layup (3680/0/0) exhibit the highest buckling load with the maximum error value.

The three stacking sequences indicate an existdricansverse deformation prior to buckling.
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Figure7.3 Analytical versus numerical solutions.

7.5.2Parametric Study

7.5.2.1Effect of Ply Orientation
Table7.2 in the previous section presents the effect of having different stacking sequences of
anisotropic column with the following dimensions for length, width, and thickness: 100 mm x
1.0 mm x 0.4mm, respectively. The buckling load values vary between 0.19082 N and
0.0131595 N for different stacking sequendégure 7.4 presentgshe buckling mode shape of
the composite fixedree columns with stacking sequence {30/0/90) obtained from the finite

element analysis.
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Figure7.4 Buckling shape of fixedree column.

7.5.2.2Effect of Material Properties
The effect of having different material properties on the buckling load was performed in this paper.
High Strength Graphite/Epoxy and-G3ass/Epoxy material properties were used and their

properties are illustrated fable7.1 andTable7.3; obtained from typical values in FRP textbook

[15].

Table7.3 S-Glass/Epoxynaterialproperties [15].
Material Eu E22 Gi12 312
S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

High Strength Graphite/Epoxy and@ass/Epoxy results are presentedable7.2 andTable7.4
for different stacking sequencesGhass/Epoxy showed lower buckling load values caeghéo

High Strength Graphite/Epoxy since it has lower stiffness value along the fiber direction.
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Table7.4 Analytical and numerical results for various layup sequences®&maSs/Epoxyt =

0.4 mm)
Ply Analytical Numerical % Error Layup Type
Orientation Results, N Results, N
0/0/0/0 0.072378 0.072384 0.00829 Single Specially
Orthotropic
90/90/90/90 0.0210552 0.0210559 0.00333 Single Specially
Orthotropic
30/-30/30£30 0.04353 0.04356 0.06892 Antisymmetric
Angle Ply
45/-45/45+45 0.0287 0.02873 0.10453 Antisymmetric
Angle Ply
60/-60/60£60 0.02264 0.02265 0.04417 Antisymmetric
Angle Ply
60/-60/45t45 0.02527 0.02531 0.1583 Balanced Angle Ply
30/-30/45t45 0.03472 0.03484 0.34563 BalancedAngle Ply
30/-30/60£60 0.02989 0.0301 0.70258 Balanced Angle Ply
30/-30/0/0 0.05401 0.05426 0.46288 Anisotropic
30/-30/0/90 0.03441 0.03446 0.14531 Anisotropic
30/30/30/30 0.03567 0.03573 0.16821 Single Anisotropic
Layer
30/-30/-30/30 0.04006 0.0401 0.09986 Symmetric Angle

Ply

137



0/90/90/0 0.066207 0.06621 0.00454 Symmetric Cross

Ply

30/-60/-60/30 0.03535 0.0354 0.14145 Symmetric
Multiple Angle

Layers

0/90/0/90 0.04413 0.04435 0.49853 Antisymmetric

Cross Ply

-45/30£30/45 0.03102 0.03105 0.09672 Antisymmetric

Angle Ply

90/0/0/90 0.0275724 0.0275734 0.00363 Symmetric Cross

Ply

30/30£30/-30 0.038219 0.038236 0.04449 Antisymmetric

Angle Ply

Hybrid material composed of High Strength Graphite/Epoxy aGdeSs/Epoxy was used to study

the effect othanging material properties on the stability of the composite colur@RsS/Epoxy
material properties were used for layers with orientation equaPtar@d 60° and High Strength
Graphite/Epoxy for the other orientatioff@ble 7.5 reports the analytical and numerical results

for various layup sequences of hybrid material with a maximum error of 2.35% for the balanced
angle ply layup (3680/60£60) and a minimmn error of 0.082% for symmetric cross ply layup

(0/90/90/0).
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Table7.5 Analytical vs. numerical buckling loads for various layup sequences of hybrid Graphite
and SGlass/Epoxy composites.

Ply Orientation Analytical Results, N Numerical Results, N % Error
30/-30/60£60 0.03187 0.03262 2.35332
30/30/0/90 0.0475 0.04736 0.29474
0/90/90/0 0.16986 0.16972 0.08243
0/90/0/90 0.0926 0.09331 0.76674
90/0/0/90 0.04227 0.04233 0.14195

7.5.2.3Effect of Element Typein FE Analysis

A parametric study was conducteditwvestigatethe effect of changing the element type in the
finite element analysis on the bucking load of the composite columns. Quatirekicshell
element (S8R) and quadratic solid element (C3D20R)with reduced integration schemes were
utilized withan elemensize equal to 0.5 mm x 0.5 mm, as illustrated eafligble7.6 reports the
comparison between the analytical and numerical results for shell and solid element. It was
observed that the shell element results showed an excellent agreement with the analytical results
for all stacking sequences. On the other hand, the asleiment results wereticeablyoff for the
crossply and anisotropistacking sequencéswving the same mesh size as that of the shell element
since solid elements have only translation degrees of freedom while shell elements have rotational
degrees ofreedom.Accordingly, shell elemenmtight bemore reliable than solid element in

buckling analysis of composite members.
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Table7.6 Analytical and numerical results with shell and solid elements.

Ply Orientation Analytical Shell Element Solid Element

Results, N Results (S8R), Results (C3D20R),

N N

0/0/0/0 0.19082 0.1908 0.1908
90/90/90/90 0.0131595 0.01316 0.01317

30/-30/30£30 0.05979 0.05997 0.0599
45/-45/45145 0.02218 0.02226 0.02266
60/-60/60+60 0.01423 0.01425 0.01425
60/-60/45+45 0.01742 0.01752 0.01854
30/-30/45+45 0.03275 0.03337 0.04178
30/-30/60£60 0.02359 0.02444 0.03831
30/-30/0/0 0.09127 0.09369 0.12587
30/-30/0/90 0.04393 0.04401 0.08151
30/30/30/30 0.02711 0.02726 0.02727
30/-30/-30/30 0.04814 0.04833 0.06453
0/90/90/0 0.16903 0.16901 0.10232
30/-60/-60/30 0.02893 0.02909 0.02817
0/90/0/90 0.08658 0.08775 0.10231
-45/30£30/45 0.02852 0.02863 0.04528
90/0/0/90 0.035455 0.03546 0.10232
30/30£30~30 0.04043 0.04046 0.03952
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7.5.2.4Effect of Element Thickness

The effect of having thin and thick columns was also studied. Comparison between the analytical

and numerical results, were conducted, using columns with 0.4 mm and 1.6 mm thickness while

maintaining the same width to thickness ratio equal to Pable 7.7 and Table 7.8 presents

comparisons between the analytical and numerical buckling load results for Graphite/Epoxy and

S-Glass/Epoxy composite columns with 1.6 mm thickness, respectively. The level of errors

between the numerical solution, capable of capturing the behavior of thick shells, with the

analytical solution for thick columns is similar to that of thin columns. This may suggest that the

present formula can be successfully used {proeluce accurateesults in cases of moderately

thick shells.

Table7.7 Comparison of analytical and numerical buckling load for various layup sequences of

Graphite/Epoxy Composite Column (t = 1.6 mm).

Ply Orientation Analytical Results, N Numerical Results, N % Error
0/0/0/0 48.84797 48.749 0.20261
90/90/90/90 3.368825 3.3681 0.02153
30/-30/30+£30 15.30558 15.451 0.95012
45/-45/45+45 5.6772 5.7491 1.26647
60/-60/60+60 3.6404 3.6592 0.51643
60/-60/45/45 4.45936 4.5111 1.16026
30/-30/45£45 8.38221 8.6099 2.71635
30/-30/60£60 6.03803 6.2825 4.04884
30/-30/0/0 23.36326 24.106 3.1791
30/-30/0/90 11.2436 11.309 0.58167
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30/30/30/30 6.93956 7.079 2.00935
30/-30/-30/30 12.3238 12.489 1.3405
0/90/90/0 43.27124 43.164 0.24784
30/-60/-60/30 7.40565 71.5477 1.91814
0/90/0/90 22.16371 22.431 1.20599
-45/30£30/45 7.3007 7.3968 1.31632
90/0/0/90 9.076407 9.0713 0.05627
30/30£30/-30 10.34909 10.334 0.14581

Table7.8 Comparison of analytical and numerical buckling load for various layup sequences of
S-Glass/Epoxy Composite Column (t = 1.6 mm).

Ply Orientation Analytical Results, N Numerical Results, N % Error
0/0/0/0 18.52854 18.527 0.00832
90/90/90/90 5.39012 5.3893 0.01522
30/-30/30+£30 11.14204 11.166 0.21505
45/-45/45+45 7.3457 7.3675 0.29678
60/-60/60+60 5.79429 5.8028 0.14687
60/-60/45+45 6.46851 6.4882 0.3044
30/-30/45+45 8.88751 8.9346 0.52985
30/-30/60+60 7.64932 7.7148 0.85603
30/-30/0/0 13.82426 13.906 0.59128
30/-30/0/90 8.80835 8.8274 0.21628
30/30/30/30 9.13073 9.1845 0.5889
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30/-30/-30/30 10.25316 10.296 0.41783
0/90/90/0 16.9489 16.938 0.06432
30/-60/-60/30 9.04752 9.0906 0.47616
0/90/0/90 11.29621 11.347 0.44962
-45/30£30/45 7.94057 7.964 0.29507
90/0/0/90 7.058518 7.0581 0.00593
30/30£30/30 9.784 9.792 0.08177

7.6 Conclusions

Based on RayleigRitz approximation, analytical buckling formula for anisotropic laminated
composite columns with fixed free end conditions under axial compression was developed. The
derived analytical buckling formula was expressed with respect to thetie¢ extensional,
coupling, and flexural rigidities along with the column geometry. The analytical results exhibited
an excellent agreement with the finite element analysis results. The derived analytical formula was
able to capture the complexity inettbehavior of anisotropic columns for different stacking
sequences, material properties, and hybrid columns yielding an excellent agreement with the
numerical analysis results. Moreover, using shell elements yielded very accurate buckling load
results forall stacking sequences compared to the use of solid elements. Furthermore, the derived
analytical formula yielded accurate results for thin and moderately thick columns when compared

to finite element predictions.
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Compression Edge Loading
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8.1 Abstract

Buckling of anisotropic laminated composite clampedree wide plate under compression
edge loading is investigated. Using RayleigRitz approximation based on energy method, a
generalized analytical critical buckling formula is developed. Based on the generalized
constitutive relationship, the effective extensional, coupling and flexural stiffness coefficients
of the anisotropic layup are determined using dimensional reduction of the three dimensional
composie stiffness matrix. The developed formula is expressed in terms of the generally
anisotropic material properties in the principal directions along with wide plate geometry.
The formula reduces down to Euler buckling formula for certain types of layups. The
analytical solution is confirmed against finite element analysis for wide range of anisotropic
layups yielding high accuracy. A brief parametric study is then conducted to examine the
effect of ply orientations, element thickness, and material propertiesncluding hybrid
carbon/glass fiber composites. Relevance of the numerical and analytical results is discussed
for all these cases.

Keywords: Buckling of Composite Wide Plates, Clamfreg Boundary Conditions, Anisotropic

Laminated Composites, Axial Cgression.
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8.2 Introduction

In the past few decades, composites had captured the attention in various industrial applications
such as aerospace, marine, and automotive due to their mechanical advantages. An increase in the
demand to understand the mechamtgomposite material has resulted. Stability analysis is a
critical issue in the composite members. Although a limited amount of research has focused on the
stability of anisotropic laminated composite wide plates, sufficient amount of studies has
investgated the buckling of composite plates, beams, cylinders, and sh&0$ [Hlaung et al. [1]
presented an efficient finite element model to investigate buckling of grid stiffened laminated
composite plates. Curved beam element was proposed to mod¢iffdreeis. Moreover, the
developed element was used to solve different numerical examples. Wang and Abdalla [2] studied
the global and local buckling of grid stiffened composite panels based on Bloch wave theory. The
presented method is confirmed for drffat composite configurations. Based on sets of
trigonometric shape functions, Weber and Middendorf [3] studied the skin buckling of curved
orthotropic gridstiffened shells with a serainalytical Ritz method. Depending on Principal of
virtual work with linear kinematics, Grover et al. [4] proposed a new inverse hyperbolic shear
deformation theory (IHSDT) to study static and buckliegponse ofaminated composite and
sandwich plate depending on the shear strain shape function to ensure a nonlineatiafistfib
transverse shear stresses and satisfies traction at free boundary conditions. Analytical solution was
determinedusing Navier typepproachof simply supported composite sandwich plate. Several
numerical examples were solvdédr the presented thep The developed theory accurately
predicted the critical buckling load for simply supported thick plates with minimal numerical error
and computational cost. Khayat et al. [5] analyzed the buckling of laminated composite cylindrical

shell under lateral idplacementiependent pressure using samalytical finite strip method.
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Based on the first shear deformation theory with Sanders type of kinematics nonlinearity, the
governing equations were developed. The results showed a decrease in the bucklireyywhessu

the pressure stiffness was taken into consideration. Baba and Baltaci [6] studied the buckling
characteristics of symmetricahnd antisymmetrical E-glass/Epoxy laminated composite
rectangular plates with central cutout experimentally and numigricBifferent laminate
configurations, cutout shape, boundary conditions, and length to thickness ratio were taken into
account. The experimental results were confirmed against finite element analysis yielding a higher
buckling load values than the numationes. Becheri et al. [7] developed an exact analytical
solution to stdy the buckling of symmetricalrossply plates using ntorder shear deformation
theory with curvature effects. The closed form solution was compared with previous work. Debski
[8] presented numerical analysis of buckling and {estkling of thirwalled simply supported
laminated composite columns with channel section under axial compression. Eight symmetrical
layered Carbon/Epoxy columns were modeled uiegoftware Abaqus and Ags and verified

with analyticatnumerical method [9]. Linear four node shell element with reduced integration
schemes (S4R) and eight node shell element (Shell99) were attempted in Abaqus and Ansys,
respectively. A good agreement was observed betweefinitee element results and results
obtained from the analyticalumerical method. Cortinez and Piovan [10] proposed a theoretical
model to study the buckling of composite thwalled beams with shear deformability using
nonlinear displacement field dependion HellingeiReissner principal. The governing equations
were solved using finite element with fourteen degrees of freedom.

Based on RayleigRitz method, a generalized closed form critical buckling solution of anisotropic
laminated composite clampécee wide plates under uniaxial compression loading was developed

in this work. Using fiber orientations and material properties, the three dimensional stiffness matrix
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was constructed then reduced down to 1D axial, coupling, flexural stiffness coeffisients
excluding zero strains and curvatures. Additionally, the analytical critical buckling formula was

validated along with the finite element analysis yielding an excellent agreement.

8.3 Analytical Formulation

8.3.1Assumptions
RayleighRitz method is invoked to d@elop a generalized closédrm buckling solution for
clampedfree anisotropic laminated composite wide plates under uniaxial compression loading.
The following several assumptions are considered prior to the formulation process:
1 Buckling occurs by bendgqparallel to the % plane about the-axis (weak axis).
1 The yaxis is perpendicular to the composite lamination surfageye8.1.
1 The lamination anglei() is measured with respect to th@xis in which 0° fibers run
parallel to the xaxis and 90°ibers run parallel to the-axis. Accordingly, the angle
(2 ) is rotated about the-gxis.
1 Simple beam theory holds in which Plane sections before bending remain plane after
bending and perpendicular to the mid surface.

1 Classical lamination theory is appigle with shear deformations ignored.

8.3.2Kinematics

Figure8.1 presents the Cartesian coordinates and the geometry of the claepedde plates.
Bending takes place about thexas which is the weak axis of the plates. Equation (1) presents

the assurad displacement field based on the isotropic buckling mode:

O e || o, O o F HTz—g (2)
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Where6 w, v @ are the axial and lateral displacementaBd G are constants to be solved and
x is the distance along the axis of the wide plates as shotigune8.1. The axial straitt, and

curvatured, are presented in equation (2) depending onrtteemediate class of deformation:

k. &, "~ m, ¢ -0 Ae @, © (2)

/ylnfinite

Lamination

Infinite’

Figure8.1Wide Plate geometry

8.3.3Constitutive equations
The principle material directions are transformed into the wide plate coordinate system. The
stresses and strains are then related by the transformed reduced stiffness n@gsented in

equation (3); as defined in standard composite textbook [11]
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Whered ,6 , andO are the extensional, coupling, and flexwstifnesscoefficientso =
thickness of the4h ply; and N = number of different plies in the stacking sequence.
Material properties and the fiber orientations are used in Eg. (4) to getheréttree dimensional
(3D) constitutive matrix. Using the static condensation approach, the 3D classical lamination

matrix is then reduced to one dimensional (1D) anisotropiensional, coupling, and flexural

stiffness coefficients after applying the zestmin curvatures
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The axial force and Hplane moment versus the axial strain anglane curvature relationshgve

extracted to yield.The first and fourth linear equation of matrix (6)

4= |
Leolor A )

Equation 7) expresses the material properties of wide plates with respect to the extensional,
coupling, and flexurastiffness coefficientg the principal directions.

8.3.4Energy Formulation

RayleighRitz approximation based on thenergy approach was utilized in developing a
generalized closefbrm buckling solution of anisotropic laminated composite clarfpselwide

plates under uniaxial compression loading. Strain energy can be expressed in terms of the

integration of the appleéloads multiplying the corresponding deformations.

4

— —d ¢ _ A ¢ N,
T oo ofle
(8)
. .-, ° m
- = to || #—oao e - ” toao 1B ao L4
The potential of external loads can be expressed as
T e (©)
In view of EqQ. (8) and (9), the total potential energy function is given by
J
ST T . -= b kA oA Me o (10)
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Minimizing the total potential energy with respect to the unknowram®l G, by setting the

differential operators to zero, and manipulating the expressions, the following equations are

developed
z d = d Z || d Z
— | 4 F~ 4 F~ 4 J
T = T i | ,
o=tz =fdz iz | ¢dz
2 —r- = _tr- s B - 5 13
: F 4 4 Z 4 Z d (13)
r 22
4

Solving equation(12) for B: then substituting the resulting expression in equation (15), the

following cubic equation is formulated in terms of @lue

” — T JF 23 = (14)

Where
- . . J
A — 2% Ra Iz h A r- oz 1

Equation (15) does not lend itself to a closed form solution. Therefore, considering the critical

stability matrix:

d z d
2 S
z d z J (16)
Fe F
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Where

z d _
T
z zF 4 d
z _ i_”i
- F- S d (17)
4 4 F = 4

Setting the determinant of the matrix in Equation (16) to zero, substitutieg@ession from

equation (14) and solving for:@sing the general solution of a quadratic equation:

= 4 = 4 - J = 4
I ZJ u [ ZJ I 4 T Z ” ”_
(18)

In order for the € value to be real, the discriminant must be at least zero. By setting the

discriminant tozero and manipulating its expression, a closed form solution for the critical

buckling load per unit width of the plate is derived:

r 4 [

O

(19)

The geneal critical buckling formuldor wide plates with any width values other than unity is:

Z |

||-JI|r> T ] —— T 3 (20)
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Where w is the width of the wide plateguation (2) reduces down to Euler buckling formula of
clampedfree wide plateswhen the coupling term vanishes in case of isotropic or specially

orthotropic materials.
Numerical Formulation

In order to validate the developed formula in the previous section, finite element analysis was
performed using commercial software package Abaqus. Wide plates with the following
dimensions for width, length, and thickness: 1000 mm x 100 mm x 0.4 mm wengted,
respectively. Linear elastic laminated material was assumed for both orthotropic and anisotropic
layups where $slass/Epoxy material was used as main material. Fixed and free ends were
illustrated at the bottom and top of the wide plate, respagtiFurthermore, the translation in the
x-direction (zdirection inFigure8.1) and the rotation aboutdirection (about the-direction in
Figure8.1) were prevented to mimic the infinitely wide plate, Begure8.2. Additionally, edge

loading was applied at the top of wide plate as shoviAigare8.2.

Figure8.2 Boundary conditions and edge loading.

Quadrilateral eight node doubly curved thick shell element (S8R) with reduced integration having

element size equal to 10.0 mm x 10.0 mm was used to model the anisotropic laminated composite
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wide plates after performg a convergence study to select the appropriate meslrgnee8.3

presents the meshed wide plate used in the numerical analysis.

Figure8.3 Meshed Model
Based on Lanczos solver, eigenvalue computation was conducted using buckling analysis. Lanczos
technique extracts the eigenvalue and eigenvector values of a complex Hermitian matrix
depending on the power methott@ve a symmetric matrix is reduced to tridiagonal matrix using

recurrence relations [12].

8.4 Resultsand Applications

8.4.1Numerical Validation

The generalized closed form buckling solution of anisotropic wide plates was confirmed along
with the finite element alysis. SGlass/Epoxy material was attempted in the validation study and
its properties are reported Trable8.1; obtained from typical values in &RP textbook [13].

Table8.1 S-Glass/Epoxynaterialpropertieg13].
Material E11 E22 Gi12 312

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

Table 8.2 illustrates the comparison between the analytical and numerical results for different

stacking sequences of the anisotropic laminated composite wide plates with the following
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dimensions for wdth, height, and thickness: 1000 mm x 100 mm x 0.4 mm, respectively. In

general, an excellent agreement between the results is observed with maximum error around 4.51%

for the Antisymmetric angle ply (3(0/30£30). It is observed that the stacking setpgewith

maximum error yields the analytical solution on theconservative side.

Table8.2 Comparison between analytical and numerical results-felaSs/Epoxy thin plates (h/t

=250 mm).
Ply Orientations Analytical Numerical % Error Layup Type
Results, N Results, N
0/0/0/0 Single Specially
0.074067 0.074066 0.0014 Orthotropic
90/90/90/90 Single Specially
0.0215466 0.021547 0.0019 Orthotropic
30/30/30£30 Antisymmetric Angle
0.052773 0.050391 4.5137 Ply
45/-45/45F45 Antisymmetric Angle
0.036921 0.035541 3.7378 Ply
60/-60/60£60 Antisymmetric Angle
0.026513 0.026124 1.4673 Ply
60/-60/45£45 0.031025 0.030205 2.6431 Balanced Angle Ply
30/-30/45+45 0.043712 0.04197 3.9852 Balanced Angle Ply
30/~30/60£60 0.036118 0.035157 2.6608 Balanced Angle Ply
30/~30/0/0 0.061971 0.060086 3.0418 Anisotropic
30/30/0/90 0.039123 0.037732 3.5555 Anisotropic
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30/30/30/30 0.052773 0.05462 3.4999 Single Anisotropic
Layer
30/-30/-30/30 0.052773 0.054813 3.8657 Symmetric Angle Ply
0/90/90/0 0.067502 0.067498 0.006 Symmetric Cross Ply
30/-60/-60/30 Symmetric Multiple
0.04949 0.051363 3.7847 Angle Layers
0/90/0/90 Antisymmetric Cross
0.044884 0.045101 0.4835 Ply
-45/30+30/45 Antisymmetric Angle
0.038903 0.03774 2.9895 Ply
90/0/0/90 0.0281116 0.028112 0.0015 Symmetric Cross Ply

8.4.2Effect of Ply Orientation

A parametric study was conducted to investigate the effect of different stacking sequences of the
anisotropic laminated composite wide plates with the following dimensions: 1000 mm x 100 mm
x 0.4 mm for width, height, and thickness, respectively, on tality response. The critical
buckling load varies betwed&h074067 N and 0.021547fir different ply orientations as shown

in Table 8.2. Moreover, an edge effect was observed for some staking sequences such as the
anisotropic layup (3660/-60/30) as shown irFigure 8.4. On the other hand, the other stacking

sequences exhibited a uniform deformation along the plat&jgee=8.5.
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Figure8.5 Bucking mode shape with uniform deformation.
8.4.3Effect of Material Properties
Effect of Hybrid composite wide plates was investigated in this secti@iass/Epoxy and High
Strength Graphite/Epoxy material were used and their properties are repofiaola8.1 and
Table8.3; obtained from typical values in FRP textbook [13]. Layups with ply orientations equal
to 9 and 60° were composed of-Glass/Epoxy while High Strength Graphite/Epoxy was used

for other orentationsTable8.4 presents the analytical and numerical results of Hybrid wide plates
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for various stacking sequences in which the balanced ang{8(@30/60£60) and the symmetric
cross ply (90/0/0/90) exhibited the maximum and minimum error value, respectively.

Table8.3 High Strength Graphite/Epoxy Material Proper{&3].
Material E11 E22 Gi12 312

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

Table8.4 Comparison between analytical and numerical results of Hybrid plates (t = 0.4 mm).

Ply Orientations Analytical Results, Numerical Results, N % Error
30/-30/60+60 0.02708 0.04308 8.4962
30/30/0/90 0.07403 0.07021 5.1601
0/90/90/0 0.17038 0.17035 0.0177
0/90/0/90 0.09285 0.09387 1.0986
90/0/0/90 0.0428081 0.0428065 0.00374

8.4 .4Effect of Element Thickness

The effect of thin, moderately thick, and thick wide plate on the critical buckling load values was
also reported herein. Comparison between the analytical and numerical (FE) results-using S
Glass/Epoxy material were conducted for three different heigifii¢kness ratios equal to 250,
62.5, and 10.0 to demonstrate thin, moderately thick, and thick wide plates, respetaivid§.2
illustrated the malytical and numerical solutions for thin anisotropic wide platable8.5 shows

the results for moderately thick wide plates (h/t =62.5) in whickery good agreement was
observed between the closed form solution and the finite element analysis with maximum error
value around 7.4% for the symmetric angle ply {3@30/30). The analytical and numerical

results for thick anisotropic wide platesegpresented ifable 8.6.The generalized analytical
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results were off from the finitelement resultdn general, it was observed the present fornuaa
capable of capturing the behavior of moderate thick wide plates in similar manner to that of thin
wide plates. This may suggest that the developed analytical formula herein can successfully re
produce accurate estimate of the buckling loads in modiethtek wide plates. On the other hand,

the consideration of shear deformations is very important to estimate the buckling loads of thick
wide plates.

Table 8.5 Comparison between analytical and numerical results 4GtaSs/Epoxy moderately
thick plates (h/t = 62.5)

Ply Analytical Numerical % Error Layup Type
Orientations Results, N Results, N
0/0/0/0 4.740247 4.738 0.0475  Single Specially Orthotropic
90/90/90/90 1.378981 1.3785 0.0349  Single Specially Orthotropic
30/-30/30£30 3.377426 3.2234 4.5605 Antisymmetric Angle Ply
60/-60/45t45 1.985567 1.9323 2.6828 Balanced Angle Ply
30/-30/0/90 2.503835 2.4132 3.6199 Anisotropic
30/-30/-30/30 3.377426 3.1265 7.4296 Symmetric Angle Ply
0/90/90/0 4.320089 4.3163 0.0878 Symmetric Cross Ply
0/90/0/90 2.872542 2.885 0.4337 Antisymmetric Cross Ply

Table8.6 Comparison between analytical and numerical results-BlaSs/Epoxy thick plates (h/t
=10.0)

Ply Analytical Numerical % Error Layup Type
Orientations Results, N Results, N
0/0/0/0 2994.349676 1136.5 62.0452  Single Specially Orthotropic
90/90/90/90  206.506875 332.24 60.8857  Single Specially Orthotropic
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30/~30/30£30  1790.61043 771.41 56.9192 Antisymmetric Angle Ply

60/-60/45/45  575.19047 464.65 19.2181 Balanced Angle Ply
30~30/0/90  1078.73674 616.48 42.8517 Anisotropic
30/~30/30/30  1790.61043 833.47 53.4534 Symmetric Angle Ply
0/90/90/0 2645.86933 1019.8 61.457 Symmetric Cross Ply
0/90/0/90 1354.40817 690.05 49.0516 Antisymmetric Cross Ply

8.5 Conclusion

A generalized analytical buckling formula for clamgeeke anisotropic laminated composite wide
plates under uniaxial compression was presented in this work based on RByieigh
approximation. The presented solution is expressed in terms of extensbudiing, and flexural
stiffness coefficients in the principal directions as well as infinitely wide plate geometry. In
general, a very good agreement was observed between the analytical and numerical (FE) results.
The proposed formula accurately predictdee critical buckling load values for hybrid
carbon/glass composite fiber, and different ply orientations. Furthermore, the generalized close
form solution captured the complexity in the behavior of thin and moderately thick anisotropic

wide plates.
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9.1 Abstract

Following a bifurcation approach, a generalized closed form buckling solutiofor clamped
pinned anisotropic laminated composite columns under axial compression is developeging
the energy method The effective axial, coupling, and flexuralrigidity coefficients of the
anisotropic layups is determined following the generalized constitutive relationship using
dimensional reduction by static condensation of 6x6gidity matrix. The presentedanalytical
explicit formula reproduces Euler buckling expresson in the case of isotropic or specially
orthotropic materials once the effective coupling term vanishe€On the other hand, the
analytical formula furnishes two extra terms which are a function of the effective coupling
flexural and axial rigidity . The analytical buckling formula is confirmed against finite
element Eigen value solutions for different anisotropic laminated layups yielding high
accuracy for a wide range of stacking sequence# parametric study is then conducted to
examine the effect of fy orientations, material properties including hybrid carbon/glass
fiber composites and FE element type. Relevance of the numerical and analytical results is
discussed in comparison to previous results in literature.

Keywords: Buckling of Composite Cotins, ClampedPinned Boundary Conditions, Anisotropic

Laminated Composites, Axial Compression.
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9.2 Introduction

The distinguished properties of laminated composite material such as high stiffmexght

ratio, high strengtfio-weight ratio, as well as fatigue and corrosion resistance have captured the
industry attention in th@astfew decades. Accordingly, theeshand to understand the stability
mechantsof laminated composite members has increased. Despite the fact that limited amount of
research studies has addressed the buckling of anisotropic laminated composite columns,
significant amount of studiesak beenconducted on the stability of composite shells, plates
beamsand cylinder$1-15]. HeidariRarani et al. [1] investigated the effect of anglg and cross

ply layups on the stability of Hglass/epoxy square composite laminated plates under axial
compression with SFSF (S: simply supported, F: Free) boundary conditions analytically,
numerically, and experimentally. A semmalytical solution was developed using Rayldritz
approach. Analytical results were verified against finite element analysisngedai excellent
accuracy. Moreover, Hashin, T9Alu, and TsaHill failure criteria were attempted in the

numerical analysis to study the layer failure of the laminated composites. Experimentally, E

glass/epoxy plates of four layers were made with aplgi€[v 30]s and P 45]s) and crossly

([0/90]s) stacking sequences using hand layup method. The test was conducted under displacement

control with rate equal to 0.5 mm/min. On the other hand, the-aeatytical and numerical
buckling load values were ovatenated compared to the experimental results-W&aand Tsai

Hill failure criteria had the same failure mode as the tested plates in which the failure started from
the plate edge then developed along the plbeamovich and Livshitsd] studied the fee
vibrations of norsymmetric cross ply laminated composite beams based on the first order shear

deformation theory. Longitudinal, transverse displacement, rotary inertia, and shear deformation
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were considered in the analysis. The following equation ofiamoof cross ply laminated
composite beams was solved for different boundary conditions:

[MK A}+[C] { i} = {0} 1)
Where [M] is the generalized mass matrix, [C] is the matrix differential opeeatdr{)} is the
vector of the generalized displacements. The new approach and BeEuwetlitheory were
verified against numerical solutionBased on the generalized Galerkin method, Lopatin and
Morozov [3] proposed analytical formula to predict thekding of composite cantilever circular
cylindrical shell under uniform external lateral pressure. Finite element software COSMOS/M was
used to perform the eigenvalue and eigenvector computations with SHELL4L element, which was
confirmed against the anailyal results yielding an accurate estimate of the buckling load values.
Cortinez and Piovard] presenteda theoretical model to study the stability of composite-thin
walled beams with shear deformability using nonlinear displacementiépkehdingn Helinger-
Reissner principalA finite elemens with fourteen degrees of freedewereused to solve the
governing equatian The results showethat shear flexibility had a significant effect on the
stability of the composite beamidsing equivalent layer gfi theory with six degrees of freedom
and the first shear deformation theory, Rikards et al. [5] presented a triangular finite element to
study the buckling and vibration of laminated composite stiffened plates and shells. The numerical
results were confined with previous solutions developed by Jaunky et al. [6] yielding a good
agreement. Kumar and Mukhopadhayay [7] developed a new finite element to investigate the
buckling of laminated stiffened plate for different boundary conditions based on therdiest
shear deformation theory. The presented finite element predicted the critical buckling load without
shear locking for thin and thick plates. Furthermore, the numerical results exhibited a good

agreement witlexisting solutiongLoughlan [8]). Kidanest al. [9] introduced analytical model to
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predict the stability of grid stiffened composite cylinders based on the smeared method. The
equivalent material properties of the grid stiffened composite cylindrical shells were taking into
account. Moreover, thresults were confirmed against experimental and previous results [10].
Debski et al. [11] studied the buckling and pbstkling of simply supported thiwalled
composite channel column under axial compression loading experimentally. Carbon/epoxy
columnsof eight symmetrical plies [845/45/90]s were tested using Zwick Z100/SN3A universal
testing machine. The experimental results were verified with numerical (FE) results and analytical
numerical method (ANM) [1A5].

A generalized analyticabuckling fomula was developetbr anisotropic laminated composite
clampedpinned columns under axial compression loading usiedpifurcation solution of pre-
buckling deformation Applying static condensation method, three dimensional 6 x 6 composite
rigidity matrix is converted to one dimensional axial, coupling, and flexural rigidities. Moreover,
the analytical results were confirmed against finite element analysis using commercial software
Abaqusyielding an excellent agreement. Furthermore, comparisdreairalytical results against

previous finding for crosply laminates showed excellent correlations.

9.3 Analytical Formulation

9.3.1Assumptions and Kinematics

Bifurcation solutionis used to develop a generalized analytical critical buckling formula for
clampedpinned anisotropic laminated composite columns under axial compression. Prior to
deriving the analytical solution, several assumptions are considered and presented in the following
points:

9 Buckling takes place in theyxplane about the weak axis#xis).
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1 The yaxis runs through the thickness of the column where the composite lamination

takes placefrigure9.1

1 The lamination anglea() is measured with respect toetlx-axis (i.e. 0° fibers run
parallel to the xaxis and 90° fibers run parallel to thexxs). Accordingly, the angle
(2 ) is rotated about the-gxis.

1 Plane sections before bending remain plane after bending and perpendicular to the mid
surface (i.e. simp beam theory holds).

1 Classical lamination theory is applicable with shear deformations ignored.

Cartesian coordinates and geometry of the clarmi@ied columns used are illustrated in
Figure9.1. The bending occurs about thexs (weak axis). The following displacement relations

were assumed based on the isotopic Euler first buckling mode:

Lamination

Figure9.1 The column geometry.
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O e ||=1 e O e |=J: 8 "Ii—leJ—. (2)
where6 w, andb w is the axial, and lateral displacements,; &d G are constants to be solved
for; and x is the distance along the axis of the colatarting at the point loadror an intermediate

class of deformation, the axial strainand curvaturdl are defined as follow.

m, ., [N

te w, ~®m, ¢ -° Ao w, © (3)

9.3.2Constitutive equations

The principal material directions were transformed into the column coordinate system, the stresses

and strains are then relatedlire following equation

L L L
& b F ko
w, obkx @
! |r r r *?

Where 0 representhe transformed reduced $tiéss matrix as defined in standard composite

textbooks [16]Accordingly, the coupled forestrain relationship is established as follows:
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Where




In whicho ,0

(6)

and 'O are the axial, coupling, and flexural rigiditgoefficientso is the

thickness othe kth ply; and Nis thenumber of different plies in the stacking sequence.

Using material properties and fiber orientations into equation (5),htiee dimensioal (3D)

rigidity matrix is establishedAccordingly,this matrix is reducetb 1D anisotropicaxial, coupling

and flexural rigidities using static condensation approaftér applying the zero forces and

moments

J —_ —_ —_
I'VJ ° v o_ _ _
I’p P T - -

) I_ —_ —_
I'p A o IP 1
I’p (A
wly, @ wu

I’I,IJ ¢ I,IJ

|°||’|’ﬁ "I’y

! ® )

|°||‘P¢. v (7)
nred, e

Wrde (F

Equation (7) is solved first for the axial strain and axial curvatbged,) in terms of the rest of

the deformation components by extracting the second, third, fifth and sixth linear equations from

the matrix.

r )]
I m
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t‘ { 2N )
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Inverting the matrix Q to the other side of equation (8), the condensed deformation components

are obtained in terms of the axial strain and curvature:

E,
AR T Ry ©)
Ao

Substituting equation (9) into the first and fourth linear equation of the matrix (7); the axial force
and inplane moment vs. the axial strain aneplane curvature relationship can be expressed in
terms of the generallynésotropic material properties

4, e i ||=|=- i te

1. [EI ST (10
Where
- ||=|= b= [ 1 L
o o 3NE b

9.3.3Pre-buckling Solution
Based on the mode shape of clampéthed column, prbuckling solution is considered to derive
the buckling formula. The #plane moment{{ ) is set to zero during piteuckling and before

reaching the buckling loadssuming a bifurcation response

SRS S T & (12)
40 e e
¢. ”ilo (13
T

By substituting Eq. (13) into the axial force equation, the axial force versus the axial strain can be

expressed in terms of the generally anisotropic material properties

b = 4-4e (14)
”-' . _
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Fe =aNm (19

Where

=il == llrf (16)

The axial force § ) is positive and in compression based on the assumedcsigrention.
However, the axial straiff () is negativewhile it is alsoin compressionAccordingly a negative
sign is inserted into equation (@3 follow:

N R (17)
Using the axial strain in Eq. (3), setting the lateral displacement term to zero, and substituting
equation (17), the axial strain can be expressed as

el (18)

By substituting Eq. (18) into Eqg. (15), a relationship between the axial force and the unknown

constant@ ) is obtained, i.e.

I 19
[ — - (19

9.3.4Bifurcation Solution in terms of Pre-buckling Deformation
Energy approach is attempted in the bifurcation solution in which the strain energy can be
expressed in terms of the integration of the applied loads multiplying the corresponding

deformations.

ot ki e - pbd rppad. W
(20)

The potential of external loads can be expressed as
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U A (21)

In view of equations (20) and (21), the total potential energy function is given by

= 7 . -=pb kA e e o (22)

d
¢ =4 8 |F 8 F [+..8 |5 8 F

AT 23

By substituting Eq. (19) into the total potential energy function given by Eq. (23), one obtains

g e i e F

’ U T 8 o | | 8 4 I+ 8 o | | 8 J
A 24
8 m™T (24)

Minimizing the total potential energy with respect to the unknownsetting the resulting

expression to zero, and manipulgtiihe equation, one gets

_d‘ =t.: 8 =|_+ll|=T ° JL ”+-i§8

The cubic equation (25) with respect te dbes not lend itself to a close form solutiointhe

buckling load Therefore, the second derivative of Eq. (25) with respect imd@nsidered

S o i 5 [
) . 8 2 " 8 3 8 l+. 8 y (26)
F ™ |

By solving Eq. (26), one gets

F I (27)
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In order for the € value to be real, thdiscriminant must bet least zero. By setting the
discriminant to zero, a closed form solution for the critical buckling load is developes of

the generally anisotropic material properties as well as the column geometry:

: . .
ko 8 58 =ne =t e @9

It is observed that Eq. (28) reduces down to Euler buckling formula of the clapipeed

isotropic column in the case of isotropic or spectalithotropic materials.
9.4 Numerical Formulation

The developed analytical formula in the previous section was confagesdst numerical analysis

(FE) using the commercial software package Abaqus. Columns were assembled with fixed support
and pn support at the bottom and topthe column, respectively. Furthermore, axial loading was

applied at the top of the column. Quiéatteral eight node doubly curved thick shell element (S8R)

was attempted in the modeling process in three dimensional space with element size 0.5 x 0.5 mm
after performing a convergence study to select the appropriate mesh size. Linear elastic laminated
materi al was assumed for orthotropic and anis

and meshed model are presenteHigure9.2.
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Figure9.2. Left: Boundary conditions and applied load. Right: Meshed Model.
Using Lanczos solver,ugkling analysis was attempted to simulate eigenvalue computation.
Lanczosmethodsolves eigenvalue and eigenvectors of complex Hermitian matrix based on the
power method in whichh wd symmetric matrix is reduced to a tridiagonal matrix using
multidimensionakrray values (recurrence relations) [17]. Nonlinear geometry analysis using the
modified Riks formulation was performed to predict the stability responseb(uiding and
buckling) of the laminated composite columns. The modified Riks analysis is bhasied Arc
length method in which it follows the equilibrium path, representing either the bifurcation points
or the limit loads. During the analysis process, load increments are applied where equilibrium
iterations converge along the arc length, forcirggabnstraint equation to be satisfied at every arc

length increment [18].
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9.5 Results and Applications

9.5.1Numerical Validation

The analytical formula developed in section 2.4 was verified with the numerical (FE) analysis.
Table9.1 presents the material properties eG#iss/Epoxy; obtained from typical values in FRP
textbook [19], which was mainly used to simulate composite columns buckling behavior. The
comparison beveen the analytical and numerical results for different stacking sequences is
presented iMable9.2 for composite columns with dimensions equal to: 100 mm x 1.krArd

mm for length, width, and thickness, respectively. The analytical results exhibited an excellent
agreement with the numerical resuisving amaximum error value around 2.7 % for the single
anisotropic layud30/30/30/30) Single speciallyorthotropic layer (0/0/0/0) exhibits the highest
buckling load due to having all fibers aligned with the loading axis while the coupling
coefficient || +.. vanishesit is important to note that the layup with the maximum error yields the
numeical buckling load on the conservative side.

Table9.1 S-Glass/Epoxynaterialproperties [9].
Material E11 E22 Gi12 312

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28

Table9.2 Comparison of analytical and numerical resaoftS-Glass/Epoxy material.

Ply Analytical Numerical % Error Layup Type
Orientations Results, N Results, N
0/0/0/0 0.59224 0.59218 0.01014 Single Specially
Orthotropic
90/90/90/90 0.17229 0.17227 0.01161 Single Specially
Orthotropic
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30/-30/30£30 0.35615 0.35632 0.04774 Antisymmetric
Angle Ply
45/-45/4545 0.2348 0.23498 0.07667 Antisymmetric
Angle Ply
60/-60/60£60 0.18521 0.18528 0.0378 Antisymmetric
Angle Ply
60/-60/45+45 0.20664 0.20719 0.26617 Balanced Angle
Ply
30/-30/45+45 0.28358 0.28512 0.54306 Balanced Angle
Ply
30/-30/60+60 0.24356 0.2467 1.28922 Balanced Angle
Ply
30/-30/0/0 0.44074 0.44535 1.04597 Anisotropic
30/-30/0/90 0.28139 0.28289 0.53307 Anisotropic
30/30/30/30 0.29186 0.29967 2.67595 Single
Anisotropic
Layer
30/30/-30/30 0.32773 0.33201 1.30596 Symmetric
Angle Ply
0/90/90/0 0.54175 0.54155 0.03692 Symmetric
Cross Ply
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30/-60/-60/30 0.2892 0.29458 1.86031 Symmetric
Multiple Angle
Layers
0/90/0/90 0.35998 0.36275 0.76949 Antisymmetric
Cross Ply
-45/30£30/45 0.25381 0.25401 0.0788 Antisymmetric
Angle Ply
90/0/0/90 0.22562 0.22561 0.00444 Symmetric
Cross Ply
30/30£30/-30 0.31274 0.31277 0.0096 Antisymmetric

Angle Ply

Moreover, the effect of having different stacking sequences of the simulated anisotropic columns
is reported infable9.2 where the buckling load values varies between 0.59218 N and 0.17227 N.
Furthermore, the buckling mode shape of the clangieded composite columns is illustrated in

Figure 9.3 for the anisotropic stacking sequence {30/0/90) obtained from finite element

analysis.
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R

Figure9.3 Buckling mode shape alampedpinned ahisotropic column

9.5.2Nonlinear Geometry Analysis

Modified Riks analysis based on arc length method was conducted to indicate the eafgtesmce
buckling deformation in the transverse directiboad versus maximum displacement curve is
plotted for three different stacking sequences obtained from finite element against the analytical
solution, sedigure9.4. An excellent agreement is observed betwheranalytical and numerical
results inwhich the Antisymmetric crosply (0/90/0/90) showed the highest buckling load
compared to the other stacking sequences. On the other hand, the balanced angl@@i§QB0/

60) exhibited the lowest buckling load ual While the selected stacking sequences all show pre
buckling lateral displacement, the bifurcation formula predicted their buckling load very

accurately.
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Figure9.4 Load vs. deflection curve f@nalytical and numerical results.

9.5.3Effect of Material Properties
A parametric study was performed to investigate the effect of having different material properties
in which SGlass/Epoxy and High Strength Graphite/Epoxy were assumed and their properties are

illustrated inTable9.1 andTable 9.3, respectivelypbtained from typical values in FRP textbook

[19].

Table9.3 High Strength Graphite/Epoxy Material Properties [19].
Material En E22 G2 312
High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

Critical buckling load values for-6lass/Epoxy and High Strength Graphite/Epoxy are presented
in Table 9.2 and Table 9.4, respectively. In general, High Strength Graphite/Epoxy columns
showed a higher buckliload values compared te@ass/Epoxy ones due to the higher stiffness

values along the fiber directions. The analytical results showed a good agreement against the
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numerical (FE) results with maximum error and minimum error around 10.35%, 0.0093% for th
single anisotropic layer layup (30/30/30/30) and single specially orthotropic layup (90/90/90/90),
respectively.

Table9.4 Comparison of analytical and numerical results-318ss/Epoxy material.

Ply Orientations  Analytical Numerical % Error Layup Type
Results, N Results, N
0/0/0/0 1.56136 1.5598 0.09992 Single Specially
Orthotropic
90/90/90/90 0.10768 0.10767 0.00929 Single Specially
Orthotropic
30/-30/30£30 0.48923 0.4904 0.23916 Antisymmetric Angle
Ply
45/-45/45F45 0.18147 0.18212 0.35819  Antisymmetric Angle
Ply
60/-60/60+£60 0.11637 0.11654 0.14609  Antisymmetric Angle
Ply
60/-60/45+45 0.14226 0.14386 1.12471 Balanced Angle Ply
30/-30/45+45 0.26608 0.27358 2.81871 Balanced Angle Ply
30/-30/60+£60 0.19156 0.20152 5.19942 Balanced Angle Ply
30+30/0/0 0.74085 0.77331 4.38146 Anisotropic
30/-30/0/90 0.35939 0.36327 1.07961 Anisotropic
30/30/30/30 0.22182 0.24478 10.35074 Single Anisotropic
Layer
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30/-30/30/30 0.39392 0.40376 2.49797 Symmetric Angle Ply

0/90/90/0 1.38311 1.3814 0.12364 Symmetric Cross Ply

30/60/-60/30 0.23672 0.25552 7.94188 Symmetric Multiple

Angle Layers

0/90/0/90 0.70389 0.71751 1.93497 Antisymmetric Cross
Ply
-45/30£30/45 0.23336 0.23424 0.3771 AntisymmetricAngle
Ply
90/0/0/90 0.29012 0.29004 0.02758 Symmetric Cross Pl
30/30+30/-30 0.3308 0.33021 0.17836 Antisymmetric Angle
Ply

Hybrid composite columns were simulated to study the effect of combining two material on the
stability response.-&lass/Epoxymaterial was used for layups with orientations equal tafd

60° while the High Strength Graphite/Epoxy was attempted for the other orientations. In general,
an excellent agreement was observed between the proposed analytical formula and the finite
element analysis with maximum error around 3.6% for the balanced angle pBO/B0L60), see

Table9.5.

Table9.5 Analytical and numerical results of the hybrid composite columns.

Ply Orientations Analytical Results, N Numerical Results, N % Error
30/-30/60£60 0.259 0.26829 3.5869
30/-30/0/90 0.38864 0.39015 0.3886
0/90/90/0 1.38986 1.3872 0.1914
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0/90/0/90 0.75337 0.76297 1.2743

90/0/0/90 0.34581 0.34621 0.1157

9.5.4Effect of Element Type in FE Analysis

The element type in finite element analysis was changed to issumtythe buckling load values

of composite columns compared to the analytical solut@@uadraticthick shell element (S8R)

and quadratic solid element (C3D20R) bwith reduced integratn schemes wessumedvith

a mestsize equal to 0.5 mm, asentionedearlier. The comparison between the analytical and
numerical results for shell and solid elemisriresented iffable9.6. Regarding the shell element
results, an excellent agreement is exhibited between the results for all stacking sequences.
However the solid element results wareticeablyoff for the crossply and anisotropistacking
sequencebaving the same mesh size as that of the shell elesmmet solid elements have only
translation degrees of freedom while shell elements have rotational degrees of freedom.
Accordingly, ®lid elementmight belessreliable thanshell element in buckling analysis of

composite members.

Table9.6 Comparison of shell and solid element results

Ply Analytical Results, Shell Element S8R, N  Solid Element C3D20R,
Orientations N N
0/0/0/0 1.56136 1.5598 1.5598
90/90/90/90 0.1077 0.1077 0.1077
30/-30/30£30 0.4893 0.4904 0.48998
45/-45/45F45 0.1815 0.1822 0.1822
60/-60/60£60 0.1164 0.1166 0.1166
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60/-60/45+45 0.1423 0.1439 0.152

30/-30/45+45 0.2661 0.2736 0.3419
30/-30/60£60 0.1916 0.2016 0.3144
30/-30/0/0 0.7409 0.7734 1.0309
30/-30/0/90 0.3594 0.3633 0.6683
30/30/30/30 0.2219 0.2448 0.2447
30/-30/-30/30 0.394 0.4038 0.5279
0/90/90/0 1.3832 1.3814 0.8368
30/-60/-60/30 0.2368 0.2556 0.2423
0/90/0/90 0.7039 0.7176 0.8367
-45/30£30/45 0.2334 0.2343 0.3705
90/0/0/90 0.2902 0.2901 0.8368
30/30£30~30 0.3308 0.3303 0.3233

9.5.5Comparison to Previous Work

The presented analytical solution is compared to previous work conducted by Abramovich et al.
[20] for nonsymmetric cross ply rectangular laminated composite bebaie 9.7 presents the
resultsof Ref. [20] and the proposed analytical solution compared with numerical salisiiog

S8R elementsor three different material properties (Gldgsoxy, Carbon Epoxyand Kevlar-
Epoxy). It was observed ththe present analytical formula yields generally more accurate results

when compared to finite element results for different material properties and number of layers.
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Table9.7 Comparison othe analytical formula with previous work.

Kevlar-epoxy

D11, Mpa Non- Ref. (20), N Analytical Numerical % Error % Error,
dimensional solution, N solution, N Ref. 20)  Analytical
buckling solution
par amet
Table 2 Ref.
(20
0/90/0/90 15.856 17.688 0.0842 0.0805 0.082 2.6129 1.86336
0/90/90/0 26.2565 20.093 0.158272 0.158528 0.15829 0.0114 0.15014
0/90 1.982 10.129 0.0241 0.0188 0.0204 15.3527 8.51064
0/90/0 12.1062 20.084 0.1297 0.1297 0.1294 0.2314 0.23131
Glassepoxy
D11, Mpa Non- Ref. (20), N Analytical Numerical %Error , % Error,
dimensional solution, N solution, N Ref. 20)  Analytical
buckling solution
par amet
Table 2, Ref.
(20
0/90/0/90 19.9433 19.381 0.116 0.1126 0.1133 2.3276 0.62167
0/90/90/0 27.4251 20.18 0.166032 0.163096 0.16308 1.778 0.00982
0/90 2.493 16.965 0.0508 0.0469 0.0482 5.1182 2.77186
0/90/0 12.3104 20.179 0.1325 0.129931 0.12992 1.9472 0.00847
Carbon-epoxy
D11, Mpa Non- Ref. (20), N Analytical Numerical %Error, %Error,
dimensional solution, N solution, N Ref. 20)  Analytical
buckling solution
par amet
Table 2 Ref.
(20
0/90/0/90 36.4888 17.484 0.1914 0.1824 0.1862 2.7436 2.07
0/90/90/0 61.4403 20.113 0.3708 0.3717 0.3711 0.0985 0.1393
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0/90 4.5611 9.207 0.0504 0.038 0.0415 17.6933 9.3397

0/90/0 28.3893 20.106 0.3045 0.3049 0.3042 0.0828 0.2319

L/r =500 k =5/6,c =1 mm.
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9.6 Conclusions

A generalized analytical buckling load formula for anisotropic laminated composite ckamped
pinned columns under axial compression using bifuwoagolution was developed herein. The
presented analytical buckling solution was expressed in terms of column geometry as well as the
effective compositeextensional, coupling and flexural rigidities. An excellent agreement was
observed between the anatgi and numerical (FE) results. The derived formula predicted the
complex stability response accurately of the anisotropic columns for different stacking sequences,

material properties including hybrid materiad. general shell element results yielded accurate

buckling loadvaluescompared to element predictions for all stacking sequefRcethermore

the developedanalytical formulashowed anexcellent correspondence former buckling

solutions of crosply laminated olumns
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10.1 Abstract

Stability analysis of pinnedfixed anisotropic laminated composite wide plates subjected to
uniaxial compression is studied in this work. A generaliz# closedform buckling solution is
derived based on the bifurcation approaclof the energy formulation. The three dimensional
matrix was established in terms of extensional, coupling, and flexuralgidity coefficients
then reduced to 1D using dimensional reduction. The proposed formula is expressed in terms
of extensional, coupling, and flexural coefficients in the principal directions as well as the
infinitely wide plate geometry. The analytical solutionreduces down to Euler buckling
formula for isotropic and certain types of layups. Finite element analysis igsedto validate
the presented analytical formula for a wide range of stacking sequences yielding high
accuracy. A brief parametric study is then onducted to examine the effect of ply
orientations, plate thickness, and material properties including hybrid carbon/glass fiber
compositesNonlinear Riks analysis showed that transverse preuckling deformation takes
place prior to buckling. Relevance othe numerical and analytical results is discussed for all
these cases.

Keywords: Buckling of Composite Wide Plates, Pimfixked Boundary Conditions, Anisotropic

Laminated Composites, Axial Compression.
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10.2Introduction

A growth of using composites warious industrial applications such as aerospace, marine, and
automotive has been noticed in the past few decades due to their distinguished properties. An
increase in the demand to understand the mechanics of composite material has resulted. Limited
amount of research has focused on the stability of anisotropic laminated composite wide plates.
Stability of composite plates, beams, cylinders, and shells has been investigllg&jlva et al.
[1] proposed a formulation of a generalized beam theory (GBifvestigate the local and global
buckling behavior of fiber reinforced polymer (FRP) composite eggetion thinwalled columns.
The solution for buckling using GBT included solving the following eigenvalue problem:

L o™ 1)
Where K is the global linear stiffness matrix; G is the geometric stiffness matrix; and d is the
eigenvector. Haung et al. [2] studied the stability of grid stiffened lapdnaamposite plates by
presenting an efficient finite element model. Curved beam element was presented to model the
stiffeners. Additionally, various numerical examples were solved using the developed element.
Wang and Abdalla [3] studied the global anddbbuckling of grid stiffened composite panels
based on Bloch wave theory. The presented method is confirmed for different composite
configurationsWeber and Middendor#] studied the skin buckling of curved orthotropic grid
stiffened shells with a serainalytical Ritz methodlepending on sets of trigopnometric shape
functions Khayat et al. [5] investigated the buckling of laminated composite cylindrical shell
under lateral displacemedependent pressure using semalytical finite strip method. The
governing equations were developed based on the first shear deformation theory with Sanders type
of kinematics nonlinearity. The results showed a decrease in the buckling pressure when the

pressure stiffness was taken into consideration. Baseri et alufig@dthe buckling of embedded
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laminated composite plates based on higher order shear deformation theory by developing
analytical solution. The analytical solution was solved using Navier method.

Becheri et al. [7] proposed an exact analytical solutiamestigate the buckling of symmetrically
crossply plates using frorder shear deformation theory with curvature effects. The closed form
solution was compared with previous wokebski B] presented numerical analysis of buckling

and postuckling of thirwalled simply supported laminated composite columns with channel
section under axial compression. Eight symmetrical layered Carbon/Epoxy columns were modeled
using finite element softwar&baqus and Ansys and verified with analyticaimerical method

[9]. A good agreement was observed between the finite element results and results obtained from
the analyticahumerical method. Cortinez and Piovan [10] investigated the buckling of composite
thin-walled beams with shear deformability using nonlinear displacement field depending on
HellingerReissner principaby presenting a theoretical model. The governing equations were
solved using a finite element with fourteen degrees of freedom.

Based orbifurcation approach, a generalized analytical critical buckling formula of anisotropic
laminated composite pinndtked wide plates under uniaxial edge compression loading was
derived. The three dimensional laminated stiffness matrix was constusaotgdiber orientations

and material properties and reduced down to 1D axial, coupling, flexural rigidities by applying
zero strains and curvatures. Additionally, the analytical critical buckling formula was confirmed

against the numerical (FE) analysis yietglan excellent agreement.

10.3Analytical Formulation

10.3.1Assumptionsand Kinematics
A generalized closed form critical buckling solution of pinfiedd anisotropic laminated

composite wide plates under axial compression is derived by using the bifurcatioacappro
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Several assumptions are taken into consideration before the deriving procedure and presented in
the following points:

1 Buckling takes place in theplane about the weak axis#xis).

The yaxis runs through the thickness of the column wheredh®osite lamination takes place,

1 FigurelO.1.

1 The lamination anglea() is measured with respect to thexis in which 0° fibers run
parallel to the xaxis and 90Fibers run parallel to the-axis. Accordingly, the angle
(2 ) is rotated about the-gxis.

1 Plane sections before bending remain plane after bending and perpendicular to the mid

surface (i.e. simple beam theory holds).

Classical lamination theory is applida with shear deformations ignored.

Figure10.1 illustrates Cartesian coordinates and geometry of the pifixexd wide plates used.

The bending occurs about the weak axzsXis). The following displacement relations were

assumed baseamh the isotopic Euler first buckling mode:
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y /vlnfinite

Lamination X

Infinite

Figure10.1Wide Plate geometry

O e ||=| e O e |=J: 8 "Ii—leJ—. (2)
whered @, andb w is the axial, and lateral displacements; &1d G are constants to be solved;
and x is the distance along the axis ofwhee plate For an intermediate clas§deformation, the

axial strain- and curvaturdl are defined as follow.
t. .—. - .—. ¢ -0 a. .—. o (3)
10.3.2Constitutive equations

The principalmaterial directions were transformed into the wide plate coordinate system, the

stresses and strains are then related in the following equation

L L L
& bor ko
A S A “
! |r r r *?
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Where 0 matrix represents the transformed reduced stiffness matrix as defined in standard

composite textbooks [11Accordingly, the coupled forestrain relationship is established as

follows:
J ° — — — > t.
v % ﬂ’_ _ _ | l'u v
I’I’JJ "I'r T - - ﬁl’Pt‘ ’p
J ° » |_ — — 2 ﬁ. »
ot oA~ ®)
1P~ olP | T T T |’|IP¢-.IP
rpdl MU In In in I’II,P¢ P
U;_U ° D’ U T 1B T Uffﬁo ﬁ’
Where

= (6)

In whicho ,6 and'O arethe axial, coupling, and flexural rigiditgoefficients0 is the
thickness othe kth ply; and Nis thenumber of different plies in the stacking sequence.

Using material propertiesnd fiber orientations into equation (5), thede dimensioal (3D)
rigidity matrix is establishedAccordingly, the 3D stiffness matrix is reducéal 1D anisotropic
axial, coupling and flexural rigidities using static condensation app@iéehapplyingthe zero

forces and moments
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The axial force and #plane moment vs. the axial strain anglane curvature relationship can be
expressed in terms of the generally anisotropic material propertibe principal directions as

follow

4, (8)

10.3.3Pre-buckling Solution
Prebuckling deformation is taken into account to derive the buckling formula depending on the
pinnedfixed mode shag. The inplane momentl( ) is set to zero during pteuckling and before

reaching the buckling load

o e 1 A ©)

¢o ”_.I ° (10)
T
By substituting Eq. (10) into the axial force equation, the axial force versus the axial strain can be

expressed in terms of the generally anisotropic material properties

b =" | # (1)
[
.

Fe =aEm (12

=
[

Il
.

Where
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=l = 'r'r— (13
The axial force § ) is positive and in compression based on dseumed sign convention.
However, the axial straif () is negative although it is in compressiéccordingly, a negative
sign is inserted in equation (@3 follow:
N (19
Using the axial strain ifEq. (3),setting the lateral displacement term to zero, and substituting
equation (14), the axial strain can be expressed as
el (15)
By substituting Eq. (15) into Eq. (12), a relationship between the axial force and the unknown

constant¢ ) is obtained, i.e.

I
w1l

(16)

10.3.4Bifurcation Solution in terms of Pre-buckling Deformation
Energy approach is assumed in the bifurcation solution in which the strain energy can be expressed

in terms of the integration of the applied loads multiplying the corresponding deforsnation

4

T _i] o#—o —4 oao = L4

- = to ” #—oﬁo -. ,V:I_ ” #—oao 1B ¢o -. (17)

The potential of external loads can be expressed as
v ko (18)

In view of equations (17) and (18), the total potential energy function is given by
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ST T . -=t ki oA Me |fod (19)
=<4 8 15 8 1 8 |5 8 F

8 & - (20
By substituting Eq. (16) into thtetal potential energy function given by Eq. (20), one obtains

@=_L=I 8 }

- 8 T+ | 8 _i
==l “

£ i
.| 8 .|

il id
] | ] |

8 g L& }.i (21)

Minimizing the total potential energy with respect to the unknOwnsetting the resulting

expression to zero, and manipulating the equation, one gets

= = 8} 8 - | 8 L- & L

L
T i :
8 r (22

The cubic equation (22) with respect toddes not lend itself to a close form solution. Therefore,

the second derivative of Eq. (22) with respect ttsConsidered

z d [§ F F T
= 8 —- 8 — 8 — 8 — 23
z F =.Ii 4 ” J J ( )
By solving Eq. (23), one gets
8 |L u 8 ”T 8 — 8 I— 8 =|—f
F 8 (24)

In order for he G value to be real, thdiscriminant must bet least zero. By setting the
discriminant to zero, a closed form solution for the critical buckling load is developed in terms of

the generally anisotropic material properties as well as the column geometry

197



o 8%+ 8 1 8 Lo (25)

The gener al anal ytical critical buckling form
e 8 - 8 1 8 Lo (26)

Where w is the width of the wide plateis observed that Eq. (26) reduces down to Euler buckling

formula ofthe pinneefixed isotropic wide plates in the case of isotropic or speealliyotropic

materials.

10.4Numerical Formulation

Finite element analysis was conducted to validate the closed form solution developed earlier
using commercial software package Abagifade plates with the following dimensions: 1000
mm x 100 mm x 0.4 mm were assumed for witiitight and thickness, respectively. Linear
elastic laminated material was attempted for both orthotropic and anisotropic layups where S
Glass/Epoxy material wassed as main material. Fixed support and pinned support were utilized
at the bottom and top of the wide plate, respectively. Additionally, the translation in the x

direction(z-direction in
Figure10.1) and the rotation aboutdirection (about the-direction in

Figure 10.1) were prevented to mimic the infinitely wide plas=eFigure10.2. Furthermore,

uniaxial edge loadg was applied at the top of wide plate as showfigare10.2
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Figure10.2 Boundary conditions and edge loading.

Quadrilateral eight node doubly curved thick shell element (S8R) with reduced integration having
mesh size equal to 10.0 mm was used to model the anisotropic laminated composite wide plates in
3D space after conducting a convergence study to selectphmpapte element siz€igure10.3

presents the meshed wide plate used in the numerical analysis.

Figure10.3 Meshed Model

Eigenvalue computation was conducted using bucldinglysis depending on Lanczos solver.
Lanczos technique simulates the eigenvalue and eigenvector computation for a complex Hermitian
matrix based on the power method in which a symmetric matrix is reduced to tridiagonal matrix
using multidimensional array[12]. Based on the modified Riks approach, nonlinear geometry
analysis was performed to indicate the existence ebpec&ling deformation in the transverse
direction and predict the stability response of the anisotropic laminated composite wide plates.

Modified Riks analysis uses the arc length method in which the equilibrium path (i.e. bifurcation
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or limit points) is followed during the load increment application. Equilibrium iterations converge
along the arc length forcing the constraint equationetsdtisfied at each arc length increment
[13].

10.5Resultsand Applications

10.5.1Numerical Validation

S-Glass/Epoxy fout ayer wide platebds analytical result
results using Abaqu3ablel0.1 presents $5lass/Epoxy material properties used in the validation
process; obtained from typical values in an FRP textbook [14]. The comparison between the
analytical and numerical salts are reported iable10.2 for various stacking sequences of the
anisotropic laminated composite wide plates with the following dimensions:rhi608 100 mm

x 0.4 mm for width, height, thickness, respectively. The analytical results exhibited an excellent
agreement with finite element results with maximum error around 4.1% for the antisymmetric

angle ply layup (3080/30£30) and minimum error aumd 0.0007% for symmetric cross ply layup

(90/0/0/90).
Table10.1 S-Glass/Epoxymaterialpropertieg14].
Material En E22 G2 312
S-Glass/Epoxy 55.0GPa 16.0GPa 7.6 GPa 0.28

Table 10.2 Comparison between analytical and numerical results 48taSs/Epoxy thin plates
(h/t = 250 mm).

Ply Analytical Numerical % Error Layup Type
Orientations Results, N Results, N
0/0/0/0 0.60607 0.606 0.01155  Single Specially
Orthotropic
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90/90/90/90 0.17631 0.1763 0.00568  Single Specially
Orthotropic
30/30/30£30 0.43182 0.41405 4.11515 Antisymmetric
Angle Ply
45/-45/45+45 0.30212 0.29182 3.40925 Antisymmetric
Angle Ply
60/-60/60£60 0.21695 0.21394 1.38742 Antisymmetric
Angle Ply
60/-60/45£45 0.25358 0.248 2.20049 Balanced Angle
Ply
30/-30/45+45 0.35721 0.34473 3.49375 Balanced Angle
Ply
30/-30/60+60 0.2943 0.28874 1.88923 Balanced Angle
Ply
30/-30/0/0 0.50649 0.49973 1.33468 Anisotropic
30/30/0/90 0.3196 0.31412 1.71465 Anisotropic
30/30/30/30 0.43182 0.43439 0.59516 Single
Anisotropic
Layer
30/30/-30/30 0.43182 0.43371 0.43769 Symmetric
Angle Ply
0/90/90/0 0.55235 0.55216 0.0344 Symmetric Cross

Ply
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30/-60/60/30 0.40497 0.40708 0.52103 Symmetric
Multiple Angle

Layers

0/90/0/90 0.36616 0.369 0.77562 Antisymmetric

Cross Ply

-45/30£30/45 0.31833 0.30968 2.71731 Antisymmetric

Angle Ply

90/0/0/90 0.2300284 0.23003 0.0007 Symmetric Cross

Ply

10.5.2Modifi ed Riks Analysis

Figure 10.4 presents load versumaximum displacement curve is plotted for three different
stacking sequences obtained from the nonlinear Riks analysis along with the analytical solution.
An excellent agreement was observed between the results in which the anisotropic layup (30/
30/0/90) showed the lowest buckling load. The results indicate an existence-lmfcgliag

deformation in the transverse direction for the drawn layups.
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Figure10.4 Load versus maximum deflection.

10.5.3Parametric Study

10.5.3.1Effect of Ply Orientation

The effect of stacking sequences on the stability response of the anisotropic laminated composite
wide plates was addressedthis study. As reported ihable 10.2, critical buckling load values

vary between0.606 N and 0.1763 Nor different stacking sequences. For specsitacking
sequences such as balanced angle ply and anisotropic layups, an edge effect was noticed in which
the deformation along the plate was not uniform as illustrategyure10.5. However, a uniform

deformation along the plate was observed for the other stacking sequené&agys=).6.
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Figure10.6 Bucking mode shape ith uniform deformation

10.5.3.2Effect of Material Properties

A parametric study was addressed herein to assess the effect of Hybrid carbon/glass fiber
composites on the critical buckling load values. High Strength Graphite/EpoxyG@iadSEpoxy

material was used for Hybrid wide plates, moreover, their properties are repoftaileri0.1
andTable10.3; obtained from typical values in FRP textbook [14]. Layups with ply orientations
equal to Oand 30° were composed of High Strength Graphite/Epoxy atteless/Epoxy was

attempted for the other orientations. A ga@gieement was observed between the analytical and
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finite element results as presentedTiable 10.4 with maximum error aroun®.4% for the
anisotropic (3080/0/90) due to edge effect for the mentioned layup.

Table10.3 High Strength Graphite/Epoxy Materidtopertieg14].
Material E11 E22 G2 312

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25

Table10.4 Comparison between analytical and numerical results of Hybrid plates (t = 0.4 mm).

Ply Orientations Analytical Results, Numerical Results, N % Error
N

30/-30/60+60 0.38242 0.36252 5.2038

30/30/0/90 0.60395 0.56509 6.4344

0/90/90/0 1.39415 1.3925 0.1184

0/90/0/90 0.7554 0.7676 1.6151

90/0/0/90 0.350286 0.35022 0.0189

10.5.3.3Effect of Element Thickness

A comparison between results was conducted to investigate the effect of different height to
thickness ratio on the buckling valuesGf#ass/Epoxy thin, moderately thick, and thick wide plates
were taken into consideration with the folloygi height to thickness ratios: 250, 62.5, and 10.0,
respectivelyTable10.2 showed the comparison between the analytical and numerical results for

thin (h/t = 250) laminated composite wide playesdding an excellent agreemeiiable10.5 and

Table 10.6 illustrates the analytical and numerical results for moderately thitk=(62.5) and

thick (h/t = 10.0) anisotropic laminated composite wide plates, respectively. In general, an
excellent greement was observed between results of moderately thick pliate$2.5) in which

the antisymmetric cross ply (0/90/0/90) exhibited the maximum eflmwrever, the closetbrm

205



solution was not capable of predict an accurate estimate for the buckling load values in case of
thick wide plates with height to thickness ratio equal to 10.0 as shovable10.6

Table10.6. The proposed formula was able to accurately predict the stability behavior in a similar
way for moderately thick wide gtes.On the other hand, the consideration of shear deformations
is very important to estimate the buckling loads of thick wide plates.

Table 10.5 Comparison between analytical and numerical results fBfaSs/Epoxy moderately
thick plates (h/t = 62.5)

Ply Analytical Numerical % Error Layup Type
Orientations Results, N Results, N
0/0/0/0 38.788009 38.631 0.4048 Single Specially
Orthotropic
90/90/90/90 11.283785 11.251 0.2906 Single Specially
Orthotropic
30/-30/30£30 27.63646 26.381 4.5428 Antisymmetric Angle
Ply
60/-60/45+45 16.60598 15.819 4.7392 Balanced Angle Ply
30/-30/0/90 21.17189 20.24 4.4016 Anisotropic
30/-30/-30/30 27.63646 27.621 0.056 Symmetric Angle Ply
0/90/90/0 35.34999 35.079 0.7666 Symmetric Cross Ply
0/90/0/90 25.01988 23.509 6.0388 Antisymmetric Cross
Ply

Table10.6 Comparison between analytical and numerical results-f8taSs/Epoxy thick plates
(h/t =10.0)
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Ply Analytical Numerical % Error Layup Type

Orientations Results, N Results, N
0/0/0/0 9469.728685 8134.6 14.099 Single
Specially
Orthotropic
90/90/90/90 2754.830163 2460.3 10.6915 Single
Specially
Orthotropic
30/-30/30£30 6747.18144 5459.3 19.0877 Antisymmetric
Angle Ply
60/-60/45t45 3962.11149 3403 14.1115 Balanced
Angle Ply
30/-30/0/90 4993.59686 4307.9 13.7316 Anisotropic
30/-30/-30/30 6747.18144 5662.2 16.0806 Symmetric
Angle Ply
0/90/90/0 8630.36637 6602.6 23.4958 Symmetric
Cross Ply
0/90/0/90 5721.24652 4846.7 15.286 Antisymmetric
Cross Ply

10.6 Conclusion

Based on the bifurcation approach, a generalideskd form buckling solution fginnedfixed
anisotropic laminated composite wide plagsjected touniaxial compression loading was

developed herein. The presented solution is expressed in terms of extensional, coupling, and
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flexural rigidities in the principal directions as wadl infinitelywide plate geometry. An excellent
agreement was observedween the analytical and numerical (FE) results for different stacking
sequences. The derived formula accurately estimated the critical buckling load values for hybrid
carbon/glass compositeb@r, and different ply orientationsAdditionally, the generated
analytical buckling formula successfully-peoduce accurate prediction in the buckling behavior

for thin andmoderatelythick anisotropic laminated composite wide plates.
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Chapter11-Buc k!l i ng of Simply SupRPBrted

Hybrid Col umns-RUgiznd oRanull eaitg lo n
and Experimental Veri fi

Rund Al-Masri!, Hayder A. Rasheed and Yu-Szu Cher?

11.1 Abstract

Limited number of research studies has addressethe topic of buckling of steelfiber
reinforced polymer (FRP) members. A generalized analytical buckling formula for simply
supported anisotropic steelFRP (hybrid) thin columns under axial compression is developed
herein using the RayleighRitz approximation. Following the generalized constitutive
relationship, the effective axial, coupling, and flexural stiffness coefficients of the anisotropic
steetFRP layup is determined using dimensional reduction by static condensation of 6x6
hybrid stiffness matrix. The analytical explicit formula reproduces Euler buckling
expression while it furnishes an extra term which is a function of the effective coupling and
axial stiffness. For certain types of stedhminated composites, the analytical formula
reduced downto Euler buckling formula once the effective coupling term vanishes. The
analytical buckling formula is verified against finite element Eigen value solutions for
different anisotropic laminated layups Yyielding high accuracy. Comparison with
experimental wak is conducted for two categories of anisotropic stegjlass fiber reinforced
polymer (GFRP) columns in which category A has steel thetween the composite layup and
category B has steel on the side of the composite layup. Verification of the analyticaligion
against some of the experimental results yielded excellent comparison. Moreover, curing

methods, roughness of steel and type of epoxy used have a direct influence on the bonding

conditions and buckling loads.

Keywords: Buckling of StedFRP Colunms, Simply Supporte@olumns Anisotropic Laminated

Material, RayleighRitz Formulation.
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11.2Introduction

The use of fiber reinforced polymer (FRP) is ever growing in different industrial applications such
as aerospace, marine, automotive, and civil engmgé&ecause of their distinguistiproperties

(High stiffnessto-weight ratio,high strengthto-weight ratio, ease of application in construction
sites, corrosion and fatigue resistance). This growth increased the demand for better understanding
the mechaies of fiber reinforced polymer (FRP). Fiber reinforced polymer (FRP) is used with
different types of materialsuch as steel and concreteking the sccalled hybrid structures.
Hybrid columns, like any traditional members subjected to axial compressidargo stability

issues prior to failure. Limited amount of researches have focused on the buckling of hybrid
columns if any, however, a significant amount of research has been performed to study the
buckling behavior of composite members lidates anghells in the recent years-gD0]. Herenica

et al. [1] derived a closed form solution for buckling of long anisotropic plates under axial
compression (N with various boundary conditions. The closed form solution can be expressed

as:

A3 ﬁ.i— rTor 1)

Where the bending stiffnessyisthe nordmensibral wi dt t

buckling coefficient related to the boundary conditions. The resutiwed an excellent agreement
whenvalidated with existing solutions (Weaver [2] [3], Qiao and Shan §{jifinite element
solutions. Mahesh et al. [slevelopeda general buckling formulation for plates under linearly
varying uniaxial compressive load with general-ofiplane boundary conditionsingRayleigh

Ritz method based on the energy approach along with orthogonal polynomials generated by a
GramSchmidt process. Resultshoweda good agreement with differential quadrature (DQ)
models [6].Silva et al. 7] presentedh formulation of a generalized beam theory (GBT) to study
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local and global buckling behavior of fiber reinforced polymer composite openrstttiavalled
columns. The solution for buckling using GBT included solving the following eigenvalue problem:
L o™ ()
Where K is the global lineastiffness matrix; G is the geometric stiffness matrix; and d is the
eigenvector.
Silvestre and Camotin8] developed a second order generalized beam theory (GBT) to predict
buckling behavior for thin walled arbitrary orthotropic memlsrdcomparedt with Bauld and
Lih-Shyngtheory PB]. The results showed that the critical load exists for all isotropic or-ptgss
orthotropic members. On the other hand,-toear primary path is exhibited and no specific
bifurcation is detected for asymmetric orth@imlay-ups. Rasheed and Yousif(], derived a
closed form solution for buckling of anisotropic laminated composite rings and long cylinders
subjected to external hydrostatic pressiitee analytical resultavere confirmedagainst finite
element solutiongnd also concluded that the buckling modes are symmetric with respect to
rotated axes of the twisted section of thelpuekling solution in case of anisotropy. Xu et al[
presentedan approximate analytical solution to predict buckling of aaxral woven fabric
composite structure under-axkial loading based on the equivalent anisotropic plate method.
Results showethat the analytical solution gives an upper bound buckling load and it can be used
to predict buckling behavior for real world problesubjected to baxial loading. Using first order
shear deformation and vdfarman type nonlinearity, Shukla et al2] predicted thecritical
buckling loads for laminated composite plates with various boundary conditions usplanén
uniaxial and biatal loading. Span to thickness ratio, plate aspect ratio, lamination scheme, number
of layers and modulus ratio effects were considered in estimating the buckling behavior. Sun and

Harik [13] developed analytical buckling solution of stiffened antisymroédiminated composite
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plates with bendingxtension coupling using analytical strip method (ASM) which was first
developed by Harik and Salamoui¥] to analyze bending of thin orthotropic and stiffened
rectangular plates. The results showed that platés frde boundary conditions contribute the
weakest stiffening effect. Moreover, the number of layers of ply orientations equal to 0 and 90 had
no effect on the critical buckling load since the coupling stiffness matrix vanishes.

Debski et al. [B] studiedbuckling and posbuckling behavior of thikwalled composite channel
column sections experimentally. The results were compared with numerical solutions obtained
from finite element models (Abaqus and ANSYS) and analyticgaterical method (ANM). The

resuls showed that the stability of anglyy laminated plates improved under biaxial
compression/tension and shear. Moreover, additiorplaine forces were created due to the in
plane restrainsHaung et al. 16] addressedhe stability of grid stiffened lamated composite

plates by presenting an efficient finite element model. Curved beam element was presented to
model the stiffenerdzurthermoredifferentnumerical examples were solved using the developed
elementWang and Abdalla [17] presented a methmdtudy the global and local buckling of grid
stiffened composite panels based on Bloch wave theory and confirmed for different composite
configurations. Khayat et al. [18] studied the stability of laminated composite cylindrical shell
under lateral displcementdependent pressure using semalytical finite strip method. The
governing equations were developed based on the first shear deformation theory with Sanders type
of kinematics nonlinearity. Baseri et al. [19] proposed analytical solution to igatestthe
buckling of embedded laminated composite plates based on higher order shear deformation theory.
The analytical solution was solved using Navier method. Becheri et al. [20] presented an exact

analytical solution to study the buckling of symmetlicarossply plates using forder shear
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deformation theory with curvature effects. The analytical solution was compared with previous
work.

In this work, a generalized analytical buckling formula for simply supported anisotropi-Bteel
hybrid columnaunder axial compression is developed using RayiBigh approximationAxial,
coupling and flexural rigidities in 1D are determined using dimensional reduction by the static
condensation approach starting with the 3D rigidity maifixe analytical buckhg formula is
verified against finite element Eigen value solutions for different anisotropic laminated layups
yielding high accuracy. Comparison with experimental work is conducted for two categories of
anisotropic steeglass fiber reinforced polymer ERP) columns in which category A has steel
sandwichedn-between the composite ksand category B has steel on the side of the composite
layup. Verification of the analytical solution against some of the experimental results yielded
excellent comparisorMoreover, curing methods, roughness of steel and type of epoxy used have

a direct influence on the bonding conditions #mebuckling loads.
11.3Analytical Formulation
Using RayleighRitz approximation, a generalized closed form buckling formula for simply
supported anisotropic steERP columns under axial compressismealized
11.3.1Assumptions:
1 Buckling takes place in theyxplane about the-axis (weak axis).
1 The yaxis runs through the thickness of the column and perpendicular to the lamination
compositesurface
1 The lamination anglea() is measured with respect to theaxis (i.e. 0° fibers run
parallel to the »axis and 90° fibers run parallel to thevzs). Accordingly, the angle

(a ) is rotated about the-gxis.
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1 Plane sections before bending remaimelafter bending and perpendicular to the mid
surface (i.e. simple beam theory holds).

1 Classical lamination theory is applicable with shear deformations ignored.

Geometry and the Cartesian coordinates of the simply supported column used are illustrated in
Figure11.1. The zaxis is the weak axis of the column about which loendakes place. The

following displacement relations were assumed based on the isotopic Euler first buckling mode:

X
P
e
Lamination
y
Z

Figure11.1 The column geometry.

O e ||o; o e F"Iizj—. 3)

Whered w, and0 w is the axial, and lateral displacements;d®d G are constants to be solved;
and x is the distance along the axis of the column. For an intermel#iaseof deformation, the

axial strainr and curvaturd are defined as follow.

t. B T m ¢ -0 ] ii. n, o (4)
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11.3.2Constitutive equations
The princi@l material directions were transformed into the column coordinate system, the stresses
and strains are then related in the following equation

a | F F t

a, kb |- ®)
Wwoo kb

Where 0 matrix represents the transformed reducedstitutivematrix defined in standard

composite textbooks2[l]. The reduced constitutive matrix is simplified to the expression in

Equation (6) fothe steel sheet.

a, L. AL E,
h h
CI. h Ir Ir tl (6)
WD h h Fe s
T

Accordingly, the coupled forestrain relationship is established as follows:

dl

v 1 ® v ﬂ’i _ _ I’l’u ¢ v
(N A T - - are oy
4 ° T = = Y (7
I\l’JJ ol P 1 T T T s rde I
cedl e "- T o nred, e
el roor o Wk
Where:
1
2 (8)
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In whiché ,6 , andO are the axial, coupling, and flexural rigidity coefficienits= thickness

of the kth ply; and N = number of different plies in the stacking sequence.

The three dimensional (3D) rigiditgatrix is established first using the material properties and the
fiber orientations into equatiorV); Then the dimension is reduced to 1D anisotropic axial,
coupling and flexural rigidities using static condensation approach after applying the zeso force

and moments.

J ° — — — > t.
v J v n7_ _ _ | l'u v
R ) ;
Iy o o I'P I T T T Arpde I ©)
red e r r o neA, e
U’JJ L) 0’ u 1B m T quao W

Equation 9) is solved first for the axial strain and axial curvatdrg,é,) in terms of the rest of

the deformation components by extracting the second, third, fifth and sixth linedioag from

the matrix.
i — = t‘
= t. = = Fe s
IR B B
T roor A
(10

£,

=|#—o ||_ SEPN

a. r »

ﬁ. »

Inverting the matrix Q to the other side of equatib®),(the condensed deformation components

are obtained in terms of the axial strain and curvature:
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Substituting equation ( into the first and fourth linear equation of the mat@k (he axial force
and inplane moment vs. the axial strain aneplane curvature relationship can be expressed in

terms of the generally anisotropic material properties

o h o (12)
J ||=|| M4 Ao
Where
= ||-‘|| = ” 1 1L 13
Ior or 1TE 3

11.3.3Energy Formulation
A generalized buckling formula was derived using Rayldgia approximation based on the
energy approach. Straimergy can be expressed in terms of the integration of the applied loads

multiplying the corresponding deformations.

-4

? - oo -4 oao ..

A . - (14)
- =-|| #—o ”ﬂ#—o¢o e - ”ﬂ#—oao M ¢o o
The potential of external loads can be expressed as shown in equalion (1
T e (15)

Taking the total potential energy functiand substituting equations4)land (B) into equation

(16)

o oot bk pd. We o (16)
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Minimizing the total potential energy function with respect icaBd G and setting the resulting
expressions to zerperforming the integrati@and manipulating the equations to give:

Z
= H

I lF T

- =l fdz 5Fdz Z Z 1z
il s 3 Ll E L i BREG o

Solving equation @) for B: then substituting the resulting expression in equati@®), (the

following cubic equation is formulated in terms of @lue

lrz £ Z I
I =3 =3 = (20)
T il
AF AF AF A (21)
Where
A =J§ ha héﬁA Hié i} i||— fa Ll

= = Z
Equation 21) does not lend itself to a closed form solution. Therefore, considering the critical

stability matrix:

:’” ;|! F (22)

Where
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Setting the determinant of the matrix in EquatioB) (@ zero, substituting Bexpression from

equation 20) and solving for €using the general solution of a quadratic equation:

o

|1
LN

_ z, _ Z _ 1z = ="
=4, 5 _ﬂg ||ﬂj __ﬂJ o o - ||ﬂ |

- (24)

LN

=
In order for the € value to be real, the discriminant must be at least zero. By setting the

discriminant © zero and manipulating its expression, a closed form solution for the critical

buckling load is derived:

||-JL> M4 —lﬂ— (25)

In the case of isotropic or speciattythotropic materials, the coupling term vanishes reducing the

equation to that of Euler buckling.
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11.4Numerical Formulation

Finite element buckling analysis was used to verify the analytical solution usingrtimeccial
software package Abaqus for hybrid columns. Columns were constructed with simply supported
ends, in which roller and pin supports were introduced on the top and bottom of the column,
respectively. Moreover, a concentrated load was applied abphef the column. Linear elastic
laminated material was used for orthotropic and anisotropic layups, respectively. Quadrilateral
eightnode doubly curved thick shell element (S8R) was used for modeling the columns in 3D
space. Element sizaf 2.5 x 2.5 mmwas used with total number of elements equal to 300 for
hybrid columns after conducting a convergence study to select the appropriate mesh size.

Figurell2illustrat es t he model 6s boundary conditions a

‘

N

Roller Support

PinSupport

Figurell.2 Left: Boundary conditions and applied load. Right: Meshed Mode
Two types ofanalyses werperformed in this study. Buckling analysis to simulate eigenvalue
computation was attempted using Lanczos solver. Lanczos method is one of the methods used to
solve for eigenvalues and eigenvectors for complex Hermitian matrix using poweodset

Lanczos method reducés & symmetric matrix using recurrence relations (multidimensional
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array values) to a tridiagonal matri2Z. To predict the stability response (gyeckling and
buckling), nonlinear geometry analysis using the modified Rikaulation was conducted. The
modified Riks analysis is based on the Arc length method in which it follows the equilibrium path,
representing either the bifurcation points or the limit points. Load increments are applied during
the analysis in which eqibrium iterations converge along the arc length, forcing the constraint

equation to be satisfied at every arc length incren#st [

11.5Experimental Program

11.5.1Specimen Preparation

Twenty four hybrid columns were designed and prepared in the laboratory witlategwories of
anisotropic steeglass fiber reinforced polymer (GFRP) columns in which category A has steel
sandwichedn-between the composite ksand category B has steel on the side of the composite
layup. Seel plate of 14.73 mm thicknessurfacewas roughed to insure a good bond with the

composite layups, séggurell1.3.

Figure11.3 Roughened surface sfeel plate

V-Wrap EG5Qunidirectional fabric was cut at different ang{e20, 0, 30, and 90 degresgshown

in Figurel11.4. Properties of WWrap EG50 fabric arshown inTable11.1 [24].
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Figure11l.4 Glass fiber orientations
Table11.1 Dry fiber properties21].
Tensile Strength 3240 MPa (470,000 psi)
Tensile Modulus 72,400 MPa (10.5 x P@si)
Elongation 4.5 %
Density 2.55 g/cni (0.092 Ibs/id)

Epoxy resin and hardener were mixed together to make the matrix material with 100 to 34.5 ratio
by volume, respectively, using a mechanical rotary mixer as shdwglire11.5. The epoxy resin

was first applied to the nestick preparation sheet then a ply of fiber is laid by a paint roller against
the resin. A second layer of resin was applied with the roller on top of the fiber ply and the process
is repeated as martimes as the number of fiber plies in the stacking sequétressure was

implemented to remove excess epoxy and insure steel plate was bonded to tHe dilne$1.6.
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Figure11.5 Matrix material. Figure11.6 Specimen preparation
Figure 11.7 shows the composite strips before the cutting process and uniform load applied to
ensure a strong bond between the layleosir different stacking sequences were constructed by
the wet layupprocess. The strips were then left to harden for one week at room tempenalere

uniform loadthen were cut to column final sizes usinigeandsaw.

Figure1ll.7 Composite strip after the wet layppocessand uniform load

Thickness and width of the hardened specimens were measured using a digital caliper at three
locations to take the average. Layer thickna¥ss(ssumed equal to one quarter of the average
speci meno6s t hilamkateevssscongposadcobfouepdies. Fiber and matrix volume
fractions (M and W) were calculated using equatior6(2Using rule of mixtures and the Halpin

Tsai equation, elastic properties in the fiber, transverse apthme shear directions were

obtaned.
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Where the thicknegswasmeasured to be 0.305 mm, the thickrtegaried based on the different
laminates as shown in Talidelow.
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In which E, and E, are fiber and matrix moduluss,@&nd G, are fiber and matrix shear modulus,
3 value was taken equal t o25obgueation (@) determinestilee mo r «

mi nor Poi ssonds rati o:

(29)

11.5.2Test Setup

After one week of curing, the four different stacking sequences, sholiablal1.2, were tested.
Columns were tested under axial compression using the Shimad#Q BGKN testing machine,
operating with Trapezium X software following a displacement control protocol with a
displacement rate of 1 mm/minute.

Table11.2 Samples of the four different stacking sequences

Specimen Number Category A Specimen Number Category B
1 30/-30/S/0/90 5 90/0£30/30/S
2 30/90/S£30/0 6 0/-30/90/30/S
3 0/30/S+30/90 7 90/-30/30/0/S
4 30/30/S/30430 8 -30/30£30/30/S

Simply supported boundary conditions weitdized at the ends of the composite columns, see
Figure11.8. Columns weraligned horizontally and verticallgndloaded in axial compressive

displacementintil the load dropped indicating the attainment of a limit load.
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Figure11.8 Axial Compression Test Setdipr Category B.

11.6Results and Discussion

The average thickness, and width of the tested specimen for category A and B with length equal
to 128 mm is presented fable 11.3 where the difference in column sizes is due to wet layup
procedure that has a limited control over the amount of epoxy applied at each layer and personal
error in the cutting proces$able11.4 presents mechanical properties of composite.

Table11.3 Geometry of column specimen.

Category A Category B
Specimen #  Thickness Width Specimen # Thickness Width
mm mm mm mm
1-1 5.64 12.45 5-1 6.07 14.91
1-2 5.66 12.50 5-2 N.A. N.A.
1-3 5.54 12.78 5-3 N.A. N.A.
2-1 5.97 12.95 6-1 5.54 15.14
2-2 5.82 12.50 6-2 5.61 14.86
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2-3 5.66 12.40 6-3 5.56 15.11
3-1 5.77 12.40 7-1 5.64 14.83
3-2 5.82 12.70 7-2 5.64 14.10
3-3 5.79 12.19 7-3 5.84 13.79
4-1 5.64 12.78 8-1 5.21 14.61
4-2 5.26 12.55 8-2 5.79 15.47
4-3 5.61 12.88 8-3 5.59 15.34
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Table11.4 Composite properties of-§lass/epoxy used in experiments.

\i Vm El E2 G12 312 321

11 0.549055 0.450946 41555.356 11734.4728 4323.5068 0.320586 0.09053
12 0.548233 0.451768 41499.101 11711.7193 4315.0226 0.32066 0.0905

13 0.560405 0.439596 42331.649 12055.3317 4443.1837 0.319564 0.09101
21 0.519444 0.480557 39529.946 10954.7148 4032.9595 0.323251 0.08958
2 2 0.532674 0.467327 40434.871 11293.3324 4159.0814 0.32206 0.08995
23 0.547823 0.452178 41471.037 11700.3926 4310.7994 0.320697 0.09048
31 0.537761 0.46224 40782.839 11427.6576 4209.134 0.321602 0.09012
3.2 0.533839 0.466162 40514.586 11323.8975 4170.4695 0.321955 0.08999
3_3 0.535401 0.4646 40621.416 11365.0517 4185.8041 0.321814 0.09004
4 1 0.550708 0.449293 41668.372 11780.38494  4340.627192 0.320437 0.090594
4 2 0.589278 0.410723 44306.5529  12933.82176  4771.213083 0.316966 0.092528
4 3 0.553205 0.446796 41839.1778  11850.28442  4366.695138 0.320212 0.090695
51 0.510034 0.489967 38886.2876  10722.84614  3946.642788 0.324097 0.08937
6 1 0.560834 0.439167 42361.0175 12067.72735 4447.808611 0.319525 0.091026
6_2 0.55237 0.447631 41782.0706  11826.84546  4357.953561 0.320287 0.090661
6_3 0.55657 0.443431 42069.3431 11945.46112  4402.195233 0.319909 0.090838
71 0.549055 0.450946 41555.3555 11734.47276  4323.506764 0.320586 0.090528
72 0.549385 0.450616 41577.9045  11743.61179  4326.914551 0.320556 0.090541
7_3 0.530743 0.469258 40302.7842  11242.95361 4140.312262 0.322234 0.089891
81 0.595026 0.404975 44699.7236  13120.31564  4840.918443 0.316448 0.092885
8 2 0.534619 0.465382 40567.9229  11344.41697 4178.11519 0.321885 0.090012
8 3 0.555303 0.444698 41982.7037  11909.50063  4388.781548 0.320023 0.090783
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Two out of twenty one specimen was excluded from testing due to imperfection after the cutting
process in which the steel plate observed partidbateling from glass fiber as shown in

Figure11.9.

Figure11.9 Imperfections in specimens before test

Table 11.5 presents columns limit loads comparison between analytical, numerical, and
experimental results for category A. an excellent agreement between analytical and numerical
results was observed.dveover, stacking sequences 1 and 4 showed a good agreement between
analytical and experimental results. On the other hand, stacking sequence 2 and 3 experimental
results were off from analytical and numerical due to initial imperfection and weak boreehetw

steel and glass fiber.

Table11.5 Comparisons of results for category A
Results  Analytical, N Numerical, N Experimental, N Error % Error %

1) (2) (3) (D) &E)] [(1)&(2)]
11 2858.823 2898.1 2375 16.924  1.374
12 2924.716 2964.6 2315.63 20.826  1.364
13 2801.257 2842 2185.94 21.966  1.455
2.1 5536.154 5602.5 2431.25 56.085  1.199
2.2 5023.719 5085.4 1864.06 62.895  1.228
23 4672.077 4733 1743.75 62.678  1.304
31 3490.341 3469.5 1925 44.848  0.598
3.2 3595.326 3573.8 1732.81 51.804  0.599
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3_3 3436.664 3416.1 1521.88 55.717 0.599

4 1 3465.665 3428 3229.69 6.809 1.087
4 2 3055.181 3026.2 2553.13 16.433 0.949
4 3 3518.552 3480.2 3010.94 14.427 1.09

Comparisorbetween results for category B is presente@iahle 11.6. Analytical and numerical
results showed an excellent agreement with maximum error equal to 4.427%loigssaquence

7_1. The experimental results were off for all stacking sequence in category B because of partial
or entire debonding of steel plate from composite. Curing method, and amount of epoxy applied
in the wet layup process may have contributetthéodebonding failure in the tested specimens.

Table11.6 Comparisons of results for category B
Results  Analytical, N Numerical, N Experimental, N Error % Error %

(1) (2) 3) (1) &@3)] (1) &(2)]
5.1 7264.572 7310.9 1009.38 86.106 0.638
6_1 9129.856 8973.2 4542.19 50.25 1.716
6_2 9162.398 9000 3139.06 65.74 1.773
6_3 9118.312 8962.6 3512.5 61.479 1.708
7_1 5369.325 5607 1934.38 63.974 4.427
7_2 5170.103 5395.8 3070.56 40.61 4.366
7_3 5337.616 5569.1 1521.88 71.488 4.337
8_1 6152.170 6248.3 4265.63 30.665 1.563
8_2 7949.617 8050.7 5128.13 35.493 1.272
8_3 7187.544 7291.9 4479.69 37.675 1.452
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Load versus midheight deflection from the numerical Riks analysis was plotted in
Figure 11.10 along with theanalytical solution for thentisymmetric angle plgequence in

category A and Bor comparisonAn excellent agreement between the results is observed.

30/-30/Steel/3030 (A)
4000
B0 m=m—m e = = = =-
3000
< 2500
2 2000
S 1500
1000 FEM
500 — = = Analytical Solution
0
0 0.00005 0.0001 0.00015 0.0002
Mid-Height Deflection, mm
30/-30/30£30/Steel (B)
7000
6000
5000
z
- 4000
3
o 3000
-
2000
FEM
1000 — = = Analytical Solution
0
0 5 10 _ 15 20
Mid-Height Deflection, mm

Figure11.10 Analytical vs. Numerical (FEM) solution.

Buckling shape of the tested specimen, antlaading of columns after testing in category A and
B is illustrated inFigure 11.11. The first three critical buckling mode shape obtained from
numerical (FEM) analysis is presentedFigure 11.12. This confirms the applicability of the

lowest mode shape from isotropic columns used to formulate the present analytical solution.
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Buckling Shape Failure Mode: De Failure Mode: De
bonding, Category A bonding,Category B

Figure11.11 Failure modes.

Buckling Shape | Buckling Shape II Buckling Shape Il
Figure11.12 Buckling Mode Shapes I, Il and 11l

11.7Conclusion

A generalized analytical buckling formula of simply supported anisotropic-BEfe| hybrid
columns using RayleigRitz approximation was developed under axial compression. The explicit
formula is an extension to Euler buckling formula with extra term egpck with respect to
effective coupling and axial stiffnesé\n excellent agreement between the analytical formula and

the finite element results is observed. Two of the stacking sequences in category A showed a good

agreement between analytical and expental results. On the other hand, results of category B
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were off due to initial imperfection and entire or partiabd®ding of steel plate from composite.
Moreover, steel provide more buckling load in category B than category A since the overall
flexural stiffness is higher for category B. Different curing method should be considered in order

to achieve the appropriate bond between composites and steel plate.
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Chapter12-Concl usi ons and Recommen

12.1Conclusions

Generalized analytical buckling formglaof anisotropic laminated composite columns and
infinitely wide plates subjected to axial compression with various boundary condaiens
developed in this work based on RayleRitiz approximation. The presented formulas may be
considered as an extenstorthe buckling formulsof the isotropic cases and the first of their kind
since Eulersolutions The buckling load formulas are expressed in terms of the generally
anisotropic material properties along with the member geometry. Motivated by reducie@fsom
the discrepancy with the numerical analysis, the bifurcation approach was attempted in the case of
fixed-fixed anisotropic laminated composite columns and plates. Furthermore, the bifurcation
method was substituted in the fimeckling deformation fothe pinneefixed anisotropic laminated
composite columns and plates since the RayiRigh approximation was not able &zcurately
predict the closeform stability solution. Finite element analysis was performed using
commercial software ABAQUS to vdkite the developed formulas. Moreover, quadrilateral eight
node doubly curved thick shell eleme($8R) were utilized in the numerical analysis process.
The new analytical formulas exhibited excellent agreesnwith the numerical (FE) analysis
resultsfor awide range of stacking sequences. In addition, Modified Riks analysis was performed
to investigate the nonlinear stability response and indicate the existence -bficklieg
deformationThe effects on the stability response of different asjpé¢he studied problemsere

addressed in this work and the conclusions are illustrated cothespondingections.
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12.1.1Effect of Material Properties

In general, composite matesatith high stiffness ratio (&/E22) where k1 is themodulusalong

the fiber drection and & is themodulusin the transverse direction has yielded higher error values
compared to one with losvstiffness ratio. Additionally iteresultsdemonstratéhat using a single
composite material type per coluranplateyielded less deviation of the analytical solution from
thefinite element solutiomompared to using a twmaterial hybrid composit@arbon/glass fibers

composite¥or a limited and specific number of layups

12.1.2Effect of Element Type in Finite ElementAnalysis

It is observed that quadrilateral eigidde doubly curved thick shell element (S8R) and quadratic
triangularthin shellelement (STRI65pothwith reduced integration schemes accurately estimate
the buckling load values for various stacking sequenb&seover, quadratisolid element
(C3D20R) with reduced integration schemes has yielded an excellent agreement with the
analytical solution for the single speciatiythotropic layups and Antisymmetric angle fayups
However,solid element (C3ROR) was notcapable of capturinthe complexity ofbehavior of the
anisotropic and Antisymmetric cross plyhen benchmarked against the present analytical

solutiors.

12.1.3Effect of Element Thickness

The developed formulas successfully presticiccuratebuckling load in cases of moderately
thick shells in which the level of errors between the numedadl the analyticasolutionis
comparable to that of thin shells.some boundary conditions, the use of the developed formulas
to predict buckling loads fdhick stells was reasonably accurate compared to the errors obtained

for thin shells
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12.2Recommendations

Recommendations relevant to the results and observations obtained from this work are described
in this section. The use tifepresented solutions is highlyo@nmended in predicting the stability
response of the anisotropic laminated composite members since the generalized analytical
formulas developed herein were capable of accurately estimating the buckling values for different
boundary conditions and strucall members as well as capturing twnplexity ofbehavior in

case of hybrid composites, thin, and moderately thick shells. Furthermore, the 3D quadratic 20
nodes solid element with redutategration schemes (C3D20R)swvaot reliable inmreproducing

theanalytical or other numerical buckling results

12.3Future Work

This work provides a foundation for future work in the following sevarehs

1 Developing a computer program to estimate the buckling load values for various boundary
conditions, material propkes, structural members, and number of layers using the
developed formals and Exelehsed Visual Basic computer language

1 Establishing analytical buckling solutions for thiralled columns with sections different
from rectangular anderifying the experimental buckling results conducted by Debski et
al. [43]for simply supported thiwalled composite channel section colisnn

1 Implementingthe bifurcation approach in the case of simply supported and claimgzed

members.
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