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Abstract 

The use of laminated composites in aerospace, automotive, and civil engineering 

applications is ever growing due to their distinguished properties (High stiffness-to-weight ratio, 

high strength-to-weight ratio, fatigue and corrosion resistance). This growth has resulted in 

increasing the demand for better understanding the mechanics of laminated composites. Composite 

columns and wide plates, like any traditional members subjected to axial compression, undergo 

stability issues prior to failure. Limited amount of research studies has focused on the buckling of 

laminated anisotropic composite members. Analytical formula for the buckling load of generally 

anisotropic laminated composite simply supported thin columns and wide plates is derived using 

the Rayleigh Ritz approximation and bifurcation approach. The effective axial, coupling and 

flexural stiffness coefficients of the anisotropic layup is determined from the generalized 

constitutive relationship using dimensional reduction by static condensation of the 6x6 composite 

stiffness matrix. The resulting explicit formula is expressed in terms of the generally anisotropic 

material properties as well as the member geometry. The developed formula may be considered 

an extension to Euler buckling formula using Rayleigh-Ritz approximation and the first of its kind 

since Euler. This formula reduces down to Euler buckling formula once the effective coupling 

stiffness term vanishes for isotropic and certain classes of laminated composites. The analytical 

results are verified against finite element Eigen value solutions for a wide range of anisotropic 

laminated layups yielding high accuracy. Comparisons with experiments; conducted at Kansas 

State University for the simply supported case, are also performed showing good correspondence. 

A brief parametric study is then conducted to examine the effect of ply orientations and material 

properties including hybrid carbon/glass fiber composites, element thickness, and element type in 

FE analysis. Relevance of the numerical and analytical results is discussed for all these cases. 
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Chapter 1 - Introduction 

1.1 Background 

Composites are defined as a composition of two or more constituents combined at a macroscopic 

scale to form a new material with enhanced properties. Laminated composite consists of two main 

constituent, fiber and matrix. Fibers are defined as the reinforcement agent that has the major 

contribution to strength and stiffness in composites. On the other hand, matrix can be described as 

the binder that bonds the fibers together, distributes the load, as well as protects the fibers from 

chemical and environmental attacks. Composite materials are known for their high strength-to-

weight ratio, high stiffness-to-weight ratio, electromagnetically inert characteristic, as well as 

fatigue and corrosion resistance. Laminated composite material is a stack of laminas in different 

orientations in which each lamina is described as flat or curved thin layer of unidirectional fibers 

or woven fabric in a matrix that behaves as an orthotropic material. As a result, the laminated 

composite material will generally have anisotropic behavior where the material properties are 

different in each direction. 

In the past few decades, a growth in the use of laminated composite materials in various industrial 

applications such as aerospace engineering, marine, automotive, and civil engineering has been 

noticed. Accordingly, an increase in the demand to understand the mechanical behavior of 

laminated composite has been realized. Stability (i.e. buckling) issues prior to failure are some of 

the problems that needed to be investigated. Limited amount of research has focused on the 

buckling of anisotropic laminated composite members. However, sufficient amount of research 

has been performed to predict the stability response of plates, shells, cylinders and beams. This 

research investigates the stability of anisotropic laminated composite columns and wide plates 

under axial compression with various boundary conditions. Rayleigh-Ritz displacement field 
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approximation and bifurcation approaches are attempted to develop closed form buckling 

solutions. Furthermore, finite element analysis is conducted to validate the derived formulas. A 

parametric study is performed to investigate the effect of changing material properties including 

hybrid (steel-composite) material, ply orientations, element thickness, and element type in FE 

analysis. In relation to the simply supported anisotropic and hybrid columns, experimental work 

is additionally performed. Furthermore, different definitions are used to describe the results in 

which excellent agreement refers to error values less than 5 %. Results with error values less than 

10 % are listed in the very good agreement category. Moreover, a good agreement reflects error 

with values less than 15 %. 

1.2 Objectives 

The present research is aimed at developing generalized analytical buckling solutions for 

anisotropic laminated composite columns and wide plates under axial compression with various 

boundary conditions. Furthermore, parametric studies are conducted to assess the effect of 

different aspects such as material properties including hybrid material, ply orientations, element 

thickness, and element type in finite element analysis.  

1.3 Scope of Dissertation 

This dissertation consists of thirteen chapters. The first chapter presents introduction of the topic, 

objectives of this work and dissertation scope. Chapter two includes the literature review 

undertaken on the topics related to the dissertation scope. Chapter three introduces the work 

conducted on simply supported anisotropic laminated composite columns in which a closed form 

buckling solution is developed using Rayleigh-Ritz method. Finite element analysis is performed 

to verify the analytical results for different stacking sequences. Moreover, the effect of various 
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parameters on the buckling load is studied. Experimental technique is performed to predict the 

buckling load of four-layer E-Glass/Epoxy composite simply supported columns. In chapter four, 

a generalized analytical buckling formula is presented for simply supported anisotropic laminated 

wide plates utilizing Rayleigh-Ritz approximation. Additionally, the proposed formula is 

confirmed against numerical analysis. Different aspects are taken into account while predicting the 

stability response.  

Chapter five addresses Rayleigh-Ritz methods for developing the analytical buckling formula of 

fixed-fixed anisotropic laminated composite columns based on the energy approach. The presented 

formula is expressed in terms of the flexural stiffness and the column geometry. In order to 

decrease some of the discrepancy between the analytical and finite element analysis results, the 

bifurcation approach of the pre-buckling deformation is attempted yielding a new formula with an 

additional term that includes the coupling and axial coefficients. A parametric study is then 

conducted to examine the effect of different parameters. In chapter six, a similar procedure to the 

one in chapter five is presented for the anisotropic laminated composite wide plates.  

Chapter seven reports on buckling solutions of fixed-free anisotropic laminated composite 

columns under axial compression using Rayleigh-Ritz formulation and finite element analysis. 

The developed formula is expressed in terms of flexural, extensional, and coupling stiffness along 

with the column geometry. The effect of ply orientations, element thickness, and material 

properties including hybrid carbon/glass fiber composites. In chapter eight, Rayleigh-Ritz solution 

is addressed for anisotropic laminated composite wide plates with clamped-free boundary 

conditions under uniaxial compression loading. Finite element solution is also attempted to 

validate the proposed buckling formula.  
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In chapter nine, pre-buckling deformation is substituted into the bifurcation approach to derive a 

generalized closed form buckling solution for clamped-pinned anisotropic laminated composite 

columns under axial compression. The presented analytical explicit formula reproduces Euler 

buckling expression while it furnishes extra two terms which are functions of the effective 

coupling, flexural and axial stiffness. Eigenvalue and nonlinear geometry analysis is conducted to 

predict critical buckling load values and the stability response of the composite columns for a wide 

range of stacking sequences, respectively. Moreover, the analytical and numerical results are 

compared with previous work. Chapter ten presents closed form stability solution of clamped-

pinned anisotropic laminated composite wide plates under uniaxial compression compared with 

numerical (FE) analysis. A study is also performed to assess the effect of material properties, 

element thickness, and element type in FE analysis on the stability response. In chapter eleven, 

buckling of simply supported anisotropic Steel-FRP hybrid columns using Rayleigh-Ritz 

formulation with numerical and experimental verification is introduced. Two categories of 

anisotropic steel-glass fiber reinforced polymer (GFRP) columns are tested under axial 

compression loading in which category A has steel sandwiched in-between the composite layers 

and category B has steel on the side of the composite layup. Conclusions, recommendations, and 

future work are discussed in chapter twelve.   
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Chapter 2 - Literature Review 

2.1 Overview 

A brief overview regarding the work conducted on the stability of laminated composite structures 

is introduced in this chapter. Section 2.2 presents work performed to develop analytical 

formulations of the buckling of laminated composite members. Numerical solutions and finite 

element analysis-based papers are presented in section 2.3. Furthermore, section 2.4 introduces 

experimental work performed on the composite laminated structures. 

2.2 Analytical Studies 

Rasheed and Yousif [1] studied the buckling of thin laminated orthotropic composite rings and 

long cylinders under external pressure. A generalized analytical buckling formula was developed 

for a multi-angle laminated orthotropic rings and long cylinders. The developed formula is 

expressed in terms of the generally orthotropic extensional, flexural, and coupling stiffness 

coefficients. The following equation represents the critical buckling formula: 

              ╟╬►
═▫►◄▐╓▫►◄▐║▫►◄▐

═▫►◄▐╡ ║▫►◄▐╡ ╓▫►◄▐╡
                             (1) 

In which  ! ȟ" ȟÁÎÄ $  are simply the extensional, coupling, and flexural stiffness 

coefficients, respectively, obtained from the dimensional reduction of orthotropic behavior. The 

developed formula yielded improved results compared to some design codes.  Rasheed and Yousif 

[2] derived a generalized closed form buckling formula of anisotropic laminated thin rings and 

long cylinders subjected to external hydrostatic pressure. The formula is presented in terms of the 

generally anisotropic material and the member geometry. The developed formula was confirmed 

against finite element solutions and the results showed that the buckling modes are symmetric with 

respect to rotated axes of the twisted section of the pre-buckling solution in case of anisotropy. 
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Silva et al. [3] presented a formulation of a generalized beam theory (GBT) to predict the local 

and global buckling behavior of fiber reinforced polymer (FRP) composite open-section thin-

walled columns. The solution for buckling using GBT included solving the following eigenvalue 

problem: 

                                          ╚ ♬╖▀                                        (2) 

Where K is the global linear stiffness matrix; G is the geometric stiffness matrix; and d is the 

eigenvector. The paper presented finite element beam to solve the generalized beam theory (GBT). 

Silvestre and Camotim [4] studied the buckling behavior of thin walled arbitrary orthotropic 

members by developing a second order generalized beam theory (GBT). The second order GBT 

formulation was also compared with Bauld and Lih-Shyng theory [5]. The results showed that the 

critical load exists for all isotropic or cross-ply orthotropic members. Furthermore, non-linear 

primary path is exhibited and no specific bifurcation is detected for asymmetric orthotropic lay-

ups.  Xu et al. [6] presented an approximate analytical method based on the equivalent anisotropic 

plate approach to study the buckling of tri-axial woven fabric composite structures subjected to bi-

axial loading. The presented method was verified against non-linear finite element analysis. It was 

observed that the analytical solution gives upper bound results for buckling loads and can be used 

to predict the buckling behavior for real world problems subjected to bi-axial loading. Shukla et 

al. [7] presented an analytical formulation to predict the stability of cross-ply and angle-ply 

laminated composite rectangular plates under in-plane uniaxial and biaxial loading based on the 

Reissner-Mindlin first order shear deformation theory and von-Karaman type nonlinearity for 

various combinations of boundary conditions. The non-dimensional critical load parameter ‗  is 

expressed in the following: 
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                                          ⱦ╬►
╝♯╫╬► ╫

╔▐
                                       (3) 

In which .  is the uniform in-plane mechanical loading, b is the width of the plate, % is the 

modulus of elasticity in transverse direction, and h is the plate thickness. Span to thickness ratio, 

plate aspect ratio, lamination scheme, number of layers and modulus ratio effects were considered 

in estimating the buckling behavior. The analytical formulation results showed a good agreement 

with the numerical analysis results.  

 Herencia et al. [8] presented a closed form solutions for buckling of long anisotropic plates with 

various boundary conditions under axial compression using Rayleigh-Ritz approximation method. 

The following equation defines the closed from solution: 

                                           ╝●
╬► ⱥ●

Ⱬ

╫
╓ ╓                                     (4) 

Where $  is the bending stiffness; b is the width of the plate; and əx is the non-dimensional 

buckling coefficient related to the boundary conditions. The results showed an excellent agreement 

with existing solutions (Weaver [9] [10], Qiao and Shan [11]) and finite element results. Sun and 

Harik [12] studied the buckling of stiffened antisymmetric laminated composite plates with 

bending-extension coupling by extending the analytical strip method (ASM) developed by Harik 

and Salamoun [13] to analyze bending of thin orthotropic and stiffened rectangular plates. The 

results showed that plates with free boundary conditions contribute the weakest stiffening effect. 

Moreover, the number of layers of ply orientations equal to 0 and 90 had no effect on the critical 

buckling load since the coupling stiffness matrix vanishes. Shufrin et al. [14] presented a semi-

analytical solution for buckling of symmetrically laminated rectangular plates with general 

boundary conditions under combined tension, compression, and shear depending on multi term 
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Kantorovich method developed by Kerr [15]. The results showed that the stability of angle-ply 

laminated plates improved under biaxial compression/tension, shear and additional in-plane forces 

were created due to the in-plane restrains. 

Weaver and Nemeth [16] developed non-dimensional parameters and governing equations to study 

the buckling behavior of rectangular symmetrically laminated composite plates with different 

boundary conditions under uniform axial compression, uniform shear, or pure in-plane bending 

loading. Furthermore, bounds for non-dimensional parameters were presented as an indication of 

percentage gained in the buckling resistance for laminated plates. The results exhibited 26-36% 

increase in the buckling resistance for tailored simply supported orthotropic plates; with respect to 

isotropic plates. Moreover, clamped laminated plates exhibited 9-12% increase in the buckling 

resistance. Using polar representation of the fourth-order flexural stiffness tensor, Kazemi [17] 

presented a new exact semi-analytical approach to predict the buckling of laminated composite 

plates under biaxial compression.  The developed formula can be used easily to predict buckling 

problems, optimization and design of laminated plates under in-plane loading. Thai and Kim [18] 

proposed a closed form solution for buckling of orthotropic plates with two opposite simply 

supported edges using two variable refined plate theories. State space concept was used based on 

Levy type solution to solve the governing equations. The results showed more accurate solutions 

than the higher order shear deformation theory. Ovesy et al. [19] investigated the stability of 

laminated composite plates under uniaxial uniform compression. Based on the higher order plate 

theory (HOPT), a semi-analytical finite strip formulation was presented. A parametric study was 

conducted to study the effect of plate aspect ratio (ὥȾὦ), width to thickness ratio (ὦȾὬ), material 

properties, boundary conditions, and number of layers. The results showed that the critical 

buckling load increases as the plate width to thickness ratio increases and plate aspect ratio 
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decreases. Moreover, the results obtained from the presented formulation exhibited a good 

agreement with the 3-D elasticity theory.  

Abramovich and Livshits [20] studied the free vibrations of non-symmetric cross ply laminated 

composite beams based on the first order shear deformation theory. Longitudinal, transverse 

displacement, rotary inertia, and shear deformation were taken into account in the analysis. The 

following equation of motion of cross ply laminated composite beams was solved for different 

boundary conditions:  

                        Ἑ ▲ Ἅ ▲                     (5) 

Where -  is the generalized mass matrix, # is the matrix differential operator; and Ñ is the 

vector of the generalized displacements. The new approach and Bernoulli-Euler theory were 

verified against numerical solutions. Abramovich et al. [21] used the exact method based on 

Timoshenko equation to study the vibrations and buckling of cross-ply non-symmetric rectangular 

laminated composite beams. The effects of material properties, number of layers, and boundary 

conditions were considered. Analytical results showed a good agreement with the numerical 

results. Moreover, the non-symmetric layup showed a coupling effect between the axial and lateral 

motion of the beam. Based on Hellinger-Reissner principal, Cortinez and Piovan [22] proposed a 

theoretical model to investigate the buckling of composite thin-walled beams with shear 

deformability using nonlinear displacement field. The governing equations were solved using 

finite elements with fourteen degrees of freedom per element. Based on the results, shear flexibility 

had a significant effect on the stability of the composite beams. Using Ritz method, Aydogdu [23] 

studied the stability of cross-ply laminated beams with general boundary conditions depending on 

the unified three degrees of freedom shear deformable beam theory. The results were verified with 
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previous work for various length-to-thickness ratios and various layups. Pandey and Sherbourne 

[24] proposed a general formulation to predict the buckling of rectangular anisotropic symmetric 

angle ply composite plates under linearly varying uniaxial compressive loading with clamped and 

simply supported boundary conditions based on energy method and orthogonal polynomial 

sequences obtained by Gram-Schmidt. Ghaheri et al. [25] studied the bucking and vibration of 

symmetrically laminated composite elliptical plates on a Winkler-type elastic foundation under 

uniform in-plane force for various boundary conditions based on the variational approach and Ritz 

method. The effect of having different layup stacking sequences, aspect ratio, in-plane load, and 

foundation parameter was also considered. The results showed that as the foundation parameter 

increases and the aspect ratio decreases, the critical buckling load increases. Heidari-Rarani et al. 

[26] investigated the effect of angle-ply and cross-ply layups on the stability of E-glass/epoxy 

square composite laminated plates under axial compression with SFSF (S: simply supported, F: 

Free) boundary conditions analytically, numerically, and experimentally. Using Rayleigh-Ritz 

approach based on energy method, a semi-analytical solution was developed to predict the 

buckling load values. Eigenvalue and nonlinear analysis (Riks Analysis) were conducted to predict 

buckling load values and the stability response of the laminates using finite element software 

Abaqus. Eight node quadratic shell element (S8R) was assumed with mesh size equal to 2.5 mm 

and line load in the y-direction of value 1 N/m was assigned to the edge of the laminates. Moreover, 

Hashin, Tsai-Wu, and Tsai-Hill failure criteria were attempted in the numerical analysis to study 

the layer failure of the laminated composites.  E-glass/epoxy plates of four layers were made with 

angle-ply ([ 3ᴜ0]s, [ 4ᴜ5]s) and cross-ply ([0/90]s) stacking sequences using hand layup method. 

V-shape fixture was assembled to implement the simply supported boundary conditions and placed 

in the universal testing machine. The test was conducted under displacement control with rate 
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equal to 0.5 mm/min. The analytical results showed an excellent agreement with the numerical 

(FE) results. On the other hand, the semi-analytical and numerical buckling load values were 

overestimated compared to the experimental ones. Furthermore, Hashine failure criteria were not 

able to predict the failure of the laminated composite plates efficiently. However, Tsai-Wu and 

Tsai-Hill failure criteria had the same failure mode as the tested plates in which the failure started 

from the plate edge then developed along the plate. Lopatin and Morozov [27] proposed an 

analytical formula to predict the buckling of composite cantilever circular cylindrical shell under 

uniform external lateral pressure based on the generalized Galerkin method. Finite element 

software COSMOS/M was used to perform the eigenvalue and eigenvector computations with 

SHELL4L element and was verified against the analytical results yielding an accurate estimate of 

the buckling load values. 

2.3 Numerical Studies 

 Debski [28] presented numerical analysis of buckling and post-buckling of thin-walled simply 

supported laminated composite columns with channel section under axial compression. Eight 

symmetrical layered Carbon/Epoxy columns were analyzed using finite element software Abaqus 

and Ansys, which was verified with analytical-numerical method [29]. Linear four node shell 

element with reduced integration schemes (S4R) and eight node shell element (Shell99) were 

utilized in Abaqus and Ansys, respectively. A good agreement was observed between the finite 

element results and results obtained from the analytical-numerical method. Kumar and 

Mukhopadhyay [30] presented a new finite element to predict the buckling of laminated stiffened 

plate for different boundary conditions based on the first order shear deformation theory. The 

presented element eliminated any addition of extra nodes in the mesh assignment step at the 
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stiffener locations. Moreover, the transverse shear deformation was taken into account in the plate 

and stiffener element. The new finite element captured the critical buckling behavior of thin and 

thick plate without shear locking. The results showed a good agreement of the developed finite 

element compared with previous work conducted by Loughlan [31]. Rikards et al. [32] developed 

a triangular finite element to investigate the buckling and vibration of laminated composite 

stiffened plates and shells. Equivalent layer shell theory with six degrees of freedom based on the 

first order shear deformation theory with transverse shear stiffness correction was used. The 

critical buckling load results obtained from the new triangular element were verified against 

existence solutions (Jaunky et al. [33]) yielding a good agreement. Depending on full three 

dimensional elasticity formulation and layer-wise finite element, Setoodeh and Karami [34] 

proposed a refined layer-wise finite element formulation and computer code named L3WD to 

predict static, free vibration, and buckling of anisotropic thick laminated composite plates resting 

on Winkler and Pasternak elastic foundation, elastic line and point support. The results were 

confirmed against classical laminated plate theory (CLPT), first order shear deformation theory 

(FSDT), and higher order shear deformation theory (HSDT) yielding a good agreement. The 

computer code L3WD yielded accurate results for thick composite plates with different boundary 

conditions, in-plane and out-of- plane deformation. Based on the refined Reddyôs higher order 

theory, Nayak et al. [35] developed nine node shear deformable plate bending element to study 

buckling and vibration of initially stressed composite sandwich plate with various boundary 

conditions under different in-plane loading conditions. To prevent shear locking phenomena, 

assumed strain concept was used with full integration schemes. The effect of loading conditions, 

stacking sequence, boundary conditions, and thickness ratio was studied. The results observed a 

good agreement compared to exact results conducted by Noor et al. ([36] and [37]), higher order 



 

13 

shear deformation theory (HSDT), and classical laminated plate theory (CLPT).  Grover et al. [38] 

presented a new inverse hyperbolic shear deformation theory (IHSDT) to study static and buckling 

of laminated composite and sandwich plates depending on the shear strain shape function to ensure 

a nonlinear distribution of transverse shear stresses and satisfies traction at free boundary 

conditions. Principal of virtual work with linear kinematics was used to derive the governing 

differential equations. Analytical solution was solved using Navier type solution of simply 

supported composite sandwich plate. Several numerical examples were solved using the presented 

theory. The developed theory accurately predicted the critical buckling load for simply supported 

thick plates with minimal numerical error and computational cost. Kidane et al. [39] investigated 

the stability of grid stiffened composite cylinders. Depending on smeared method, analytical 

model was developed where the equivalent material properties were determined of grid stiffened 

composite cylindrical shells. The moment and force effects due to stiffeners were considered for a 

unit cell in the analysis procedure. Ritz method was performed to calculate the buckling load 

analysis of simply supported composite cylinders [40] using Matlab code. Experimental work was 

conducted to verify the developed analytical model results. The results showed that the buckling 

load decreases as the stiffener spacing increases. Furthermore, stiffener orientation, cylindrical 

shell thickness, and shell winding angle had a significant effect on the buckling load values of 

symmetrical and unsymmetrical composite layups in the cylinders. 

Based on three dimensional elasticity considerations, Jianqiao Ye and Soldatos [41] studied the 

stability of simply supported thick laminated cross-ply composite hollow cylinders and open 

cylindrical panels under combined external loading. Initial zero shear stresses were assumed in the 

pre-buckling solution. Three dimensional sets of linearized buckling equations were solved using 

recursive method of a successive approximation approach. The results of the forty-layer laminated 
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composite cylinder under axial compression were compared with previous work conducted by 

Noor and Peters [42] yielding an excellent agreement. Moreover, the results showed that Ref. [42] 

formulation is computationally expensive for problems with high number of degrees of freedom 

compared to the presented method. Additionally, the buckling analysis was conducted for 

symmetric and antisymmetric cross-ply layups.   

2.4 Experimental Studies 

Debski et al. [43] investigated the buckling and post-buckling behavior of simply supported thin-

walled composite channel column sections under axial compression loading experimentally. 

Carbon/Epoxy thin walled channel section columns with cross sectional dimensions equal to 80 x 

40 x 1.048 mm and length of 300 mm were tested using Zwick Z100/SN3A universal testing 

machine, moreover, columns were composed of eight symmetrical plies [0/-45/45/90]s. The results 

were compared with numerical solutions obtained from finite element software Abaqus and 

ANSYS using 4-node linear shell element (S4R) with reduced integration schemes and 8-node 

shell element, respectively. Additionally, the experimental results were confirmed against the 

analytical-numerical method (ANM) based on Koiter theory [44-47]. Meyer-Piening et al. [48] 

presented a project performed by Institute of Structural Mechanics, Braunschweig (DLR), former 

Institute of Lightweight Structures and Ropeways (ETH Zurich), and Department of 

Polymers/Composites (EMPA Dubendorf) to study the stability of thin-walled carbon fiber 

reinforced polymer (CFRP) laminated cylinders under combined axial compression and torsional 

loading experimentally and numerically. Carbon/Epoxy cylindrical shells were tested at DLR 

buckling test facility under axial compression and at EMPA universal testing machine under 

combined loading. The experimental results were compared with two analytical solutions, shallow 

shell theory [49] and deep shell theory (using BACCUS program). Furthermore, experimental 



 

15 

results were confirmed against finite element results obtained with MARC K7 yielding accurate 

results. Isoparametric shell element No. 75 was used in the finite element analysis with element 

size equal to 60 x 180 mm. The results showed that the analytical solutions predicted accurate 

buckling load compared with experimental ones for eccentrically laminated circular cylinders with 

small initial imperfection. Moreover, the stacking sequences of the laminated cylinder had a 

significant effect on imperfection. Aslan and Sahin [50] studied the buckling of E-glass/Epoxy 

cross-ply laminated composite rectangular plates with multiple delamination under axial 

compression. Experimental work was conducted to test fixed-fixed composite plates of stacking 

sequence [0/90/0/90]s with and without delamination. The following dimensions were attempted 

for length, width, and thickness: 100 mm x 30 mm x 2.4 mm, respectively. Axial compression test 

was performed using Shimazdu AG-X testing machine under displacement control with rate equal 

to 0.1 mm/min. Finite element analysis was carried out to verify the experimental results using 

Ansys 11.0. Solid elements with six degrees of freedom (SOLID46) were assumed in FE analysis. 

A parametric study was conducted to study the effect of having different stacking sequences. The 

numerical (FE) results exhibited a good agreement against the experimental results. In general, it 

was observed that increasing the number of delamination defects led to a decrease in the buckling 

load values. For composite plates without delamination, buckling load values of antisymmetric 

stacking sequences were lower than symmetric ones. On the other hand, antisymmetric stacking 

sequences observed higher buckling load for composite plates with multiple delamination. Baba 

and Baltaci [51] investigated the buckling characteristics of symmetrically and anti-symmetrically 

laminated composite rectangular plates made of E-glass/Epoxy with central cutout using 

experimental and numerical techniques. Different laminate configurations, cutout shape, boundary 

conditions, and length to thickness ratio were taken into consideration. Composite plates were 
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analyzed using finite element software Ansys. Eight nodded multilayered shell element 

(SHELL91) was assumed and axial compression loading was attempted.  The experimental results 

were confirmed against finite element analysis yielding a higher buckling load values than the 

numerical ones.  Moreover, the buckling load decreased as the length to thickness ratio increased. 

For symmetric and antisymmetric laminated composite plates, the buckling load values decreased 

due to the existence of cutouts. The antisymmetric stacking sequences and clamped boundary 

conditions showed a higher buckling loads compared to symmetric and simply supported boundary 

conditions, respectively. 
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Chapter 3 - Analytical and Finite Element Buckling Solutions of 

Simply Supported Anisotropic Laminated Composite Columns 

under Axial Compression Compared with Experiments 

Hayder A. Rasheed1 and Rund Al-Masri 2 

 

3.1 Abstract 

Analytical formula for the buckling load of generally anisotropic laminated composite 

simply supported thin columns is derived using the Rayleigh Ritz displacement field 

approximation. The effective axial, coupling and flexural stiffness coefficients of the 

anisotropic layup is determined from the generalized constitutive relationship using 

dimensional reduction by static condensation of the 6x6 composite stiffness matrix. The 

resulting explicit formula has an additional term which is a function of the effective coupling 

and axial stiffness. This formula reduces down to Euler buckling formula once the effective 

coupling stiffness term vanishes for isotropic and certain classes of laminated composites. 

The analytical results are verified against finite element Eigen value solutions for a wide 

range of anisotropic laminated layups yielding high accuracy. Comparisons with 

experiments are also performed showing good correspondence. A brief parametric study is 

then conducted to examine the effect of ply orientations and material properties including 

hybrid carbon/glass fiber composites. Relevance of the numerical and analytical results is 

discussed for all these cases. 

 

Keywords: Buckling of Composite Columns, Simply Supported Boundary Conditions, 

Anisotropic Laminated Composites, Axial Compression. 
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3.2 Introduction  

The use of laminated composites in aerospace, automotive, marine and civil engineering 

applications is ever growing due to their distinguished properties (High stiffness-to-weight 

ratio, high strength-to-weight ratio, fatigue and corrosion resistance). This growth has resulted 

in increasing the demand for better understanding the mechanics of laminated composites. 

Composite columns, like any traditional members subjected to axial compression, undergo 

stability issues prior to failure. Not many research studies have focused on the buckling of 

columns, however, a significant amount of research has been performed to study the buckling 

behavior of composite members, plates and shells in the recent years [1-13]. Silva et al. [1] 

developed a formulation of a generalized beam theory (GBT) to study local and global 

buckling behavior of fiber reinforced polymer composite open section thin-walled columns. 

The solution for buckling using GBT included solving the following eigenvalue problem: 

                                          ╚ ♬╖▀                                        (1) 

Where K is the global linear stiffness matrix; G is the geometric stiffness matrix; and d is the 

eigenvector. Silvestre and Camotim [2] developed a second order generalized beam theory 

(GBT) to predict buckling behavior for thin walled arbitrary orthotropic thin-walled members. 

The second order GBT formulation was also compared with Bauld and Lih-Shyng theory [3]. 

The results showed that the critical load exists for all isotropic or cross-ply orthotropic 

members. On the other hand, non-linear primary path is exhibited and no specific bifurcation 

is detected for asymmetric orthotropic lay-ups. Rasheed and Yousif [4] used the energy 

approach to develop a closed form solution to predict buckling of thin laminated orthotropic 

composite rings/long cylinder under external pressure:  

                          ╟╬►
═▫►◄▐╓▫►◄▐║▫►◄▐

═▫►◄▐╡ ║▫►◄▐╡ ╓▫►◄▐╡
                             (2) 
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Where ὃ ȟὄ ȟὥὲὨ Ὀ  constants are simply the extensional, coupling, and bending 

stiffness coefficients obtained from dimensional reduction of orthotropic behavior. The 

developed formula yielded improved results compared to some design codes. Rasheed and 

Yousif [5], developed a closed form solution for buckling of anisotropic laminated composite 

rings and long cylinders subjected to external hydrostatic pressure. They confirmed their 

analytical results against finite element solutions and also concluded that the buckling modes 

are symmetric with respect to rotated axes of the twisted section of the pre-buckling solution 

in case of anisotropy. Xu et al. [6] developed an approximate analytical solution to predict 

buckling of a tri-axial woven fabric composite structure under bi-axial loading based on the 

equivalent anisotropic plate method. They concluded that the analytical solution gives an upper 

bound solution for buckling load and it can be used to predict buckling behavior for real world 

problems subjected to bi-axial loading. Using first order shear deformation and von-Karman 

type nonlinearity, Shukla et al. [7] estimated critical buckling loads for laminated composite 

plates with various boundary conditions under in-plane uniaxial and biaxial loading. Span to 

thickness ratio, plate aspect ratio, lamination scheme, number of layers and modulus ratio 

effects were considered in estimating the buckling behavior. Sun and Harik [8] developed 

analytical buckling solution of stiffened antisymmetric laminated composite plates with 

bending-extension coupling using analytical strip method (ASM) which was first developed 

by Harik and Salamoun [9] to analyze bending of thin orthotropic and stiffened rectangular 

plates. The results showed that plates with free boundary conditions contribute the weakest 

stiffening effect. Moreover, the number of layers of ply orientations equal to 0 and 90 had no 

effect on the critical buckling load since the coupling stiffness matrix vanishes. Debski et al. 

[10] studied buckling and post-buckling behavior of thin-walled composite channel column 
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sections experimentally. The results were compared with numerical solutions obtained from 

finite element models (Abaqus and ANSYS) and analytical-numerical method (ANM). Based 

on multi term Kantorovich method developed by Kerr [11], Shufrin et al. [12] developed a 

semi-analytical solution for buckling of symmetrically laminated rectangular plates with 

general boundary conditions under combined tension, compression, and shear. The results 

showed that the stability of angle-ply laminated plates improved under biaxial 

compression/tension and shear. Moreover, additional in-plane forces were created due to the 

in-plane restrains. Thai and Kim [13] proposed a closed form solution for buckling of 

orthotropic plates with two opposite simply supported edge using two variable refined plate 

theories. State space concept was used on Levy type solution to solve the governing equations. 

The results showed more accurate solutions than the higher order shear deformation theory.  

In this work, a generalized analytical formula for buckling of simply supported laminated 

composite columns subjected to axial compression is developed. The RayleighïRitz 

approximation was used to obtain the buckling formula. Axial, coupling and flexural rigidities 

in 1D are determined using dimensional reduction by the static condensation approach starting 

with the 3D rigidity matrix. Moreover, finite element models for the columns are established 

using the commercial software Abaqus. Furthermore, glass fiber-epoxy columns were made 

and tested in the laboratory. The finite element numerical solution was compared to the 

analytical solution resulting in excellent agreement. The experimental results also showed 

reasonable comparison with the newly developed analytical results. A good agreement 

between all three types of results was observed, regardless of the complexity of the composite 

lay-ups used. 
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3.3 Analytical Formulation  

A generalized closed form buckling formula for simply supported anisotropic laminated composite 

columns under axial compression is derived using Rayleigh-Ritz approximation.  

1.1 Assumptions: 

1. Buckling takes place in the x-y plane about the weak axis (z-axis). 

2. The y-axis runs through the thickness of the column where the composite lamination 

takes place, Figure 3.1 

3. The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 

4. Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

5. Classical lamination theory is applicable with shear deformations ignored. 

3.3.1 Kinematics 

Figure 3.1 illustrates geometry and the Cartesian coordinates of the simply supported column used. 

The z-axis is the weak axis of the column about which bending takes place. The following 

displacement relations were assumed based on the isotopic Euler first buckling mode: 
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Figure 3.1 The column geometry. 

 

                                     ◊ ● ║● ║Ᵽ◑●◐ ;    ○ ●  ╒Ἳἱἶ
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                                (3) 

Where όὼ, and ὺὼ is the axial, and lateral displacements; B1, B2 and C1 are constants to be 

solved; and x is the distance along the axis of the column. The second term in the axial 

displacement expression is neglected since the % variation in cross section axial displacement is 

found from the finite element analysis below to be very small. More specifically, this percentage 

varies between 0.07 - 4.00% for materials with high stiffness ratio (E11/E22) (e.g. Graphite/Epoxy) 

and between 0.05 - 2.00% for materials with lower stiffness ratio (E11/E22) (e.g. S Glass/Epoxy). 

For an intermediate class of deformation, the axial strain ‐ and curvature ‖are defined as follow. 
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3.3.2 Constitutive equations 

The principal material directions were transformed into the column coordinate system, the stresses 

and strains are then related in the following equation 
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                                                (5)  

Where  ὗ  matrix represents the transformed reduced stiffness matrix as defined in standard 

composite textbooks [14]. Accordingly, the coupled force-strain relationship is established as 

follows: 
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Where: 
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In which ὃ ,ὄ  and Ὀ  are the axial, coupling, and flexural rigidity coefficients. ὸ = thickness 

of the k-th ply; and N = number of different plies in the stacking sequence.  
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The three dimensional (3D) rigidity matrix is established first using the material properties and the 

fiber orientations into equation (7). Then the dimension is reduced to 1D anisotropic axial, 

coupling and flexural rigidities using static condensation approach after applying the zero forces 

and moments.  
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Equation (8) is solved first for the axial strain and axial curvature (Ⱡ● ,ⱥ●) in terms of the rest of 

the deformation components by extracting the second, third, fifth and sixth linear equations from 

the matrix. 
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 Inverting the matrix Q to the other side of equation (9), the condensed deformation components 

are obtained in terms of the axial strain and curvature:  
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Substituting equation (10) into the first and fourth linear equation of the matrix (8); the axial force 

and in-plane moment vs. the axial strain and in-plane curvature relationship can be expressed in 

terms of the generally anisotropic material properties  

                     ╝●
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                                    (11) 

Where 
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3.3.3 Energy Formulation 

A generalized buckling formula was derived using Rayleigh-Ritz approximation based on the 

energy approach. Strain energy can be expressed in terms of the integration of the applied loads 

multiplying the corresponding deformations. 

╤ ╝●Ⱡ● ╜●ⱥ● ▀●

╛

 

 

 

 

 

(13) 

═╪▪░Ⱡ● ║╪▪░Ⱡ●ⱥ● ▀●

╛╛

║╪▪░Ⱡ●ⱥ● ╓╪▪░ⱥ● ▀● 

 

The potential of external loads can be expressed as shown in equation (14)  

                                        ╦ ╟ ◊╛                                                               (14) 

Taking the total potential energy function and substituting equations (13) and (14) into equation 

(15)  
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Minimizing the total potential energy function with respect to B1 and C1 and setting the resulting 

expressions to zero, performing the integration by parts and manipulating the equations to give: 

⸗♂
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Solving equation (16) for B1 then substituting the resulting expression in equation (17), the 

following cubic equation is formulated in terms of C1 value 
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Equation (19) does not lend itself to a closed form solution. Therefore, considering the critical 

stability matrix:  
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Setting the determinant of the matrix in Equation (20) to zero, substituting B1 expression from 

equation (18) and solving for C1 using the general solution of a quadratic equation: 
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                      (22) 

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero and manipulating its expression, a closed form solution for the critical 

buckling load is derived: 

                                             ╟╬►
╓╪▪░Ⱬ

╛

║╪▪░

═╪▪░╛
                                                    (23)

In the case of isotropic or specially-orthotropic materials, the coupling term vanishes reducing 

the equation to that of Euler buckling.

3.4 Numerical Formulation 

Finite element buckling analysis was used to verify the analytical solution, derived in the previous 

section, using the commercial software package Abaqus for laminated anisotropic columns. 

Columns composed of four layers of composites were modeled with simply supported ends, in 
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which roller and pin supports were introduced on the top and bottom of the column, respectively. 

Moreover, a concentrated load was applied at the top of the column. Linear elastic laminated 

material was used for orthotropic and anisotropic layups, respectively. Moreover, graphite/epoxy 

material was mainly used to simulate the composite columns. Quadrilateral eight-node doubly 

curved thick shell element (S8R) and 3D solid 20-node quadratic brick element (C3D20R) were 

utilized for modeling the columns in 3D-space. Element size equal to 0.5 x 0.5 mm with total 

number of elements equal to 400 were used for a column size of 100 mm x 1 mm x 0.4 mm after 

conducting a convergence study to select the appropriate mesh size. Figure 3.2 illustrates the 

modelôs boundary conditions and mesh for the shell elements.  

 

 

 

 

Figure 3.2 Left: Boundary conditions and applied load. Right: Meshed Model. 

Two types of analyses were undertaken in this study. First, a buckling analysis using Lanczos 

solver to simulate eigenvalue computation was undertaken. Lanczos method is one of the methods 

used to solve for eigenvalues and eigenvectors for complex Hermitian matrix using power 

methods. Lanczos method reduces ά ά symmetric matrix using recurrence relations 

(multidimensional array values) to a tridiagonal matrix [15]. 
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Secondly, a nonlinear geometry analysis using the modified Riks formulation was performed to 

predict the nonlinear stability response (pre-buckling and buckling) of the composite column. The 

modified Riks analysis uses the Arc length method to follow the equilibrium path, representing 

either the bifurcation points or the limit points. Load increments are applied during the analysis in 

which equilibrium iterations converge along the arc length, forcing the constraint equation to be 

satisfied at every arc length increment [16]. 

3.5 Experimental Program 

3.5.1  Specimen Preparation 

Twelve E-glass fiber/epoxy columns were made in the laboratory with four different sequences. 

V-Wrap EG50 unidirectional fabric was cut at different angles (30, -30, 0, and 90) as shown in 

Figure 3.3. Properties of V-Wrap EG50 fabric are shown in Table 3.1 [17]. 

    

-30 0 30 90 

Figure 3.3 Glass fiber orientations 

 

 

Table 3.1 Dry fiber properties [17]. 

Tensile Strength 3240 MPa (470,000 psi) 

Tensile Modulus 72,400 MPa (10.5 x 106 psi) 

Elongation 4.5 % 
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Density 2.55 g/cm3 (0.092 lbs/in3) 

 

Epoxy resin and hardener were mixed together to make the matrix material with 100 to 34.5 ratio 

by volume, respectively, using a mechanical rotary mixer as shown in Figure 3.4. The epoxy resin 

was first applied to the non-stick preparation sheet then a ply of fiber is laid by a paint roller against 

the resin. A second layer of resin was applied with the roller on top of the fiber ply and the process 

is repeated as many times as the number of fiber plies in the stacking sequence, Figure 3.5. 

   

Figure 3.4 Resin preparation Figure 3.5 Specimen preparation 

 
 

Four different stacking sequences were constructed by the wet layup process. The strips were then 

left to harden for one week at room temperature then were cut to column final sizes using a table 

saw, see Figure 3.6.  

 
Figure 3.6 Composite strip after the wet layup process. 

 



 

31 

Thickness and width of the hardened specimens were measured using a digital caliper at three 

locations to take the average. Layer thickness (ti) is assumed equal to one quarter of the average 

specimenôs thickness since each laminate was composed of four plies. Fiber and matrix volume 

fractions (Vf and Vm) were calculated using equation (22). Using rule of mixtures and the Halpin-

Tsai equation, elastic properties in the fiber, transverse and in-plane shear directions were 

obtained. 

ὠ
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Where the thickness tf was measured to be 0.305 mm, the thickness ti varied based on the 

different laminates as shown in Table 6 below. 
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In which Ef, and Em are fiber and matrix modulus, Gf, and Gm are fiber and matrix shear modulus, 

ɝ value was taken equal to one to provide more accurate results [18]. Equation (24) determines the 

minor Poissonôs ratio:  
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3.5.2 Test Setup 

After one week of curing, the four different stacking sequences, shown in Table 3.2, were tested. 

Columns were tested under axial compression using the Shimadzu AG-IC 50 kN testing machine, 

operating with Trapezium X software following a displacement control protocol with a 

displacement rate of 1 mm/minute. 

Table 3.2 Samples of the four different stacking sequences 

Sample Number Stacking Sequence 

1 30/-30/0/90 

2 30/-30/90/0 

3 0/30/-30/90 

4 30/0/90/-30 
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E-Glass Fiber /Epoxy Composite 

 

 Simply supported boundary conditions were applied at the ends of the composite columns, see 

Figure 3.7. Columns were loaded in axial compressive displacement until the load dropped 

indicating the attainment of a limit load.  

 
Figure 3.7 Axial Compression Test Setup 

3.6 Results and Applications: 

3.6.1 Numerical Validation 

Table 3.3 presents the material properties of High Strength Graphite/Epoxy; obtained from typical 

values in an FRP textbook [18], that was used to simulate the analytical and numerical results for 

different stacking sequences of composite columns with the following dimension: 100 mm x 1.0 

mm x 0.4 mm for length, width, and thickness, respectively with length to thickness ratio equal to 

250. The comparison between the analytical and numerical buckling loads is reported in Table 3.4 

for various layup stacking sequences. The results match reasonably with a minimum error equal 

to 0.0038% for the single specially orthotropic layer (90/90/90/90) and a maximum error equal to 
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11.2121% for the symmetric angle ply laminate (30/-30/-30/30). It is important to note that the 

layup with the maximum error yields the analytical buckling load on the conservative side.  

 

Table 3.3 High Strength Graphite/Epoxy Material Properties [18]. 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 

 

 

Table 3.4 Comparison of analytical and numerical buckling load for various layup sequences of 

Graphite/Epoxy Composite Column. 

Ply 

Orientation 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.76325 0.76289 0.0472 Single Specially Orthotropic  

90/90/90/90 0.052638 0.05264 0.0038 Single Specially Orthotropic  

0/90/90/0 0.67612 0.67573 0.0577 Symmetric Cross Ply  

0/90/0/90 0.34631 0.35089 1.3226 Antisymmetric Cross Ply 

90/0/0/90 0.14182 0.1418 0.0142 Symmetric Cross Ply 

30/-30/30/-30 0.23915 0.23909 0.0251 Antisymmetric Angle Ply 

45/-45/45/-45 0.088707 0.08871 0.0034 Antisymmetric Laminates 

60/-60/60/-60 0.05689 0.05688 0.0176 Antisymmetric Laminates 

30/-30/60/-60 0.09435 0.10161 7.6948 Balanced Angle Ply 

60/-60/45/-45 0.06968 0.07126 2.2676 Balanced Angle Ply 

30/-30/45/-45 0.13098 0.13452 2.7028 Balanced Angle Ply 

30/-30/0/0 0.36506 0.39188 7.3468 Anisotropic 

30/-30/-30/30 0.19256 0.21415 11.2121 Symmetric Angle Ply 
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-45/30/-30/45 0.11408 0.11407 0.0088 Antisymmetric Angle Ply 

30/30/-30/-30 0.16171 0.1615 0.1299 Antisymmetric Angle Ply 

30/-30/0/90 0.17569 0.18431 4.9064 Anisotropic 

 

 

Figure 3.8 shows the load versus mid height displacement curve for three different stacking 

sequences obtained from the finite element Abaqus Riks analysis along with the analytical 

buckling load marked for comparison. An excellent agreement between the results is seen in 

which the antisymmetric cross ply stacking sequence exhibit higher buckling load than the two 

other sequences. On the other hand, the balanced anisotropic angle ply layup showed the lowest 

buckling load. Single specially-orthotropic layer (0/0/0/0) exhibits the highest buckling load due 

to having all fibers aligned with the loading axis while the coupling coefficient ║╪▪░ vanishes. 

 

Figure 3.8 Analytical versus numerical solutions. 
 

3.6.2 Experimental Results 

Table 3.5 lists the average thickness and width of the tested specimens in four different stacking 

sequences in which the difference in the columns sizes is due to the wet layup procedure that has 
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a limited control over the amount of epoxy applied for each layer. Composite mechanical 

properties are illustrated in Table 3.6. 

          Table 3.5 Geometry of column specimen 

  

  

Average  

Thickness, mm Width, mm Length, mm 

1_2 5.7997 10.4733 295 

1_3 5.7277 8.145 292.5 

2_1 6.3458 10.6342 294 

2_2 6.1976 10.5537 294.5 

3_1 5.7997 10.0288 293.3 

4_1 5.2959 8.6022 284 

4_2 5.6812 10.4013 287 

 

 

 Table 3.6 Composite properties of E-glass/epoxy used in experiments.  
Vf Vm E1,MPa E2,MPa G12,MPa ɜ12 ɜ21 

1_2 0.5344 0.4657 40546.569 11336.196 4175.05 0.322 0.0901 

1_3 0.5411 0.459 41005.765 11514.961 4241.67 0.3214 0.0903 

2_1 0.4884 0.5117 37401.468 10214.439 3757.51 0.3261 0.0891 

2_2 0.5 0.5 38200 10483.413 3857.55 0.325 0.0892 

3_1 0.5344 0.4657 40546.569 11336.196 4175.05 0.322 0.0901 

4_1 0.5852 0.4149 44023.022 12801.836 4721.9 0.3174 0.0923 

4_2 0.5455 0.4546 41309.091 11635.349 4286.55 0.321 0.0904 

 



 

37 

The column limit loads of the four stacking sequences, listed in Table 3.2, were compared with 

analytical and numerical buckling loads as shown in Table 3.7. The highest buckling load was 

observed in (30/-30/90/0) layup stacking sequence with a value equal to 562.5 N and the lowest 

value equal to 242.2 N for the (30/-30/0/90) columns. Generally speaking, a good correspondence 

between experimental, analytical and numerical results was observed. The experimental buckling 

loads for columns with layups (30/-30/0/90) and (30/-30/90/0) were consistently lower than the 

analytical and numerical results which is to be expected due the inherent initial imperfections in 

the tested columns. Nevertheless, experimental results for columns with layups (0/30/-30/90) and 

(30/0/90/-30) were slightly higher than the analytical and numerical values. This can only be 

attributed to variations in thickness and width for which the average value of a prismatic column 

may not render accurate estimates of the buckling load. For example, column 4_2 had a non-

prismatic section with thickness values at the top, bottom, and middle of the column equal to: 

5.4356, 5.8674, and 5.7404 mm, respectively. 

Table 3.7 Comparison of experimental results with analytical and numerical results for E 

glass/epoxy composite column. 

Ply-Orientation  Pcr  Experimental, 

N 

Pcr  Analytical, 

N 

Pcr  Numerical, N 

30/-30/0/90 1_1 300 337.004 342.927 

1_3 242.1875 264.665 268.583 

30/-30/90/0 2_1 553.125 647.82 659.35 

2_2 562.5 610.518 621.479 

0/30/-30/90 3_1 424.219 407.132 412.208 

30/0/90/-30 4_1 303.125 280.202 279.743 

4_2 471.094 408.572 376.057 
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Out of the twelve columns cut from the four strips of various stacking sequences, five had evident 

thickness imperfections at the ends and were accordingly excluded from testing. End imperfections 

in these five columns were noticed due to personal errors during the cutting process as shown in 

Figure 3.9. Moreover, local delamination between layers was observed after testing the columns 

due to the rise of interlaminar shear stresses during the testing of columns with out of straightness 

imperfection, see Figure 3.10. 

  

Figure 3.9 Initial Imperfection in column 

specimen. 

 

Figure 3.10 Local delamination after testing 

Figure 3.11 and Figure 3.12 illustrates the critical buckling mode shape obtained from numerical 

analysis and experimental work.  
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Figure 3.11 Numerical critical buckling mode shape. 

 

Figure 3.12 Experimental critical 

buckling mode shape. 

 

3.6.3 Parametric Study 

3.6.3.1 Effect of Ply Orientation 

Parametric study was done to study the effect of having different stacking sequences with the 

following dimensions for length, width and thickness: 100 mm x 1 mm x 0.4 mm, respectively. 

Table 4.4 in the previous section shows buckling load values for different stacking sequences with 

values range between 0.05264 N and 0.763 N. 

3.6.3.2 Effect of Material Properties 

Two types of materials were used to study the effect of changing material properties on the stability 

of the composite columns. High Strength Graphite/Epoxy and S-Glass/Epoxy were used to conduct 

this study and their properties were implemented from typical values reported by an FRP textbook 

are illustrated in Table 3.3 and Table 3.8 [18]. 

 

 

Table 3.8 S-Glass/Epoxy material properties [18]. 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

 

Table 3.4 and Table 3.9 presents results of High Strength Graphite/ Epoxy and S-Glass/Epoxy for 

different stacking sequences. In general, it was observed that S-Glass/Epoxy exhibits much lower 

buckling loads than High Strength Graphite/Epoxy since it has lower stiffness values along the 

fiber direction. 
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Table 3.9 Analytical and numerical results for various layup sequences for S-Glass/Epoxy. 

Ply 

Orientation  

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.28951 0.28948 0.0104 Single Specially 

Orthotropic  

90/90/90/90 0.08423 0.08422 0.0119 Single Specially 

Orthotropic  

0/90/90/0 0.26483 0.26477 0.0227 Symmetric Cross Ply 

0/90/0/90 0.17651 0.17734 0.4703 Antisymmetric Cross Ply 

90/0/0/90 0.11029 0.110283 0.0064 Symmetric Cross Ply 

30/-30/30/-30 0.1741 0.17408 0.0115 Antisymmetric Angle Ply 

45/-45/45/-45 0.11478 0.11477 0.0088 Antisymmetric Angle Ply 

60/-60/60/-60 0.09054 0.09053 0.0111 Antisymmetric Angle Ply 

30/-30/60/-60 0.11953 0.12148 1.6314 Balanced Angle Ply 

60/-60/45/-45 0.10108 0.1015 0.416 Balanced Angle Ply 

30/-30/45/-45 0.13887 0.13947 0.433 Balanced Angle Ply 

30/-30/0/0 0.21601 0.22062 2.135 Anisotropic 

30/-30/-30/30 0.16021 0.17015 6.205 Symmetric Angle Ply 

-45/30/-30/45 0.12408 0.12407 0.009 Antisymmetric Angle Ply 

30/30/-30/-30 0.15288 0.15285 0.02 Antisymmetric Angle Ply 

30/-30/0/90 0.13764 0.14035 1.969 Anisotropic 

 

Table 3.10 presents the buckling results when S-Glass and High Strength Graphite/Epoxy hybrid 

material properties were used for the composite column in which Graphite/Epoxy properties were 
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used for layers with 0o and 30o orientation and S-Glass/Epoxy for the other orientations. 

Combining two materials showed a higher error values between numerical and analytical results 

than using one material therefore more terms might need to be added to the Rayleigh-Ritz 

approximation to capture the complexity in behavior. This was beyond the scope of the present 

paper.     

Table 3.10 Analytical vs. numerical buckling loads for various layup sequences of hybrid 

Graphite and S-Glass/Epoxy composites. 

Orientation Analytical Results, N Numerical Results, N % Error  

30/-30/60/-60 0.12748 0.1341 5.193 

30/-30/0/90 0.19 0.19643 3.3843 

0/90/90/0 0.67942 0.67856 0.1266 

0/90/0/90 0.3704 0.3732 0.756 

90/0/0/90 0.16905 0.16926 0.1243 

 

3.6.3.3 Effect of Element Type in FE Analysis 

As mentioned earlier, two types of elements were utilized in the analysis of High Strength 

Graphite/Epoxy columns discussed earlier. Table 3.11 presents the comparison between the 

analytical and numerical results using the quadratic shell element (S8R) and quadratic solid 

element (C3D20R) both with reduced integration schemes having element mesh size equal to 0.5 

x 0.5 mm. An excellent agreement between analytical and shell element results is observed for all 

stacking sequences. On the other hand, solid element results showed excellent agreements with the 

analytical and shell element results for single specially orthotropic and antisymmetric angle ply. 



 

42 

However, solid elements results were off for the antisymmetric cross ply and anisotropic layups, 

Table 3.11.  

Table 3.11 Analytical and numerical results with shell and solid elements. 

Ply Orientation Analytical 

Results, N 

Shell Element S8R, 

N 

Solid Element 

C3D20R, N 

0/0/0/0 0.763 0.76289 0.76289 

90/90/90/90 0.05264 0.05264 0.0526358 

0/90/90/0 0.676 0.67573 0.409173 

0/90/0/90 0.346 0.35089 0.409124 

90/0/0/90 0.14182 0.1418 0.409175 

30/-30/30/-30 0.239 0.23909 0.238503 

45/-45/45/-45 0.08871 0.08871 0.0886286 

60/-60/60/-60 0.05688 0.05688 0.0568754 

30/-30/60/-60 0.0943 0.10161 0.154953 

30/-30/0/90 0.1757 0.18431 0.329724 

 

3.7 Conclusions 

A generalized closed form buckling formula for anisotropic laminated composite columns with 

simply supported end condition under axial compression was derived which may be considered an 

extension to the Euler buckling formula of isotropic columns. The buckling load formula was 

expressed with respect to the composite material axial, coupling, and flexural rigidities as well as 

the column geometry. An excellent agreement between the analytical formula and the finite 

element analysis results is observed. Limit Loads of buckled laminated composite columns gave 

generally good correspondence with the analytical and numerical results. On the other hand, some 
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of the experimental results differed from the analytical and numerical solutions due to 

imperfections or dimension variations in the composite column which reduced or increased the 

buckling load, respectively. The parametric study showed that using a single composite material 

type per column yielded less deviation of the analytical solution from the numerical results 

compared to using a two-material hybrid composite. Also, the use of shell finite elements was 

found to yield very accurate buckling loads for all stacking sequences compared to the use of solid 

finite elements when benchmarked against the present analytical solution. 
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Chapter 4 - Analytical and Finite Element Buckling Solutions of 

Simply Supported Anisotropic Laminated Composite Wide Plates 

under Axial Compression  

Rund Al-Masri1, Hayder A. Rasheed2 

4.1 Abstract 

Rayleigh-Ritz approximation was used to derive analytical buckling formula of generally 

anisotropic laminated composite simply supported thin plates. Effective axial, coupling, and 

flexural stiffness coefficients of the anisotropic layup are determined from the generalized 

constitutive relationship using dimensional reduction of the 6x6 composite stiffness matrix. 

The resulting explicit formula has an additional term which is a function of the effective 

coupling and axial stiffness. For isotropic and certain classes of laminated composite, the 

analytical buckling formula reduces down to isotropic buckling formula once the effective 

coupling stiffness term vanishes. The analytical results are verified against finite element 

Eigen value solutions for a wide range of anisotropic laminated layups yielding high 

accuracy. A parametric study is then performed to examine the effect of ply orientations and 

material properti es including hybrid carbon/glass fiber composites. Relevance of the 

numerical and analytical results is discussed for all these cases. 

 

Keywords: Buckling of Composite Plates, Simply Supported Boundary Conditions, Anisotropic 

Laminated Material, Axial Compression. 
 

 

 

 

 

 

 

 

 

 

                                                 

1 Ph.D. Candidate, Department of Civil Engineering, Kansas State University, Manhattan, KS 66506 

2 Professor, Department of Civil Engineering, Kansas State University, Manhattan, KS 66506 



 

46 

4.2 Introduction  

The use of laminated composite is increasingly growing in different applications in industry 

because of their distinguished properties (High strength-to-weight ratio, high stiffness-to-weight 

ratio, corrosion resistance, and fatigue). Due to this growth, an increase in demand for better 

understanding the mechanics of laminated composites has resulted. Wide plates undergo stability 

(i.e. buckling) issues prior to failure. In recent years, a significant amount of research has been 

conducted to study the buckling behavior of plates and shells [1-17]. Herenica et al. [1] developed 

a closed form solution for buckling of long anisotropic plates under axial compression (Nx) with 

various boundary conditions. The closed form solution can be expressed as:  

                                           ╝●
╬► ⱥ●

Ⱬ

╫
╓ ╓                                     (1) 

Where ╓░▒ is the bending stiffness; b is the width of the plate; and əx is the non-dimensional 

buckling coefficient related to the boundary conditions. The results were validated with existing 

solutions (Weaver [2] [3], Qiao and Shan [4]), finite element solutions and showed an excellent 

agreement. Mahesh et al. [5] presented a general buckling formulation of plates under linearly 

varying uniaxial compressive load with general out-of-plane boundary conditions. Rayleigh-Ritz 

method based on the energy approach was used to present this formula along with orthogonal 

polynomials generated by a Gram-Schmidt process. Results exhibit a good agreement with 

differential quadrature (DQ) models [6]. Silva et al. [7] studied local and global buckling of fiber 

reinforced polymer composite open section thin-walled columns by presenting a formulation of 

generalized beam theory (GBT). Silvestre and Camotim [8] predicted buckling behavior for thin 

walled arbitrary orthotropic thin-walled members by developing a second order generalized beam 

theory (GBT). The second order theory was compared with Bauld and Lih-Shyng theory [9]. 
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According to results, the critical buckling load exists for all isotropic or cross-ply orthotropic 

members. Moreover, no specific bifurcation is detected for a symmetric orthotropic layups along 

with non-linear path. Using Rayleigh-Ritz method, Ghaheri et al. [10] studied the stability of 

symmetrically laminated composite elliptical plates on elastic foundation under uniform in-plane 

loading with various boundary conditions. Weaver and Nemeth [11] presented non-dimensional 

parameters and governing equations to predict buckling behavior of rectangular symmetrically 

laminated composite plates with different boundary conditions under uniform axial compression, 

uniform shear, or pure in-plane bending loading. Bounds for non-dimensional parameters were 

also presented to indicate percentage gained in the buckling resistance for laminated plates. The 

results showed 26-36% increase in the buckling resistance for tailored simply supported 

orthotropic plates; with respect to isotropic plates. On the other hand, clamped laminated plates 

exhibited 9-12% increase in the buckling resistance. Xu et al. [12] presented an approximate 

analytical solution to investigate the buckling of a tri-axial woven fabric composite structure under 

bi-axial loading using equivalent anisotropic plate method. The results showed that the analytical 

solution provides an upper bound solution for buckling; moreover, the solution can be used to 

predict buckling behavior for real life problem under bi-axial loading.  Sun and Harik [13] 

presented analytical solution to predict buckling of stiffened antisymmetric laminated composite 

plates with bending-extension coupling. Analytical strip method (ASM); developed by Harik and 

Salamoun [14], was used to present the analytical solution. Based on the results, plates with free 

ends contribute to the weakest stiffening effects. Furthermore, since the coupling stiffness matrix 

vanishes, layers with ply orientation 0o and 90o had no effect on the buckling load. Shufrin et al. 

[15] proposed a semi-analytical solution for buckling of symmetrically laminated rectangular 

plates with various boundary conditions under combined tension, compression, and shear based 



 

48 

on multi term Kantorovich method [16]. Stability of the angle-ply laminated plates improved 

compared to free in-plane restraint plates under biaxial compression/tension, and shear. Also extra 

in-plane forces were created because of the in-plane restraint. Using state space concept on Levy 

type solution, Thai and Kim [17] presented a closed form solution for buckling of orthotropic 

plates with two opposite simply supported edges using two variable refined plate theories. The 

results showed more accurate solutions than the higher order shear deformation theory. 

In this work, a generalized closed form solution of simply supported laminated composite wide 

plates subjected to axial compression was developed. The Rayleigh-Ritz approximation was used 

to obtain the buckling formula. Extensional, coupling, and flexural rigidities in 1D are determined 

using dimensional reduction starting with 3D rigidity matrix. Furthermore, finite element models 

for the plates are established using commercial software Abaqus. The finite element numerical 

solution was compared to the analytical solution resulting in excellent agreement regardless of the 

complexity of the composite lay-ups used. 

4.3 Analytical Formulation  

A generalized closed form buckling solution for simply supported anisotropic laminated composite 

wide plates under axial compression is derived using Rayleigh-Ritz approximation.  

4.3.1 Assumptions: 

6. Buckling takes place in the x-y plane about the weak axis (z-axis). 

7. The y-axis runs through the thickness of the plate where the composite lamination takes 

place, Figure 4.1 
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8. The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 

9. Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

10. Classical lamination theory is applicable with shear deformations ignored. 

4.3.2 Kinematics 

Geometry and Cartesian coordinates are presented in Figure 4.1 for simply supported wide plates. 

The z-axis is the weak axis of the plate about which bending takes place. The following 

displacement relations were assumed based on the isotopic Euler first buckling mode: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1The wide plate geometry. 
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                                     ◊ ● ║●;    ○ ●  ╒Ἳἱἶ
Ⱬ●

╛
                                                      (2) 

Where όὼ, and ὺὼ is the axial, and lateral displacements; B1, and C1 are constants to be solved; 

and x is the distance along the axis of the plate. For an intermediate class of deformation, the axial 

strain ‐ and curvature ‖are defined as follow. 

                               Ⱡ●
▀◊

▀●

▀○

▀●
 ◊ ○ł ;         ⱥ●

▀○

▀●
○                                  (3) 

4.3.3 Constitutive equations 

The principal material directions were transformed into the plate coordinate system, the stresses 

and strains are then related in the following equation 
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                                                (4)  

Where  ὗ  matrix represents the transformed reduced stiffness matrix as defined in standard 

composite textbooks [18]. Accordingly, the coupled force-strain relationship is established as 

follows: 
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Where: 
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    ◄▓  ◐▓ ◐▓                        

◐▓
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In which ὃ ,ὄ , and Ὀ  are the axial, coupling, and flexural rigidity coefficients. ὸ = thickness 

of the k-th ply; and N = number of different plies in the stacking sequence.  

The three dimensional (3D) rigidity matrix is established first using the material properties and the 

fiber orientations into equation (5). Then the dimension is reduced to 1D anisotropic axial, 

coupling and flexural rigidities using static condensation approach after applying the zero forces 

and moments.  
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                  (7) 

Equation (7) is solved first for the axial strain and axial curvature (Ⱡ● ,ⱥ●) in terms of the rest of 

the deformation components by extracting the second, third, fifth and sixth linear equations from 

the matrix. Since the rest of the deformation components for wide plate are equal zero resulting in 

equation (8):  

╝●
╜●

═ ║
║ ╓

Ⱡ●
ⱥ●
                                    (8) 

 

The axial force and in-plane moment vs. the axial strain and in-plane curvature relationship can be 

expressed in terms of the generally anisotropic material properties  

                     ╝●
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║ ╓
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                                        (9) 
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It may be observed that equation 9 the material properties for wide plate is expressed in terms 

extensional, coupling, and bending stiffness in the principal directions. 

4.3.4 Energy Formulation 

Rayleigh-Ritz approximation method was used to develop a generalized buckling solution based 

on the energy approach. . Strain energy can be expressed in terms of the integration of the applied 

loads multiplying the corresponding deformations. 

╤ ╝●Ⱡ● ╜●ⱥ● ▀●

╛
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The potential of external loads can be expressed as shown in equation (11)  

                                        ╦ ╟ ◊╛                                                              (11) 

Taking the total potential energy function and substituting equations (10) and (11) into equation 

(12)  
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                                   (12) 

Minimizing the total potential energy function with respect to B1 and C1 and setting the resulting 

expressions to zero, performing the integration by parts and manipulating the equations to give: 
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Solving equation (13) for B1 then substituting the resulting expression in equation (14), the 

following cubic equation is formulated in terms of C1 value 
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Considering the critical stability matrix since equation (16) does not lend itself to a closed form 

solution: 
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Setting the determinant of the matrix in Equation (18) to zero, substituting B1 expression from 

equation (15) and solving for C1 using the general solution of a quadratic equation: 

╒
═ ╛║

Ⱬ

╛
ᶸ ═ ╛║

Ⱬ

╛
═ ╛

Ⱬ

╛
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═ ╛
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                  (19) 

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero and manipulating its expression, a closed form solution for the critical 

buckling load is derived: 

                                             ╟╬►
╓ Ⱬ

╛

║

═ ╛
                                                    (20)

The equation is reduced to Euler buckling in the case of isotropic or specially-orthotropic materials 

since the coupling term vanishes. 
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4.4 Numerical Formulation 

Analytical buckling results were verified with finite element buckling analysis for laminated 

anisotropic plates using software package Abaqus. Plates of four layers were constructed with 

simply supported ends, in which roller and pin supports were introduced on the top and bottom 

edge of the plate, respectively. Additionally, translation in x-direction and rotation in y direction 

is prevented, moreover, a shell edge load was applied at the top of the plate as shown in Figure 4.2. 

 
Figure 4.2Boundary conditions and applied load. 

 Figure 4.3 illustrates modelôs mesh. Linear elastic laminated material was used for orthotropic 

and anisotropic layups, respectively where s-glass/epoxy material was assumed to simulate the 

composite plates. Quadrilateral eight node doubly curved thick shell element (S8R) was used for 

modeling the plates in 3D-space. Additionally, 3D solid 20-node quadratic brick element 

(C3D20R) was also attempted. Mesh size of 10.0 mm was attempted with total number of elements 

equal to 1000 for plate size of 1000 mm x 100 mm x 0.4 mm after performing a convergence study 

to select the appropriate mesh size.  
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Figure 4.3 Meshed Model. 

Two types of analyses were attempted in this study.  Buckling analysis using Lanczos solver was 

performed to simulate eigenvalue computation. Lanczos method is one of the methods used to 

solve for eigenvalues and eigenvectors for complex Hermitian matrix using power methods. 

Lanczos method reduces ά ά symmetric matrix to a tridiagonal matrix using recurrence 

relations (multidimensional array values) [19]. 

Additionally, nonlinear geometry analysis was conducted using the modified Riks analysis to 

predict the nonlinear stability response (pre-buckling and buckling) of the composite plates. The 

modified Riks analysis follows the equilibrium path, representing either the bifurcation points or 

the limit points using the Arc length method. Load increments are applied during the analysis in 

which equilibrium iterations converge along the arc length, forcing the constraint equation to be 

satisfied at every iteration [20]. 
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4.5 Results and Applications: 

4.5.1 Numerical Validation 

S-Glass/Epoxy material properties; obtained from typical values in FRP textbook [21], were used 

to simulate the analytical and numerical results for different stacking sequences of composite 

plates; see Table 4.1, with the following dimensions for width, length, and thickness: 1000 mm x 

100 mm x 0.4 mm, respectively. The comparison between the analytical and numerical buckling 

loads is reported in Table 4.2 for different layup stacking sequences. The results match closely 

with a minimum error equal to 0.0102% for single specially orthotropic layer (0/0/0/0) and a 

maximum error equal to 4.6853% for the antisymmetric angle ply (30/-30/30/-30). It is important 

to note that the layup with maximum error yield the analytical buckling load on the un-conservative 

side.   

Table 4.1 S-Glass/Epoxy material properties [21]. 

Material  E11 E22 G12 1˄2 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

Table 4.2 Analytical and numerical results for different layup sequences for S-Glass/Epoxy. 

Ply Orientation Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.29627 0.2963 0.0102 Single Specially 

Orthotropic 

90/90/90/90 0.08619 0.0862 0.0117 Single Specially 

Orthotropic 

30/-30/30/-30 0.21109 0.2012 4.6853 Antisymmetric Angle Ply 

45/-45/45/-45 0.14769 0.142 3.8527 Antisymmetric Angle Ply 

60/-60/60/-60 0.10605 0.1045 1.4616 Antisymmetric Angle Ply 

60/-60/45/-45 0.1241 0.1209 2.5786 Balanced Angle Ply 

30/-30/45/-45 0.17485 0.1676 4.1465 Balanced Angle Ply 

30/-30/60/-60 0.14447 0.1407 2.6096 Balanced Angle Ply 
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30/-30/0/0 0.24789 0.2451 1.1255 Anisotropic 

30/-30/0/90 0.15649 0.1539 1.6551 Anisotropic 

30/30/30/30 0.21109 0.2099 0.5638 Single anisotropic layer 

30/-30/-30/30 0.21109 0.2109 0.0901 Symmetric angle Ply 

0/90/90/0 0.27001 0.27 0.0038 Symmetric Cross Ply 

30/-60/-60/30 0.19796 0.1976 0.1819 Symmetric Multiple 

Angle Ply 

0/90/0/90 0.17954 0.1804 0.4791 Antisymmetric Cross Ply 

-45/30/-30/45 0.15561 0.1508 3.0911 Antisymmetric Multiple 

Angle Ply 

90/0/0/90 0.11245 0.1125 0.0445 Symmetric Cross Ply 

 
 

Load versus mid height deflection curve for three different stacking sequences obtained from the 

finite element nonlinear Riks analysis along with the analytical solution are illustrated in 

Figure 4.4 for comparison. Results show excellent agreement between analytical and numerical 

(FE) solutions. Antisymmetric cross ply (0/90/0/90) exhibit higher buckling load with minimal 

error between the analytical and numerical results as well. On the other hand, balanced angle ply 

(60/-60/45/-45) show the maximum error between results.  Single specially-orthotropic layer 

(0/0/0/0) exhibits the highest buckling load due to having all fibers aligned with the loading axis 

while the coupling coefficient ║╪▪░. Vanishes. 
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Figure 4.4 Analytical versus numerical solutions. 
 

 

4.5.2 Parametric Study 

4.5.2.1  Effect of Ply Orientation 

The effect of having different stacking sequences was studied for plates with the following 

dimensions for width, length, and thickness: 1000 mm x 100 mm x 0.4 mm, respectively. Buckling 

load values for different stacking sequences are shown in Table 4.2with values range between 

0.0862 N and 0.2963 N. Figure 4.5 presents buckling shape of the simply supported plate obtained 

from the numerical analysis. 

30/-30/0/90

0/90/0/90

60/-60/45/-45

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
o

a
d

, 
N

Mid -Height Deflection, mm

Load vs. Deflection

Numerical (FE) Solution

Analytical Solution



 

60 

 

 
Figure 4.5 Buckling shape of simply supported plate. 

 

4.5.2.2 Effect of Material Properties 

A parametric study was conducted to study the effect of changing material properties on the 

stability of the composite plate using two types of materials. S-Glass/Epoxy and High Strength 

Graphite/Epoxy were used to conduct this study and their properties are presented in Table 4.1and 

Table 4.3 obtained from typical values reported by FRP textbook [21]. 

Table 4.3 High Strength Graphite/Epoxy Material Properties [21]. 

Material  E11 E22 G12 1˄2 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 

 

 

S-Glass/Epoxy and High Strength Graphite/Epoxy buckling load results for different stacking 

sequences are presented in Table 4.2 and Table 4.4. In general, High Strength Graphite/Epoxy 

exhibits higher buckling loads than S-Glass/Epoxy since it has higher stiffness values along the 

fiber direction. Furthermore, the error value between the numerical and analytical results reduces 

for the S-Glass/Epoxy since it has lower E11/E22 ratio compared to that of High Strength 

Graphite/Epoxy.  
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Table 4.4 Comparison of analytical and numerical buckling load for different layup sequences. 

Ply 

Orientation 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.76656 0.7663 0.034 Single Specially Orthotropic 

90/90/90/90 0.05287 0.0529 0.0568 Single Specially Orthotropic 

30/-30/30/-30 0.4584 0.3966 13.4817 Antisymmetric Angle Ply 

45/-45/45/-45 0.23673 0.2076 12.3052 Antisymmetric Angle Ply 

60/-60/60/-60 0.10156 0.0945 6.9516 Antisymmetric Angle Ply 

60/-60/45/-45 0.14725 0.1319 10.4245 Balanced Angle Ply 

30/-30/45/-45 0.31892 0.277 13.1444 Balanced Angle Ply 

30/-30/60/-60 0.18781 0.1658 11.7193 Balanced Angle Ply 

30/-30/0/0 0.58106 0.55 5.3455 Anisotropic 

30/-30/0/90 0.27616 0.2527 8.4951 Anisotropic 

30/30/30/30 0.4584 0.4186 8.6824 Single anisotropic layer 

30/-30/-30/30 0.4584 0.4564 0.4364 Symmetric angle Ply 

0/90/90/0 0.67735 0.677 0.0517 Symmetric Cross Ply 

30/-60/-60/30 0.4138 0.4001 3.3108 Symmetric Multiple Angle 

Ply 

0/90/0/90 0.34673 0.3514 1.3469 Antisymmetric Cross Ply 

-45/30/-30/45 0.26444 0.2406 9.0153 Antisymmetric Multiple 

Angle Ply 

90/0/0/90 0.14208 0.1421 0.0141 Symmetric Cross Ply 

 

Buckling results for hybrid plates using S-Glass and High Strength Graphite/Epoxy material 

properties are illustrated in Table 4.5. Graphite/Epoxy properties were used for layers with 0o and 

30o orientation and S-Glass/Epoxy for the other orientations. Combining two materials showed 

a lower error values between analytical and numerical solution than using High Strength 

Graphite/Epoxy material properties since the overall E11/E22 ratio is reduced when combining two 

material therefore more terms might need to be added to the Rayleigh-Ritz approximation to 

capture the complexity in behavior which was beyond the scope of the present paper.   

Table 4.5 Analytical vs. numerical buckling loads for different layup sequences for hybrid 

Graphite and S-Glass/Epoxy composites. 

Ply Orientation Analytical Results, N Numerical Results, 

N 

% Error  

30/-30/60/-60 0.18829 0.1741 7.5363 

30/-30/0/90 0.29611 0.2723 8.041 

0/90/90/0 0.68151 0.6812 0.0455 

0/90/0/90 0.37137 0.3754 1.0852 
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90/0/0/90 0.17124 0.1713 0.0351 

 

4.5.2.3 Effect of Element Type in FE Analysis 

A parametric study was performed to study the effect of using different element types in the finite 

element analysis of S-Glass/Epoxy plates. Using quadratic shell element (S8R) and quadratic solid 

element (C3D20R) both with reduced integration schemes and element size equal to 10.0 mm x 

10.0 mm, comparison between analytical and numerical solution is presented in Table 4.6. An 

excellent agreement between analytical and shell element results is observed for all stacking 

sequences. On the other hand, solid element results were off in most of the different stacking 

sequences. Accordingly, it might be argued that the solid element (C3D20R) is less reliable than 

the shell element (S8R) for this type of analysis.  

Table 4.6 Analytical and numerical results with shell and solid element 

Ply Orientation Analytical 

Results, N 

Shell Element 

S8R, N 

Solid Element 

C3D20R, N 

0/0/0/0 0.29627 0.2963 0.295798 

90/90/90/90 0.08619 0.0862 0.0859608 

30/-30/30/-30 0.21109 0.2012 0.208625 

45/-45/45/-45 0.14769 0.142 0.145028 

60/-60/60/-60 0.10605 0.1045 0.104616 

60/-60/45/-45 0.1241 0.1209 0.124857 

30/-30/45/-45 0.17485 0.1676 0.176787 

30/-30/60/-60 0.14447 0.1407 0.156566 

30/-30/0/0 0.24789 0.2451 0.252257 

30/-30/0/90 0.15649 0.1539 0.199848 
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30/30/30/30 0.21109 0.2099 0.204145 

30/-30/-30/30 0.21109 0.2109 0.208886 

0/90/90/0 0.27001 0.27 0.190941 

30/-60/-60/30 0.19796 0.1976 0.156534 

0/90/0/90 0.17954 0.1804 0.19082 

-45/30/-30/45 0.15561 0.1508 0.176957 

90/0/0/90 0.11245 0.1125 0.190942 

 

4.6 Conclusion 

Rayleigh-Ritz approximation was used to derive a generalized analytical buckling formula for 

anisotropic laminated composite plates with simply supported conditions under axial 

compression.. The buckling formula was expressed in terms of the composite material axial, 

coupling, and flexural rigidities as well as the plate geometry. The analytical formula exhibited 

an excellent agreement with the numerical results. It was observed from the parametric study that 

using single composite material type with high stiffness ratio (E11/E22) per plate generally yielded 

more deviation of the analytical solution from the numerical results compared to using a two-

material hybrid composite. Therefore, more terms need to be added to the Rayleigh-Ritz 

approximation in the case of composite material with high stiffness ratio. Additionally, the use of 

shell finite elements was found to be more reliable compared to the use of solid finite elements in 

the buckling predictions. 
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5.1 Abstract 

A generalized analytical formula is developed to predict buckling of anisotropic laminated 

composite fixed-fixed thin columns by using the Rayleigh-Ritz displacement field 

approximation. Based on the generalized constitutive relationship, the effective extensional, 

coupling and flexural stiffness coefficients of the anisotropic layup are determined using 

dimensional reduction by static condensation of the 6x6 composite stiffness matrix. The 

resulting explicit formula is expressed in terms of the flexural stiffness since the coupling and 

extensional stiffness coefficients drop out of the formulation for this boundary condition 

when following the standard Rayleigh-Ritz formulation steps. This formula is similar to the 

Euler buckling formula in which the flexural rigidity is expressed in terms of the flexural 

stiffness coefficient of laminated composites.  Motivated by reducing some of the discrepancy 

with the finite element results, the pre-buckling solution was substituted into the bifurcation 

expression to yield an updated formula that includes the coupling and extensional stiffness 

coefficients. The analytical results are verified against finite element Eigen value solutions 

for a wide range of anisotropic laminated layups yielding high accuracy. A parametric study 

is then conducted to examine the effect of ply orientation and material properties including 

hybrid carbon/glass fiber composites. Relevance of the numerical and analytical results is 

discussed for all these cases. In addition, comparisons with an earlier buckling solution for 

cross-ply laminated columns are made. 

 

Keywords: buckling of composite columns, fixed-fixed boundary conditions, anisotropic 

laminated material, axial compression. 
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5.2 Introduction  

Laminated composite applications in aerospace, automotive, marine, and civil engineering are ever 

growing due to their excellent properties such as high stiffness-to-weight ratio, high strength-to-

weight ratio, fatigue and corrosion resistance. Accordingly, an increase in demand for better 

understanding of the mechanics of laminated composites has been realized due to this growth. 

Composite columns, like any traditional members subjected to axial compression, undergo 

stability issues prior to failure. Not many research studies have focused on the buckling of 

composite columns. However, in recent years an extensive amount of research has been performed 

to study the buckling behavior of other composite members, like plates and shells [1-15]. Silva et 

al. [1] established a formulation of a generalized beam theory (GBT) to study local and global 

buckling behavior of fiber reinforced polymer composite open section thin-walled columns. The 

solution for buckling using GBT included solving the following eigenvalue problem: 

                    + 'Ὠ π                                                                     (1) 

where K is the linear stiffness matrix, G is the geometric stiffness matrix and d is the eigenvector. 

Silvestre and Camotim [2] developed a second order generalized beam theory (GBT) to predict 

buckling behavior for thin walled arbitrary orthotropic members. The developed theory was 

compared with Bauld and Lih-Shyng theory [3]. Based on the results, the critical buckling load 

exists for all isotropic or cross-ply orthotropic members. Additionally, non-linear primary path is 

showed and no specific bifurcation is detected for symmetric orthotropic lay-ups. Rasheed and 

Yousif [4] developed a closed form solution to predict buckling of thin laminated orthotropic 

composite rings/long cylinders under external pressure based on the energy approach: 

ὖ σ                                               (2) 
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where ὃ ȟὄ ȟὥὲὨ Ὀ  constants are the effective extensional, coupling, and bending 

stiffness coefficients obtained from the dimensional reduction of orthotropic behavior. The 

developed formula yielded improved results compared to some design codes. Rasheed and Yousif 

[5] generated a closed form solution to predict buckling of anisotropic laminated composite 

rings/long cylinders under external hydrostatic pressure. The analytical solution was verified with 

finite element solutions and concluded that the buckling modes are symmetric with respect to 

rotated axes of the twisted section of the pre-buckling solution in case of anisotropy. Xu et al. [6] 

used equivalent anisotropic plate method to develop an approximate analytical solution to predict 

buckling of tri-axial woven fabric composite structure under bi-axial loading. The results showed 

that the analytical solution gives an upper bound buckling load and it can be used to predict 

buckling behavior for real world problems under bi-axial loading. Shukla et al. [7] used first order 

shear deformation and von-Karman type nonlinearity to estimate the critical buckling loads for 

laminated composite plates with various boundary conditions subjected to in-plane uniaxial and 

biaxial loading. The effects of span to thickness ratio, plate aspect ratio, lamination scheme, 

number of layers and modulus ratio were considered in estimating buckling load. Using analytical 

strip method (ASM) which was first developed by Harik and Salamoun [8], Sun and Harik [9] 

developed analytical buckling solution of stiffened antisymmetric laminated composite plates with 

bending-extension coupling to analyze bending of thin orthotropic and stiffened rectangular plates. 

Plates with free boundary conditions contribute the weakest stiffening effect. Additionally, the 

number of layers of ply orientations equal to 0 and 90 had no effect on the critical buckling load 

since the coupling stiffness matrix vanishes.  

 Debski et al. [10] studied buckling and post-buckling behavior of thin-walled composite channel 

column sections experimentally. The experimental results were verified with the numerical 



 

69 

 

solutions obtained from finite element models (Abaqus and ANSYS) and analytical-numerical 

method (ANM). Shufrin et al. [11] used multi term Kantorovich method [12] to develop a semi-

analytical solution for buckling of symmetrically laminated rectangular plates with general 

boundary conditions under combined tension, compression, and shear. They concluded that the 

stability of angle-ply laminated plates improved under biaxial compression/tension and shear 

compared to free in-plane restraint. Furthermore, due to the in-plane restrains, additional in-plane 

forces were created. Thai and Kim [13] suggested a closed form solution for buckling of 

orthotropic plates with two opposite simply supported edges using two-variable refined plate 

theories. Using state space concept on Levy type solution to solve the governing equations, their 

results showed more accurate solutions than the higher order shear deformation theory. Using first 

order shear deformation theory, Abramovich and Livshits [14] studied the free vibrations of non-

symmetric cross ply laminated composite beams. Longitudinal, transverse displacement, rotary 

inertia, and shear deformation were taken into account in the analysis.  The following equation of 

motion of cross ply laminated composite beams was solved for different boundary conditions:  

                        - ή #ή π                                                          (3) 

where -  is the generalized mass matrix, # is the matrix differential operator; and ή is the 

vector of the generalized displacements. The new approach and Bernoulli -Euler theory were 

verified against numerical solutions. Abramovich et al. [15] used the exact method based on 

Timoshenko equation to study the vibrations and buckling of cross-ply non-symmetric rectangular 

laminated composite beams. The effects of material properties, number of layers, and boundary 

conditions are considered. Analytical results showed a good agreement with the numerical results. 

Moreover, the non-symmetric layup showed a coupling effect between the axial and lateral motion 

of the beam. 
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 In this work, a generalized analytical formula for buckling of fixed-fixed laminated composite 

columns subjected to axial compression is developed. The RayleighïRitz approximation was used 

to obtain the buckling formula. Extensional, coupling and flexural rigidities in 1D are determined 

using dimensional reduction by the static condensation approach starting with the 3D rigidity 

matrix. Moreover, finite element models for the columns are established using the commercial 

software Abaqus. The finite element numerical solution was compared to the analytical solution 

resulting in excellent agreement regardless of the complexity of the composite lay-ups used.  

5.3 Analytical  Formulation 

Rayleigh-Ritz approximation is used to derive a generalized closed form buckling solution for 

fixed-fixed anisotropic laminated composite columns under axial compression 

5.3.1 Assumptions: 

11. Buckling occurs in the x-y plane about the weak axis (z-axis). 

The y-axis is perpendicular to the composite lamination surface,  

12. Figure 5.1 

13. The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 

14. Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

15. Classical lamination theory is applicable with effect of transverse shear deformation 

ignored. 
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5.3.2 Kinematics 

Geometry and the Cartesian coordinates of the fixed-fixed column are presented in  

Figure 5.1. Bending occurs about the weak axis of the column which is the z-axis. Depending on 

the isotropic buckling mode, the following displacement relations were assumed: 

 

◊ ● ║● ;    ○ ●  ╒ ἫἷἻ
Ⱬ●

╛
                                         (4) 

where όὼ is the axial displacement, ὺὼ the lateral displacement, B1 and C1 are constants to 

be solved for and x is the distance along the axis of the column,  

Figure 5.1. For intermediate class of deformation, the axial strain ‐ and curvature ‖ are presented 

given by 
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Figure 5.1Column geometry. 

5.3.3 Constitutive equations 

The principal material directions were transformed into the column coordinate system. The stresses 

and strains are then related in the following equation 
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where  ὗ  matrix represents the transformed reduced stiffness matrix as defined in standard 

composite textbooks [16]. Accordingly, the coupled force-strain relationship is established as  
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In which ὃ , ὄ , and Ὀ  are the extensional, coupling, and flexural rigidity coefficients. ὸ = 

thickness of the k-th ply; and N = number of different plies in the stacking sequence.  

Material properties and the fiber orientations are used in Eq. (7) to generate the three dimensional 

(3D) constitutive matrix. Applying the zero forces and moments then by using static condensation, 

the 3D classical lamination matrix is reduced into 1D anisotropic extensional, coupling and 

flexural stiffness coefficients. 
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Extracting the second, third, fifth, and sixth linear equations from matrix (9) to solve the axial 

strain and axial curvature (Ⱡ● ,ⱥ●) with respect to the other deformation components.   

 

Inverting the matrix Q to the other side of Eq. (10), the condensed deformation components are 

obtained in terms of the axial strain and curvature:  
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                                                      (11) 

By substituting Eq. (11) into the first and fourth linear equation of the matrix (9); the axial force 

and in-plane moment versus the axial strain and in-plane curvature relationship can be expressed 

in terms of the generally anisotropic material properties  

                     ╝●
╜●

═╪▪░║╪▪░
║╪▪░╓╪▪░

Ⱡ●
ⱥ●

                                      (12) 

where 
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║ ╓
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5.3.4 Energy Formulation  

Rayleigh-Ritz approximation was used to derive a general buckling formula based on the energy 

approach. Strain energy can be expressed in terms of the integration of the applied loads 

multiplying the corresponding deformations. 

The potential of external loads can be expressed as   

                                        ╦ ╟ ◊╛                                                              (15) 

In view of Eqs. (14) and (15) , the total potential energy function is given by  

                    ♂  ╤ ╦ ᷿ ═╪▪░Ⱡ● ║╪▪░Ⱡ●ⱥ● ╓╪▪░ⱥ● ▀● ╟ ◊╛
╛

                    (16) 

♂ ═╪▪░║╛ ═╪▪░║╒
Ⱬ

╛
═╪▪░╒╛

Ⱬ

╛
╓╪▪░╒╛

Ⱬ

╛
╟║╛        (17)  

By minimizing the total potential energy function with respect to B1 and C1 and setting the resulting 

expressions to zero, performing the integration by parts and manipulating the equations, one 

obtains 

In view of  Eqs. (18) and (19), we have 

     ╤ ᷿ ╝●Ⱡ● ╜●ⱥ● ▀●
╛

 

 

 

 

 

(14) 

               ᷿ ═╪▪░Ⱡ● ║╪▪░Ⱡ●ⱥ● ▀● ᷿
╛╛
║╪▪░Ⱡ●ⱥ● ╓╪▪░ⱥ● ▀● 

 

⸗♂

⸗║
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                               ║
╒ Ⱬ

╛

╟

═╪▪░
                                              (20)     

                     ═╪▪░╛╒
Ⱬ

╛

╟╛ Ⱬ

╛
╓╪▪░╛

Ⱬ

╛
╒                             (21) 

and solving Eq. (21), we get C1 as  

                                                

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero, a closed form solution for the critical buckling load is derived: 

                                             ╟╬►
╓╪▪░Ⱬ

╛
                                                    (23) 

It may be observed that Eq. (23) reduces to the Euler buckling formula of the fixed-fixed isotropic 

column with an effective length factor of 0.5 when ╓╪▪░ is replaced with EI of the column. 

5.3.5 Pre-buckling Solution 

All the terms having the coupling effect (ὄ ) in the previous derivation lent to zero, therefore to 

produce the effect of the coupling on the stability of the laminated composite column, the pre-

buckling solution is considered. The in-plane moment (ὓ ) is set to zero during pre-buckling and 

before reaching the buckling load. 

                   ╜● ║╪▪░ꜗ● ╓╪▪░ⱥ●                                                   (24) 

║╪▪░ꜗ● ╓╪▪░ⱥ● 

                        ⱥ●
║╪▪░

╓╪▪░
●ꜗ                                                       (25) 

            ╒         ἿἰἱἫἰ ἱἻ Ἡ ἼἺἱἾἱἩἴ ἻἷἴἽἼἱἷἶ  
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By substituting Eq. (25) into the axial force equation, the axial force versus the axial strain can be 

expressed in terms of the generally anisotropic material properties 

                   ╟● ═╪▪░ꜗ● ║╪▪░ⱥ●                                              (26) 

                                                                 ╟● ═╪▪░ꜗ●
║╪▪░

╓╪▪░
●ꜗ                 

                     ╟● ═▄██ꜗ●                                                           (27) 

where 

                ═▄██ ═╪▪░
║╪▪░

╓╪▪░
                                                  (28) 

The axial force (ὖ) is positive and in compression based on the assumed sign convention. 

However, the axial strain () is negative although it is in compression as follow: 

                  ◊ ║●                                                            (29) 

Using the axial strain in Eq. (5), setting the lateral displacement term to zero, and substituting 

equation (29), the axial strain can be expressed as 

                  ꜗ● ║                                                             (30) 

By substituting Eq. (30) into Eq. (27), a relationship between the axial force and the unknown 

constant (ὄ) is obtained, i.e.  

               ║
╟●

═▄██
                                                             (31) 

5.3.6 Bifurcation Solution in terms of Pre-buckling Deformation 

By substituting Eq. (31) into the total potential energy function given by Eq. (17), one obtains 

♂ ═╪▪░
╟

═▄██
╛ ═╪▪░

╟

═▄██
╒

Ⱬ

╛
═╪▪░╒╛

Ⱬ

╛
╓╪▪░╒╛

Ⱬ

╛
╟╛

╟

═▄██
         

(32) 
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Minimizing the total potential energy with respect to the unknown ὅ, setting the resulting 

expression to zero, and manipulating the equation, one gets 

⸗♂

⸗╒

═╪▪░╟╒╛

═▄██

Ⱬ

╛

═╪▪░╒╛ Ⱬ

╛

╓╪▪░╒╛ Ⱬ

╛
                (33) 

By solving Eq. (33), one gets 

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero and substituting Eq. (28), a new closed form solution for the critical buckling 

load is derived considering the coupling effect: 

                    ╟╬►
╓╪▪░Ⱬ

╛

║╪▪░Ⱬ

═╪▪░
╛                                                  (35)        

             ╟╬►
Ⱬ

╛
╓╪▪░

║╪▪░

═╪▪░
                                                (36) 

                  ╟╬►
Ⱬ

╛
╓▄██                                                         (37) 

where 

            ╓▄██ ╓╪▪░
║╪▪░

═╪▪░
                                                       (38) 

It is observed that Eq. (36) reduces down to Euler buckling formula of the fixed-fixed isotropic 

column in the case of isotropic or specially-orthotropic materials. 
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5.4 Numerical Formulation 

The derived analytical solution was verified by applying finite element buckling analysis using the 

commercial software package Abaqus for laminated anisotropic columns. Fixed-fixed columns 

were assembled with a fixed support at the bottom and fixed-roller support on top of the column, 

Figure 5.2. Moreover, columns were subjected to axial compression load applied at the top of the 

columns. Linear elastic laminated material was used for orthotropic and anisotropic layups, 

respectively. Columns were modeled in 3D space using quadrilateral eight node doubly curved 

thick shell element (S8R). The Modelôs boundary conditions and mesh are presented in Figure 5.2. 

In addition, 3D 6-node quadratic triangular thin shell element (STRI65) was also attempted. 

Furthermore, a graphite/epoxy material was mainly used to simulate the composite columns.  

Figure 5.2 Left: Boundary conditions. Right: Meshed Model. 
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In this study, two types of analyses were attempted. Buckling analysis was done at the beginning 

to simulate eigenvalue computation. Lanczos method is used to solve for eigenvalues and 

eigenvectors for complex Hermitian matrix using power method. By adopting recurrence relations 

(multidimensional array values), ά ὼ ά symmetric matrix is reduced to a tridiagonal matrix [17]. 

 Secondly, a nonlinear stability analysis (pre-buckling and buckling) of the composite column was 

predicted by performing nonlinear geometry analysis using the modified Riks computations. The 

modified Riks analysis uses the Arc length method to follow the equilibrium path, representing 

either the bifurcation points or the limit points. Load increments are applied during the analysis in 

which equilibrium iterations converge along the arc length, forcing the constraint equation to be 

satisfied at every iteration [18]. 

5.5 Results and Applications: 

5.5.1 Numerical Validation  

To simulate the analytical and numerical results for different stacking sequences of composite 

columns; High Strength Graphite/Epoxy material properties was used, Table 5.1 [19]. Composite 

columns were simulated with the following dimensions for length, width, and thickness: 100 mm 

x 1.0 mm x 0.4 mm, respectively. 

 

Table 5.1 High Strength Graphite/Epoxy Material Properties [19]. 

 

The comparison between the analytical and numerical buckling loads is reported in Table 5.2 for 

different layup stacking sequences. The results of Eq. (23) match closely with a minimum error 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 
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equal to 0.01995% for the single specially-orthotropic layer (90/90/90/90) and a maximum error 

equal to 14.345% for the antisymmetric cross ply laminate (0/90/0/90). On the other hand, the 

analytical results of Eq. (36) showed an excellent agreement with the numerical results with 

minimum error equal to 0.02375% for the single specially-orthotropic layup (90/90/90/90) and a 

maximum error equal to 1.109% for the single anisotropic laminate (30/30/30/30). Moreover, it is 

observed that the error significantly reduced down using Eq. (36) since the coupling and 

extensional effects are considered.  

The load versus mid height deflection curves are plotted for three different stacking sequences 

obtained from finite element nonlinear Riks analysis along with the analytical solution for 

comparison. Riks analysis is useful to indicate the existence of pre-buckling deformation in the 

transverse direction. Isotropic columns buckle through bifurcation where there is no transverse 

deformation prior to buckling, see Figure 5.3. Results for symmetric angle ply (30/-30/-30/30) and 

anisotropic layup (30/-30/0/90) show excellent agreement. On the other hand, the antisymmetric 

angle ply (30/-30/30/-30) exhibits higher buckling load with minimal error between the analytical 

and numerical results as well.  
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Figure 5.3 Analytical versus numerical solutions. 
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 Table 5.2 Comparison of analytical and numerical buckling load for different layup sequences. 

Ply 

Orientation 

Analytical 

Results, N, 

Equation 

(23) 

Analytical 

Results, N, 

Equation 

(36) 

Numerical 

Results, N 

% Error, 

Equation 

(23) 

% Error, 

Equation 

(36) 

Layup Type 

0/0/0/0 3.053 3.053 3.04733 0.18572 0.18572 Single Specially Orthotropic  

90/90/90/90 0.210552 0.21056 0.21051 0.01995 0.02375 Single Specially Orthotropic  

0/90/90/0 2.70446 2.70446 2.69824 0.23 0.23 Symmetric Cross ply 

90/0/0/90 0.56728 0.56728 0.56698 0.05289 0.05289 Symmetric Cross ply 

0/90/0/90 1.63686 1.40404 1.40209 14.34271 0.13889 Antisymmetric Cross Ply 

60/-60/45/-45 0.29002 0.27956 0.28093 3.13427 0.49006 Balanced Multiple Angle Ply 

30/-30/30/-30 0.9566 0.9566 0.9613 0.49133 0.49133 Antisymmetric Angle Ply 

45/-45/45/-45 0.35483 0.35483 0.3574 0.7243 0.7243 Antisymmetric Laminates 

60/-60/60/-60 0.22753 0.22753 0.22822 0.30326 0.30326 Antisymmetric Laminates 

30/30/30/30 0.43373 0.43373 0.43854 1.10899 1.10899 Single anisotropic layer 

30/-60/-60/30 0.46286 0.46286 0.46777 1.0608 1.0608 
Symmetric Multiple Angle 

Layers 

30/-30/-30/30 0.77024 0.77024 0.77585 0.72835 0.72835 Symmetric angle Ply 

-45/30/-30/45 0.4563 0.4563 0.45972 0.74951 0.74951 
Antisymmetric Multiple Angle 

Ply 

30/30/-30/-30 0.64682 0.64682 0.64489 0.29839 0.29839 Antisymmetric Angle Ply 

30/-30/0/90 0.70276 0.70273 0.70451 0.24902 0.2533 Anisotropic 
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5.5.2 Parametric Study 

5.5.2.1  Effect of Ply Orientation 

The effect of having different stacking sequences was studied for columns with the following 

dimensions: 100 mm x 1.0 mm x 0.4 mm for length, width, and thickness, respectively. Results 

for buckling load values for different stacking sequences are presented in Table 5.2 in the previous 

section with a range values between 0.2106 N and 3.053 N. 

5.5.2.2 Effect of Material Properties 

A parametric study was performed to investigate the effect of changing material properties on the 

stability of the composite column using two types of materials. High Strength Graphite/Epoxy and 

S-Glass/Epoxy material were used to conduct this study and their properties are illustrated in 

Table 5.1 and Table 5.3 [19]. 

Table 5.3 S-Glass/Epoxy material properties [19]. 

 

Table 5.2 and Table 5.4 illustrate results of High Strength Graphite/ Epoxy and S-Glass/Epoxy for 

different stacking sequences. In general, it was observed that High Strength Graphite/Epoxy 

exhibits much higher buckling loads than S-Glass/Epoxy since it has higher stiffness values along 

the fiber direction. It is also observed that the amount of error between the analytical and numerical 

results reduces for the S-Glass/Epoxy since it has lower E11/E22 ratio compared to that of the High 

Strength Graphite/Epoxy. Moreover, it was observed that Eq. (36) decreased the amount of error 

compared to the error value using Eq. (23). 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 
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Table 5.4 Analytical and numerical results for different layup sequences for S-Glass/Epoxy. 

Ply Orientation Analytical 

Results, N,  

Eq. (23) 

Analytical 

Results, N,  

Eq. (36) 

Numerical 

Results, N 

% 

Error, 

Eq. (23) 

% Error,  

Eq. (36) 

Layup Type 

0/0/0/0 1.15804 1.15804 1.15778 0.0225 0.02246 Single Specially Orthotropic  

90/90/90/90 0.33689 0.33689 0.33681 0.0238 0.02375 Single Specially Orthotropic  

0/90/90/0 1.05931 1.05931 1.05857 0.0699 0.06986 Symmetric Cross ply 

90/0/0/90 0.44116 0.44116 0.44111 0.0114 0.01134 Symmetric Cross ply 

0/90/0/90 0.752 0.70945 0.70915 5.6982 0.04229 Antisymmetric Cross Ply 

60/-60/45/-45 0.40891 0.40463 0.40508 0.9367 0.11122 Balanced Multiple Angle Ply 

30/-30/30/-30 0.69638 0.69638 0.69709 0.102 0.10196 Antisymmetric Angle Ply 

45/-45/45/-45 0.45911 0.45911 0.45982 0.1547 0.15465 Antisymmetric Laminates 

60/-60/60/-60 0.36215 0.36215 0.36241 0.0718 0.0718 Antisymmetric Laminates 

30/30/30/30 0.57068 0.57068 0.57243 0.3067 0.30666 Single anisotropic layer 

30/-60/-60/30 0.56547 0.56547 0.56685 0.2441 0.24405 Symmetric Multiple Angle 

Layers 
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30/-30/-30/30 0.64083 0.64083 0.64219 0.2123 0.21223 Symmetric angle Ply 

45/30/-30/45 0.49629 0.49629 0.49706 0.1552 0.15516 Antisymmetric Multiple Angle 

Ply 

30/30/-30/-30 0.6115 0.6115 0.61163 0.0213 0.02126 Antisymmetric Angle Ply 

30/-30/0/90 0.55642 0.55097 0.5513 0.9202 0.0599 Anisotropic 
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Buckling load results using S-Glass and High Strength Graphite/Epoxy hybrid material properties 

for the composite columns are presented in Table 5.5. High Strength Graphite/Epoxy material was 

used for layers with 0o and 30o and S-Glass/Epoxy for the rest of the orientations. Higher error 

values between the analytical and numerical results were exhibited when combining two materials 

using Eq. (23). Considering the coupling and extensional effect in Eq. (36) to capture the 

complexity in behavior of hybrid carbon/glass fiber composites, the error values are decreased and 

the analytical results showed an excellent agreement with the numerical results. 

Table 5.5 Analytical vs. numerical buckling loads for different layup sequences for hybrid 

Graphite and S-Glass/Epoxy composites. 

Ply Orientation Analytical 

Results, N, 

Eq. (23) 

Analytical Results, 

N, Eq. (36) 

Numerical 

Results, N 

% Error,  

Eq. (23) 

% 

Error,  

Eq. 

(36) 

30/-30/60/-60 0.61347 0.51765 0.5222 14.8777 0.87898 

30/-30/0/90 0.76152 0.76011 0.75809 0.4505 0.26576 

0/90/90/0 2.71765 2.71765 2.7096 0.2963 0.29622 

0/90/0/90 1.70108 1.49791 1.49092 12.3546 0.46666 

90/0/0/90 0.67617 0.67617 0.67678 0.0903 0.09022 

 

5.5.2.3 Effect of Element Type in FE Analysis 

The effect of using different element types in the finite element analysis was also studied. 

Comparisons between the analytical and numerical results using the quadratic shell element (S8R) 

and 6-node quadratic triangular thin shell element (STRI65) both with reduced integration schemes 

having element size equal to 2.5 x 2.5 mm are presented in Table 5.6. Results of the quadrilateral 
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shell element showed an excellent agreement with the analytical solution for all stacking 

sequences. On the other hand, the triangular element results showed a good agreement but slightly 

less accurate comparison with the analytical results.  

Table 5.6 Analytical and numerical results with shell and triangular element 

 

 

 

Ply Orientation Analytical 

Results, N 

Shell Element 

S8R, N 

Triangular Thin 

Shell Element 

STRI65, N 

0/0/0/0 3.053 3.04733 3.0408 

90/90/90/90 0.2106 0.21051 0.2105 

0/90/90/0 2.7045 2.69824 2.6939 

90/0/0/90 0.5673 0.56698 0.56681 

60/-60/45/-45 0.2901 0.28093 0.2809 

30/-30/30/-30 0.9566 0.9613 0.96156 

45/-45/45/-45 0.3549 0.3574 0.35746 

60/-60/60/-60 0.2276 0.22822 0.22822 

30/30/30/30 0.4338 0.43854 0.43859 

30/-60/-60/30 0.4629 0.46777 0.4681 

30/-30/-30/30 0.7703 0.77585 0.77609 

_45/30/-30/45 0.4563 0.45972 0.4595 

30/30/-30/-30 0.6469 0.64489 0.64742 

30/-30/0/90 0.7028 0.70451 0.70503 
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5.5.2.4 Comparison with Other Solutions 

The results of the analytical formula (Equation 36) were compared with previous work conducted 

by Abramovich et al. [15] for non-symmetric cross ply rectangular laminated composite beams. 

Table 5.7 presents the results for Ref. [15] and the present analytical solution compared with 

numerical solution for three different material properties (Glass-Epoxy, and Carbon Epoxy, 

Kevlar-Epoxy). It was observed that the present analytical formula yields generally more accurate 

results when compared to finite element results for different material properties and number of 

layers. 
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 Table 5.7 Comparison of the analytical formula with previous work. 

Glass-epoxy 

Layup 

orientation 

D11, 

MPa 

Non-

dimensional 

buckling 

parameter, 

ɚ 

Ref. [15],    

N                 

Analytical 

solution, N     

Numerical 

solution, 

N      

Error  % 

Ref. [15] 

Error  %, Analytical 

solution 

0/90/0/90 19.94326 37.601 0.224966139 0.221430227 0.22146 1.558518 0.013445608 

0/90/90/0 27.42504 39.44 0.324493412 0.318907912 0.31896 1.705246 0.016333131 

0/90 2.492907 32.052 0.095883283 0.094093783 0.0941201 1.838885 0.02796915 

0/90/0 12.31033 39.438 0.258945644 0.254059007 0.25404 1.894469 0.00748125 

Carbon-epoxy 

Layup 

orientation 

D11, 

MPa 

Non-

dimensional 

buckling 

parameter, 

ɚ 

Ref. [15],    

N                 

Analytical 

solution, N     

Numerical 

solution, 

N      

Error  % 

Ref. [15] 

Error  %, Analytical 

solution 

0/90/0/90 36.48873 33.211 0.363548532 0.364464655 0.36401 0.126934 0.124745968 

0/90/90/0 61.44029 39.21 0.722722825 0.726620906 0.72557 0.393951 0.144629146 

0/90 4.561092 14.842 0.081234942 0.081193574 0.0810311 0.250929 0.200107074 

0/90/0 28.38929 39.185 0.59333307 0.596178399 0.59492 0.26746 0.211077582 

Kevlar -epoxy 

Layup 

orientation 

D11, 

MPa 

Non-

dimensional 

buckling 

parameter, 

ɚ 

Ref. [15],    

N                 

Analytical 

solution, N     

Numerical 

solution, 

N      

Error  % 

Ref. [15] 

Error  %, Analytical 

solution 

0/90/0/90 15.85597 33.666 0.160142295 0.160517136 0.16004 0.063878 0.297249221 

0/90/90/0 26.25641 39.14 0.308303108 0.309976261 0.30912 0.264964 0.276234448 
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0/90 1.981996 16.794 0.039942816 0.039860353 0.0397581 0.462452 0.256527868 

0/90/0 12.10614 39.109 0.252526201 0.253564886 0.25233 0.077695 0.487009836 

L/r = 500, k = 5/6, c = 1 mm. 
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5.6 Conclusions 

 Rayleigh-Ritz approximation was used to derive a generalized closed form buckling formula for 

anisotropic laminated composite columns with fixed-fixed end conditions under axial compression 

which may be considered an extension to the buckling formula of isotropic columns. The buckling 

load formula was expressed in terms of the composite material effective flexural stiffness 

coefficient as well as the column geometry. In order to decrease some of the discrepancies in the 

results with the numerical analysis, the pre-buckling solution was substituted into the bifurcation 

expression to yield a new formula that includes the coupling and extensional stiffness coefficients. 

This new analytical formula exhibited an excellent agreement with the finite element analysis 

results. The parametric study showed that using a single composite material type per column 

generally yielded less deviation of the analytical solution from the numerical results compared to 

using a two-material hybrid composite while both cases yielded minimal levels of error when Eq. 

(36) is used. Additionally, the use of thin triangular and thick quadrilateral shell finite elements 

was found to be reliable in the buckling predictions. Finally, the present analytical formula yielded 

excellent correspondence to earlier buckling solutions of cross-ply laminated columns. 
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Chapter 6 - Analytical and Finite Element Buckling Solutions of 

Fixed-Fixed Anisotropic Laminated Composite Wide Plates under 

Axial Compression  

Hayder A. Rasheed1, Rund Al-Masri 2 

6.1 Abstract 

Using Rayleigh-Ritz approximation, a generalized analytical buckling formula was 

developed of generally anisotropic laminated fixed-fixed composite plates. Using the 

generalized constitutive equation, the effective extensional, coupling, and flexural stiffness 

coefficients of the anisotropic layup are determined using dimensional reduction of 6x6 

composite stiffness matrix. The resulting explicit formula is expressed in terms of the flexural 

stiffness coefficients as well as the plate geometry. In order to decrease some of the 

discrepancy in some of the results, the coupling and extensional effect was considered 

through the substitution of the pre-buckling solution into the bifurcation expression to yield 

a new formula. The analytical results are verified against finite element Eigen value solutions 

for a wide range of anisotropic laminated layups yielding high accuracy. A parametric study 

is then conducted to examine the effect of ply orientations, material properties and type of 

element in FE analysis. Relevance of the numerical and analytical results is discussed for all 

these cases. 

 

 

Keywords: Buckling of Composite Plates, Fixed-Fixed Boundary Conditions, Anisotropic 
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6.2 Introduction  

Laminated composite material use is ever growing in industrial applications such as aerospace, 

automotive, and civil engineering due to their distinguished properties (High strength-to-weight 

ratio, high stiffness-to-weight ratio, fatigue, and corrosion resistance). Accordingly, this growth 

has resulted in increasing the demand for better understanding the mechanics of laminated 

composites.  Wide plates undergo stability (i.e. buckling) issues prior to failure. An extensive 

amount of research has been conducted to study buckling behavior of plates and shells in recent 

years [1-17]. Herenica et al. [1] presented a closed form solution for buckling of long anisotropic 

plates under axial compression (Nx) with various boundary conditions. The closed form solution 

was expressed as:  

                                          ╝●
╬► ⱥ●

Ⱬ

╫
╓ ╓                                                            (1) 

Where ╓░▒ is the bending stiffness; b is the width of the plate; and əx is the non-dimensional 

buckling coefficient related to the boundary conditions. Results validation with existing solutions 

(Weaver [2] [3], Qiao and Shan [4]) and finite element solutions was conducted, the results 

showed an excellent agreement. Mahesh et al. [5] developed a general buckling formulation for 

plates under linearly varying uniaxial compressive load with general out-of-plane boundary 

conditions. Formula was presented using Rayleigh-Ritz method based on the energy approach 

along with orthogonal polynomials generated by a Gram-Schmidt process. Results showed a good 

agreement with differential quadrature (DQ) models [6]. Silva et al. [7] presented a formulation 

of generalized beam theory (GBT) to study local and global buckling of fiber reinforced polymer 

composite open section thin-walled columns. Silvestre and Camotim [8] presented a second order 
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generalized beam theory (GBT) to predict buckling behavior of thin walled arbitrary orthotropic 

thin-walled members. The second order theory was compared with Bauld and Lih-Shyng theory 

[9]. The critical buckling load exists for all isotropic or cross-ply orthotropic members according 

to results. Moreover, no specific bifurcation is detected for a symmetric orthotropic layups along 

with non-linear path. Ghaheri et al. [10] used Rayleigh-Ritz method to conduct a study on the 

buckling behavior of symmetrically laminated composite elliptical plates on elastic foundation 

under uniform in-plane loading with various boundary conditions. Weaver and Nemeth [11] 

developed a non-dimensional parameters and governing equations to study buckling behavior of 

rectangular symmetrically laminated composite plates with different boundary conditions under 

uniform axial compression, uniform shear, or pure in-plane bending loading. Furthermore, bounds 

for non-dimensional parameters were presented as an indication of percentage gained in the 

buckling resistance for laminated plates. The results exhibited 26-36% increase in the buckling 

resistance for tailored simply supported orthotropic plates; with respect to isotropic plates. 

Moreover, clamped laminated plates exhibited 9-12% increase in the buckling resistance. Xu et 

al. [12] developed an approximate analytical solution to predict buckling behavior of a tri-axial 

woven fabric composite structure under bi-axial loading using equivalent anisotropic plate 

method. The results showed that the analytical solution provides an upper bound solution for 

buckling; moreover, the solution can be used to predict buckling behavior for real life problem 

under bi-axial loading. Using analytical strip method (ASM) developed by Harik and Salamoun 

[13], Sun and Harik [14] developed analytical solution to predict buckling of stiffened 

antisymmetric laminated composite plates with bending-extension coupling. According to results, 

plates with free ends contribute to the weakest stiffening effects. Moreover, since the coupling 

stiffness matrix vanishes, layers with ply orientation 0o and 90o had no effect on the buckling load. 
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Shufrin et al. [15] presented a semi-analytical solution for buckling of symmetrically laminated 

rectangular plates under combined tension, compression, and shear with various boundary 

conditions using multi term Kantorovich method [16]. Stability of the angle-ply laminated plates 

improved compared to free in-plane restraint plates under biaxial compression/tension, and shear. 

Additionally, extra in-plane forces were generated because of the in-plane restraint. Using state 

space concept on Levy type solution, Thai and Kim [17] developed a closed form solution for 

buckling of orthotropic plates with two opposite simply supported edges using two variable 

refined plate theories. The results exhibited more accurate solutions than the higher order shear 

deformation theory. 

In this work, a generalized analytical buckling formula for fixed-fixed laminated composite wide 

plates subjected to axial compression is developed using Rayleigh-Ritz approximation method. 

Starting with 3D rigidity matrix and using dimensional reduction approach, extensional, coupling, 

and flexural rigidities in 1D are determined. Moreover, finite element models for the plates are 

generated using commercial software Abaqus. The finite element numerical solution was 

compared to the analytical solution resulting in excellent agreement regardless of the complexity 

of the composite lay-ups used. 

6.3 Analytical Formulation  

A generalized analytical buckling formula for fixed-fixed anisotropic laminated composite wide 

plates under axial compression is derived using Rayleigh-Ritz approximation.  

6.3.1 Assumptions 

¶ Buckling occurs in the x-y plane about the z-axis (weak axis). 
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¶ The y-axis runs through the thickness of the plate where the composite lamination takes 

place, Figure 6.1 

¶ The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 

¶ Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

¶ Classical lamination theory is applicable with shear deformations ignored. 

6.3.2 Kinematics 

Figure 6.1 presents geometry and the Cartesian coordinates of the fixed-fixed plate. Bending takes 

place around the z-axis which is the weak axis. The following displacement relations were assumed 

based on the isotopic Euler first buckling mode: 

 

 

 

 

 

 

 

 

 

Figure 6.1The wide plate geometry. 
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◊ ● ║● ;    ○ ●  ╒ ἫἷἻ
Ⱬ●

╛
                                         (2) 

Where  όὼ, and ὺὼ is the axial, and lateral displacements; B1 and C1 are constants to be solved; 

and x is the distance along the axis of the plate. For an intermediate class of deformation, the axial 

strain ‐ and curvature ‖are defined as follow. 

                               Ⱡ●
▀◊

▀●

▀○

▀●
 ◊ ○ ;         ⱥ●

▀○

▀●
○                                  (3) 

6.3.3 Constitutive equations 

Transforming the principle material directions into the plate coordinate system, the stresses and 

strains are then related in the following equation 

                                            

Ɑ●
Ɑ◑
Ⱳ●◑

╠ ╠ ╠

╠ ╠ ╠

╠ ╠ ╠

Ⱡ●
Ⱡ◑
♬●◑

                                                 (4)  

Where  ὗ  matrix represents the transformed reduced stiffness matrix as defined in standard 

composite textbooks [18]. Accordingly, the coupled force-strain relationship is established as 

follows: 
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Where: 

═░▒ ╠░▒◄▓
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                                  ╓░▒ В ╠░▒◄▓
╝
▓ ◐ ▓

◄▓                                                 (6) 

    ◄▓  ◐▓ ◐▓                        

◐▓
◐▓ ◐▓

 

In which ὃ ,ὄ , and Ὀ  are the axial, coupling, and flexural rigidity coefficients. ὸ = thickness 

of the k-th ply; and N = number of different plies in the stacking sequence.  

To generate the three dimensional (3D) rigidity matrix, material properties and the fiber 

orientations are used in equation (5). After dimensional reduction approach and applying the zero 

forces and moments, the dimension is reduced to 1D anisotropic axial, coupling and flexural 

rigidities.  
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                   (7) 

Extracting the second, third, fifth, and sixth linear equations from equation (7), the axial strain and 

axial curvature (Ⱡ● ,ⱥ●) is solved in terms of the rest of the deformation components. Since the 

rest of the deformation components for wide plate are equal zero resulting in equation (8):  

╝●
╜●

═ ║
║ ╓

Ⱡ●
ⱥ●
                                    (8) 

 

The axial force and in-plane moment vs. the axial strain and in-plane curvature relationship can be 

expressed in terms of the generally anisotropic material properties  

                     ╝●
╜●

═ ║
║ ╓

Ⱡ●
ⱥ●

                                       (9) 
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It may be observed that equation 9 the material properties for wide plate is expressed in terms 

extensional, coupling, and bending stiffnesses in the principal directions. 

6.3.4 Energy Formulation 

A generalized analytical buckling formula was derived using Rayleigh-Ritz approximation based 

on the energy approach. Strain energy can be expressed in terms of the integration of the applied 

loads multiplying the corresponding deformations. 

     ╤ ᷿ ╝●Ⱡ● ╜●ⱥ● ▀●
╛

 

 

 

 

 

(10) 

               ᷿ ═ Ⱡ● ║ Ⱡ●ⱥ● ▀● ᷿
╛╛
║ Ⱡ●ⱥ● ╓ ⱥ● ▀● 

 

Equation (11) expresses the potential of external loads  

                                        ╦ ╟ ◊╛                                                                 (11) 

Taking the total potential energy function and substituting equations (10) and (11) into equation 

(12)  

♂ ╤ ╦ ᷿ ═ Ⱡ● ║Ⱡ●ⱥ● ╓ ⱥ● ▀● ╟ ◊╛
╛

                     (12) 

    ♂ ═ ║╛ ═ ║╒
Ⱬ

╛
═ ╒╛

Ⱬ

╛
╓ ╒╛

Ⱬ

╛
╟║╛         (13)                     

Minimizing the total potential energy function with respect to B1 and C1, setting the resulting 

expressions to zero, performing the integration by parts and manipulating the equations to give: 

⸗♂

⸗║
═ ║╛

═ ╒╛ Ⱬ

╛
╟╛  

 

(14) 
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⸗♂

⸗╒

═ ║╒╛ Ⱬ

╛

═ ╒╛ Ⱬ

╛

╓╪ ╒╛ Ⱬ

╛
 

 

(15) 

 

Solving equation (14) for B1 then substituting the resulting expression into equation (15), equation 

(17) is formulated in terms of C1. 
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╒ Ⱬ

╛
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═
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╒                              (17) 

Solving Equation 17 for C1:     

            ╒ ◑▄►▫ȟ           ╣►░○░╪■ ▼▫■◊◄░▫▪  

  (18) 

   ╒
╟ ╓ Ⱬ

╛

═ Ⱬ
╛

 

                                     

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero, a closed form solution for the critical buckling load is derived: 

                                             ╟╬►
╓ Ⱬ

╛
                                                                  (19) 

Euler buckling formula for the fixed-fixed isotropic plate is reduced down with an effective length 

factor of 0.5 when Ὀ  is replaced with ὉȭὍ (where Ὁȭ  ὉȾρ ’) of the plate in equation (19).  

6.3.5 Pre-buckling Solution 

In order to decrease some discrepancy between the analytical and numerical results, the pre-

buckling solution of the laminated composite plate is considered since the coupling effect (ὄ ) 
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in all terms in the standard Rayleigh-Ritz approximation lent to zero. During pre-buckling and 

prior reaching the buckling load, the in-plane moment is set to zero 

                   ╜● ║ ●ꜗ ╓ ⱥ●                                                     (20) 

║ ●ꜗ ╓ ⱥ● 

                        ⱥ●
║

╓ ●ꜗ                                                        (21) 

The axial force versus the axial strain is expressed in terms of the generally anisotropic material 

properties when substituting Eq. (21) into the axial force equation (22)  

                   ╟● ═ ●ꜗ ║ ⱥ●                                                     (22) 

╟● ═ ●ꜗ

║

╓ ●ꜗ 

                     ╟● ═▄██ꜗ●                                                               (23) 

Where 

                ═▄██ ═
║

╓
                                                         (24) 

Based on the assumed sign convention, the axial force (ὖ) is positive and in compression. On the 

other hand, the axial strain () is negative even though it is in compression as illustrated in Eq. 

(25) 

                  ◊ ║●                                                               (25) 

Using the axial strain in Eq. (3), setting the lateral displacement term to zero, and substituting 

equation (25), the axial strain can be expressed as 

                  ꜗ● ║                                                                 (26) 
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A relationship between the axial force and the unknown constant (ὄ) is obtained by substituting 

Eq. (26) into Eq. (23), i.e.  

               ║
╟●

═▄██
                                                          (27) 

6.3.6 Bifurcation Solution in terms of Pre-buckling Deformation 

By substituting Eq. (27) into the total potential energy function given by Eq. (13), one obtains 

♂ ═
╟

═▄██
╛ ═

╟

═▄██
╒

Ⱬ

╛
═ ╒╛

Ⱬ

╛
╓ ╒╛

Ⱬ

╛
╟╛

╟

═▄██
              

(28) 

Minimizing the total potential energy with respect to ὅ, setting the resulting expression to zero, 

and manipulating the equation, one gets 

⸗♂

⸗╒

═ ╟╒╛

═▄██

Ⱬ

╛

═ ╒╛ Ⱬ

╛

╓ ╒╛ Ⱬ

╛
                  (29) 

By solving Eq. (29), one gets 

The discriminant must be at least zero to have a real value for C1. By setting the discriminant to 

zero and substituting Eq. (24), a new analytical critical buckling formula is developed considering 

the coupling effect: 

                    ╟╬►
╓ Ⱬ

╛

║ Ⱬ

═ ╛                                                 (31)        
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╛
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═
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                  ╟╬►
Ⱬ

╛
╓▄██                                                  (33) 

Where 

            ╓▄██ ╓
║

═
                                                    (34) 

The new formula reduces down to Euler buckling formula of the fixed-fixed isotropic plate in the 

case of isotropic or specially-orthotropic materials.
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6.4 Numerical Formulation 

Using commercial software package Abaqus, analytical buckling formula was verified with finite 

element buckling analysis for laminated anisotropic plates. Plates with four layers were assembled 

with fixed supports at the bottom and fixed-roller support at the top of the plate. Moreover, 

translation in x-direction and rotation in y direction is prevented. Figure 6.2 presents the boundary 

conditions and shell edge load which was applied at the top of the plate. 

 

Figure 6.2 Boundary conditions and applied load. 

 

Linear elastic laminated material was used for orthotropic and anisotropic layups, respectively. 

Additionally, S-Glass/epoxy material was mainly used to simulate the composite plates 

Quadrilateral eight node doubly curved thick shell element (S8R) was used for modeling the plates 

in 3D-space as shown in Figure 6.3. Moreover, 3D solid 20-node quadratic brick element 

(C3D20R) was also attempted. Mesh size equal to 10 mm x 10 mm with total number element 

equal to 1000 was used after conducting convergence study to select the appropriate size for plates 

with dimension for width, length, and thickness equal to: 1000 mm x 100 mm x 0.4 mm, 

respectively. 
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Figure 6.3 Meshed Model. 

 

In this study, two types of analyses were undertaken. To simulate eigenvalue computation, 

buckling analysis using Lanczos solver was conducted. Eigenvalues and eigenvectors are solved 

using Lanczos method for complex Hermitian matrix using power methods. Using recurrence 

relations (multidimensional array values), Lanczos method reduces ά ά symmetric matrix to a 

tridiagonal matrix [19]. 

To predict the nonlinear stability response (pre-buckling and buckling) and indicate the existence 

of pre-buckling deformation in the transverse direction, nonlinear geometry analysis was 

conducted using the modified Riks analysis of the composite plates. Arc length method which is 

used in the modified Riks analysis follows the equilibrium path, representing either the bifurcation 

points or the limit points. During the analysis, load increments are applied in which equilibrium 
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iterations converge along the arc length, forcing the constraint equation to be satisfied at every 

iteration [20]. 

6.5 Results and Applications: 

6.5.1 Numerical Validation 

Table 6.1 illustrates S-Glass/Epoxy material properties; obtained from typical values in an FRP 

textbook [21], used to simulate the analytical and numerical results for different stacking 

sequences of composite plates with the following dimensions for width, length, and thickness: 

1000 mm x 100 mm x 0.4 mm, respectively. Table 6.2 presents the comparison between the 

analytical and numerical buckling results for different layup stacking sequences using equations 

(19) and (31). In general, it was observed that results from Eq. (19) showed a good agreement with 

numerical results with a minimum error equal to 0.0026% for single specially orthotropic layer 

(0/0/0/0) and a maximum error equal to 11.4776% for the balanced angle ply (60/60/30/-30). 

Furthermore, results from Eq. (31) yielded an excellent agreement with numerical results with 

maximum error equal to 4.8984% for the antisymmetric angle ply (30/-30/30/-30). In general, 

considering the coupling and extensional effect in Eq. (31) reduced the error value significantly. 

It is important to note that the layup with maximum error yield the analytical buckling load on the 

un-conservative side.   

Table 6.1 S-Glass/Epoxy material properties [21]. 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

 

 



 

109 

 

  Table 6.2 Comparison of analytical and numerical buckling load for different layup sequences. 

Ply 

orientation 

Analytical 

Results Eq. 

(19), N 

Analytical 

Results Eq. (31), 

N 

Numerical 

Results, N 

% Error, Eq. 

(19) 

% Error, Eq. 

(31) 

Layup Type 

0/0/0/0 1.18507 1.18507 1.1851 0.0026 0.0026 Single Specially 

Orthotropic 

90/90/90/90 0.34475 0.34475 0.3448 0.0146 0.0146 Single Specially 

Orthotropic 

30/-30/30/-30 0.84436 0.84436 0.803 4.8984 4.8984 Antisymmetric Angle 

Ply 

45/-45/45/-45 0.59074 0.59074 0.5668 4.0526 4.0526 Antisymmetric Angle 

Ply 

60/-60/60/-60 0.4242 0.4242 0.4173 1.6266 1.6266 Antisymmetric Angle 

Ply 

30/-30/0/0 1.01471 0.99326 0.9796 3.4602 1.3753 Anisotropic 

30/-30/0/90 0.64708 0.62754 0.6141 5.0968 2.1417 Anisotropic 
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30/30/30/30 0.84436 0.84436 0.8465 0.2535 0.2535 Single anisotropic layer 

30/-30/-30/30 0.84436 0.84436 0.8461 0.2061 0.2061 Symmetric angle Ply 

0/90/90/0 1.08003 1.08003 1.0796 0.0399 0.0399 Symmetric Cross Ply 

30/-60/-60/30 0.79184 0.79184 0.7928 0.1213 0.1213 Symmetric Multiple 

Angle Ply 

0/90/0/90 0.76491 0.72164 0.7216 5.6622 0.0056 Antisymmetric Cross 

Ply 

-45/30/-30/45 0.62244 0.62244 0.6024 3.2196 3.2196 Antisymmetric Multiple 

Angle Ply 

90/0/0/90 0.44979 0.44979 0.4499 0.0245 0.0245 Symmetric Cross Ply 

30/-30/45/-45 0.71755 0.70074 0.669 6.7661 4.5295 Balanced Angle Ply 

60/-60/45/-45 0.50747 0.49722 0.48273 4.8752 2.9143 Balanced Angle Ply 

60/-60/30/-30 0.63428 0.5821 0.56148 11.4776 3.5424 Balanced Angle Ply 
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Figure 6.4 presents load versus mid height deflection curve for two different stacking sequences 

obtained from the finite element nonlinear Riks analysis along with the analytical solution Eq. (31) 

for comparison. Results exhibits an excellent agreement between analytical and numerical (FE) 

solutions. Anisotropic layup (30/-30/0/0) exhibit higher buckling load with minimal error between 

the analytical and numerical results. Furthermore, (30/-30/0/90) layup shows lower buckling load 

value.   

 

Figure 6.4 Analytical versus numerical solutions. 
 

 

6.5.2 Parametric Study 

6.5.2.1  Effect of Ply Orientation 

Studying the effect of having different stacking sequences was conducted for plates with the 

following dimensions: 1000 mm x 100 mm x 0.4 mm for width, length, and thickness, respectively. 
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Table 6.2 reports buckling load values for different stacking sequences with values range between 

0.3448 N and 1.1851 N. As observed in Figure 6.5, the buckling mode shape of the fixed-fixed 

anisotropic plate for symmetric cross ply layup (0/90/0/90) is uniform along the plate. On the other 

hand, some of the stacking sequences such as the balanced angle ply layup (30/-30/45/-45) exhibit 

an edge effect during buckling as shown in Figure 6.6 which may contribute to a slight difference 

between analytical and numerical results.  

 

  

Figure 6.5 Buckling shape of the fixed-fixed 

plate for symmetric cross ply (0/90/0/90). 

 

Figure 6.6 Buckling shape of the fixed-fixed 

plate for balanced angle ply (30/-30/45/-45). 

 

6.5.2.2 Effect of Material Properties 

To study the effect of changing material properties on the stability of the laminated composite 

plate, two types of material were used. S-Glass/Epoxy and High Strength Graphite/Epoxy were 

used to conduct this study and their properties; reported in an FRP textbook [21], are reported in 

Table 6.1and Table 6.3. 

Table 6.3 High Strength Graphite/Epoxy Material Properties [21]. 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 
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Table 6.2 and Table 6.4 illustrates buckling load values for S-Glass/Epoxy and High Strength 

Graphite/Epoxy material with different stacking sequences. In general, S-Glass/Epoxy exhibits 

lower buckling load values than High Strength Graphite/Epoxy because of its lower stiffness 

values in the fiber direction. Additionally, the error value between analytical and numerical 

solution increases for High Strength Graphite/Epoxy since it has higher E11/E22 ratio compared 

with S-Glass/Epoxy.  As mentioned earlier, Eq. (31) reduced down the error significantly since 

the coupling and extensional effect was taken into account compared with Eq. (19). Single 

specially-orthotropic layup (0/0/0/0) exhibited the maximum buckling load value which is equal 

to 3.06622 N since all fibers are aligned along the loading axis due to the vanish of the coupling 

term.  
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 Table 6.4 Analytical and numerical results for different layup sequences for High Strength Graphite /Epoxy. 

Ply orientation Analytical 

Results Eq. 

(19), N 

Analytical 

Results Eq. 

(31), N 

Numerical 

Results, N 

% Error, 

Eq. (19) 

% Error, 

Eq. (31) 

Layup Type 

0/0/0/0 3.06622 3.06622 3.0617 0.1475 0.1475 Single Specially Orthotropic 

90/90/90/90 0.21147 0.21147 0.2116 0.0615 0.0615 Single Specially Orthotropic 

30/-30/30/-30 1.83359 1.83359 1.5798 13.8412 13.8412 Antisymmetric Angle Ply 

45/-45/45/-45 0.94692 0.94692 0.8281 12.5481 12.5481 Antisymmetric Angle Ply 

60/-60/60/-60 0.40621 0.40621 0.3766 7.2894 7.2894 Antisymmetric Angle Ply 

30/-30/0/0 2.4499 2.33362 2.2216 9.3188 4.80027 Anisotropic 

30/-30/0/90 1.20095 1.11183 1.0028 16.4995 9.80636 Anisotropic 

30/30/30/30 1.83359 1.83359 1.8336 0.0006 0.0006 Single anisotropic layer 

30/-30/-30/30 1.83359 1.83359 1.8279 0.3104 0.3104 Symmetric angle Ply 

0/90/90/0 2.70938 2.70938 2.7043 0.1875 0.1875 Symmetric Cross Ply 

30/-60/-60/30 1.65517 1.65517 1.6496 0.3366 0.3366 Symmetric Multiple Angle 

Ply 
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0/90/0/90 1.63884 1.40574 1.4044 14.3053 0.09533 Antisymmetric Cross Ply 

-45/30/-30/45 1.05776 1.05776 0.9601 9.2328 9.2328 Antisymmetric Multiple 

Angle Ply 

90/0/0/90 0.56831 0.56831 0.5683 0.0018 0.0018 Symmetric Cross Ply 

30/-30/45/-45 1.39026 1.28423 1.109 20.2308 13.6448 Balanced Angle Ply 

60/-60/45/-45 0.67657 0.59554 0.5638 16.6679 5.3297 Balanced Angle Ply 

60/-60/30/-30 1.1199 0.77879 0.66467 40.6492 14.6536 Balanced Angle Ply 
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6.5.2.3 Effect of Element Type in FE Analysis 

The effect of using different element types in finite element analysis of  

S-Glass/Epoxy was studied. Using quadratic shell element (S8R) and quadratic solid element 

(C3D20R) both with reduced integration schemes and mesh size equal to 10.0 mm x 10.0 mm. 

Table 6.5 presents comparison between analytical and numerical solution. An excellent agreement 

between analytical and shell element results is observed for all stacking sequences. Additionally, 

solid element results were off in most of the different stacking sequences. Accordingly, it might 

be argued that for this type of analysis the shell element (S8R) is more reliable than solid element 

(C3D20R).  

Table 6.5 Analytical and numerical results with shell and solid element 

Ply Orientation Analytical Results, 

N 

Shell Element S8R, 

N 

Solid Element 

C3D20R, N 

0/0/0/0 1.18507 1.1851 0.739497 

90/90/90/90 0.34475 0.3448 0.2149 

30/-30/30/-30 0.84436 0.803 0.521911 

45/-45/45/-45 0.59074 0.5668 0.362858 

60/-60/60/-60 0.4242 0.4173 0.261628 

30/-30/0/0 0.99326 0.9796 0.630799 

30/-30/0/90 0.62754 0.6141 0.498114 

30/30/30/30 0.84436 0.8465 0.534503 

30/-30/-30/30 0.84436 0.8461 0.522302 

0/90/90/0 1.08003 1.0796 0.47738 
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30/-60/-60/30 0.79184 0.7928 0.401967 

0/90/0/90 0.72164 0.7216 0.476869 

-45/30/-30/45 0.62244 0.6024 0.44262 

90/0/0/90 0.44979 0.4499 0.477378 

 

6.6 Conclusion 

Using Rayleigh-Ritz approximation, a generalized closed form buckling formula was derived for 

anisotropic laminated composite plates under axial compression with fixed-fixed conditions. The 

buckling load formula was expressed in terms of the composite material effective flexural 

stiffness coefficient as well as the plate geometry. A new formula was developed in terms of 

extensional, coupling, and flexural coefficients using the pre-buckling solution. The new 

analytical formula showed an excellent agreement with the numerical results. From the parametric 

study, it was shown that using composite material with high E11/E22 ratio the analytical solution 

yielded more deviation of the analytical solution from the numerical solution compared with low 

stiffness composite material. Moreover, some stacking sequences showed an edge effect during 

buckling therefore a slight difference between the analytical results and numerical results was 

observed. Additionally, the use of solid elements in the finite element analysis was found to be 

less reliable compared to the use of shell elements in the buckling predictions. 
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Chapter 7 - Buckling Solution of Fixed-Free Anisotropic Laminated 

Composite Columns under Axial Compression using Rayleigh Ritz 

Formulation 

Hayder A. Rasheed1 and Rund Al-Masri 2 

 

7.1 Abstract 

A generalized analytical buckling formula for anisotropic laminated composite fixed-free 

columns under axial compression is presented on the basis of Rayleigh Ritz displacement 

field approximation.  The effective axial, coupling and flexural stiffness coefficients of the 

anisotropic layup is determined from the generalized constitutive relationship using 

dimensional reduction by static condensation of the 3 dimensional composite stiffness matrix. 

The developed formula is expressed in terms of the generally anisotropic material properties 

as well as the column geometry. For isotropic and certain classes of laminated composites, 

the derived formula reduces down to Euler buckling formula. The analytical results are 

verified against finite element Eigen value solutions for a wide range of anisotropic laminated 

layups yielding high accuracy. A brief parametric study is then conducted to examine the 

effect of ply orientations, element thickness, finite element type, and material properties 

including hybrid carbon/glass fiber composites. Relevance of the numerical and analytical 

results is discussed for all these cases. 

 

Keywords: Buckling of Composite Columns, Clamped-free Boundary Conditions, Anisotropic 

Laminated Composites, Axial Compression. 
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7.2 Introduction  

The demand to understand the stability mechanism of laminated composite members has increased 

in the last few decades due to the growth of using composites in different industrial applications 

such as aerospace, marine, automotive, and civil engineering. Composite materials have many 

advantages such as high stiffness-to-weight ratio, high strength-to-weight ratio, as well as fatigue 

and corrosion resistance. Although limited amount of research has focused on the buckling of 

anisotropic laminated composite columns, significant amount of studies have been conducted on 

the stability of composite shells, plates, and cylinders [1-11]. Based on Hellinger-Reissner 

principal, Cortinez and Piovan [1] developed a theoretical model to study the stability of composite 

thin-walled beams with shear deformability using nonlinear displacement field. A finite element 

with fourteen degrees of freedom was used to solve the governing equations. Based on the results, 

shear flexibility had a significant effect on the stability of the composite beams. Depending on the 

unified three degrees of freedom shear deformable beam theory, Aydogdu [2] studied the buckling 

of cross-ply laminated beams with general boundary conditions using Ritz method. The use of the 

shape function satisfied the requirements for continuity conditions between symmetric cross-ply 

layers of the beam. The results were compared with previous work for various length-to-thickness 

ratios and various layups. Abramovich and Livshits [3] studied the free vibrations of non-

symmetric cross ply laminated composite beams based on the first order shear deformation theory. 

Longitudinal, transverse displacement, rotary inertia, and shear deformation were considered in 

the analysis. The following equation of motion of cross ply laminated composite beams was solved 

for different boundary conditions: 

[M]{ή←}+[C] {ή} = {0}                                                        (1) 
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Where [M] is the generalized mass matrix, [C] is the matrix differential operator; and {ή} is the 

vector of the generalized displacements. The new approach and Bernoulli-Euler theory were 

verified against numerical solutions. Abramovich et al. [4] studied the vibrations and buckling of 

cross-ply non-symmetric rectangular laminated composite beams using the exact method based on 

Timoshenko equation. A good agreement between analytical and numerical results was observed 

considering the effect of material properties, number of layers, and boundary conditions. 

Additionally, a coupling effect was observed between the axial and lateral motion of the non-

symmetric layup in the beams. Based on the response surface method and Monte Carlo method, 

Schanbl [5] presented a model to study buckling of two-layer composite columns with interlayer 

slip, random material properties, and loading parameters. Using Rayleigh-Ritz method, Herencia 

et al. [6] presented closed-form solutions for buckling of long plates with flexural anisotropy of 

simply supported short edges and various boundary conditions for longitudinal edges under axial 

compression. The closed form solution was expressed with respect to minimum non-dimensional 

buckling coefficient and stiffness parameters. The results showed an excellent agreement with 

previous solution and finite element analysis. Ovesy et al. [7] studied the buckling of laminated 

composite plates with simply supported boundary conditions under uniaxial pure compression 

using higher order semi analytical finite strip method based on Reddyôs higher order plate theory. 

Matsunga [8] investigated the free vibration and stability of angle-ply laminated composite and 

sandwich plates under thermal loading. Using two dimensional global higher order deformation 

theory, the following eigenvalue problem can be expressed as: 

╚ ⱷ ╜ ╤                                                    (2) 

Where [K] is the stiffness matrix which includes the initial thermal stresses term, [M] is the mass 

matrix, and {U} is the generalized displacement vector. Using energy method and orthogonal 
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polynomial sequences obtained by a Gram-Schmidt process, Pandey and Sherbourne [9] presented 

a general formulation for buckling of rectangular anisotropic symmetric angle ply composite plates 

under linearly varying uniaxial compression loading with clamped and simply supported boundary 

conditions. Based on the energy approach, Rasheed and Yousif [10] derived a closed form 

buckling solution to investigate the stability of thin laminated orthotropic composite rings/long 

cylinders under external pressure. Timarci and Aydogdu [11] studied the buckling of symmetric 

cross-ply square plates with various boundary conditions under uniaxial, biaxial compression, and 

compression-tension loading based on the unified five degree of freedom shear deformable plate 

theory. The results were verified with existing work for various length-to-thickness ratios. 

In this study, a closed form buckling solution was derived of anisotropic laminated composite 

fixed-free columns under axial compression using Rayleigh-Ritz approximation field based on the 

energy approach. Three dimensional 6 x 6 composite stiffness matrix is converted to 1D axial, 

coupling, and flexural rigidities using static condensation method. Furthermore, the analytical 

results were verified against finite element analysis using commercial software Abaqus yielding 

an excellent agreement between the results. 

7.3 Analytical Formulation  

7.3.1 Assumptions and Kinematics 

An analytical buckling formula is developed using Rayleigh-Ritz approximation field for fixed 

free anisotropic laminated composite columns under axial compression. Several assumptions are 

taken into consideration prior to deriving the analytical formula and can be illustrated in the 

following points: 

¶ Buckling occurs in the x-y plane about the z-axis (weak axis). 
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¶ The y-axis runs through the thickness of the plate where the composite lamination takes 

place, Figure 7.1. 

¶ The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 

¶ Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

¶ Classical lamination theory is applicable with shear deformations ignored. 

Figure 7.1 presents the Cartesian coordinates and the geometry of the fixed-free column. Bending 

takes place about the z-axis which is the weak axis of the column. Equation (3) presents the 

assumed displacement field based on the isotropic buckling mode:  

◊ ● ║● ;    ○ ●  ╒ ἫἷἻ
Ⱬ●

╛
                                      (3) 

Where όὼ, v ὼ are the axial and lateral displacement, B1 and C1 are constants to be solved and 

x is the distance along the axis of the column as shown in Figure 7.1. The axial strain Ⱡ● and 

curvature ⱥ● are presented in equation (4) depending on the intermediate class of deformation: 

Ⱡ●
▀◊

▀●

▀○

▀●
 ◊ ○ ;         ⱥ●

▀○

▀●
○                      (4) 
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Figure 7.1 Column geometry 

 

7.3.2 Constitutive equations 

The stresses and strains are related by the transformed reduced stiffness matrix ὗ presented in 

equation (5); as defined in standard composite textbook [12], in order to transform the principle 

material directions into the column coordinate system.  

                

Ɑ●
Ɑ◑
Ⱳ●◑

╠ ╠ ╠

╠ ╠ ╠

╠ ╠ ╠

Ⱡ●
Ⱡ◑
♬●◑

                                                  (5) 

Accordingly, the coupled force-strain relationship is established as  

y 

z 

x 

P 

a 

Lamination 
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═░▒ ╠░▒◄▓

╝

▓

 

║░▒ ╠░▒◄▓

╝

▓

◐▓ 

                                  ╓░▒ В ╠░▒◄▓
╝
▓ ◐▓

◄▓                                                   (7) 

 ◄▓  ◐▓ ◐▓                        

◐▓
◐▓ ◐▓

 

Where ὃ , ὄ , and Ὀ  are the extensional, coupling, and flexural rigidity coefficients. ὸ = 

thickness of the k-th ply; and N = number of different plies in the stacking sequence.  

In order to generate the three dimensional (3D) constitutive matrix, material properties and the 

fiber orientations are used in equation (6). The 3D classical lamination matrix is reduced to 1D 

anisotropic extensional, coupling, and flexural stiffness coefficients using static condensation after 

applying the zero forces and moments. 
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Extracting the second, third, fifth, and sixth linear equations from matrix (8) to solve the axial 

strain and axial curvature (Ⱡ● ,ⱥ●) with respect to the other deformation components.   

Inverting the matrix Q to the other side of Eq. (9), the condensed deformation components are 

obtained in terms of the axial strain and curvature:  

                                

Ⱡ◑
♬●◑
ⱥ◑
ⱥ●◑

╠ ╡
Ⱡ●
ⱥ●

                                                 (10) 

The axial force and in-plane moment versus the axial strain and in-plane curvature relationship is 

developed in terms of the generally anisotropic material properties by substituting Eq. (10) into 

the first and fourth linear equation of matrix (8) 

                     ╝●
╜●

═╪▪░║╪▪░
║╪▪░╓╪▪░

Ⱡ●
ⱥ●

                                 (11) 

Where 

                
═╪▪░║╪▪░
║╪▪░╓╪▪░

═ ║
║ ╓

╡╣╠ ╡                          (12) 

7.3.3 Energy Formulation 

A generalized analytical buckling formula was developed using Rayleigh-Ritz approximation 

based on the energy approach. Strain energy can be expressed in terms of the integration of the 

applied loads multiplying the corresponding deformations. 
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The potential of external loads can be expressed as   

                                        ╦ ╟ ◊╛                                                           (14) 

    

In view of Eq. (13) and (14), the total potential energy function is given by  

                    ♂  ╤ ╦ ᷿ ═╪▪░Ⱡ● ║╪▪░Ⱡ●ⱥ● ╓╪▪░ⱥ● ▀● ╟ ◊╛
╛

               (15) 
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Ⱬ

╛

Ⱬ
║╪▪░╒╛

Ⱬ

╛
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Ⱬ

╛
╟║╛                        (16)  

Minimizing the total potential energy with respect to the unknown B1 and C1, setting the 

differential expressions to zero, performing integration by parts and manipulating the expressions, 

the following equations are developed  

 

Solving equation (17) for B1 then substituting the resulting expression in equation (18), the 

following cubic equation is formulated in terms of C1 value                                
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Equation (20) does not lend itself to a closed form solution. Therefore, considering the critical 

stability matrix:  
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Setting the determinant of the matrix in Equation (21) to zero, substituting B1 expression from 

equation (19) and solving for C1 using the general solution of a quadratic equation: 

╒

═╪▪░╛║╪▪░Ⱬ

╛
ᶸ
═╪▪░╛║╪▪░Ⱬ

╛
═╪▪░╛

Ⱬ

╛

═╪▪░╓╪▪░╛ Ⱬ

╛
║╪▪░

═╪▪░╛╟

═╪▪░╛
Ⱬ

╛

        (23) 

 

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero and manipulating its expression, a closed form solution for the critical 

buckling load is derived: 

╟╬►
╓╪▪░Ⱬ

╛

║╪▪░

═╪▪░╛
                                            (24) 

The general critical buckling formula for columns with different width values other than unity 

is: 

  ╟╬►
╓╪▪░Ⱬ

╛

║╪▪░

═╪▪░╛
◌                                       (25) 

Where w is the width of the column, equation (25) reduces down to Euler buckling formula of 

fixed free columns when the coupling term vanishes in case of isotropic or specially-orthotropic 

materials.  

7.4 Numerical Formulation 

In order to validate the analytical formula for laminated anisotropic fixed-free columns derived in 

the previous section, finite element analysis was conducted using commercial software package 

Abaqus. Column models were constructed with four layers of linear elastic laminated material. 

Moreover, fixed support and free end were provided at the bottom and top of the column, 

respectively. Axial compression load was applied at the top of the model as presented in Figure 7.2. 

Quadrilateral eight node doubly curved thick shell element (S8R) and 20-node quadratic solid 
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element (C3D20R) were used to model the anisotropic columns in 3D space. The mesh contains 

0.5 x 0.5 mm element size in the analysis of a column size of 100 mm x 1.0 mm x 0.4 mm for 

length, width, and thickness, respectively. 

To solve for eigenvalue and eigenvector numerically, buckling analysis was conducted using 

Lanczos solver. Based on the power method, Lanczos technique is used to simulate eigenvalue 

computation for complex Hermitian matrix in which a symmetric matrix is reduced to tridiagonal 

matrix using multidimensional array values (recurrence relations) [13]. 

 

 

 

 

Figure 7.2 Left: Boundary conditions and applied load. Right: Meshed Model. 

 

To indicate the existence of pre-buckling deformation in the transverse direction and predict the 

nonlinear stability response of the anisotropic columns, nonlinear geometry analysis using the 

modified Riks technique was performed. Based on the arc length method, Riks analysis follows 

the equilibrium path (bifurcation points or the limit points) while applying a load increment during 

the analysis. Equilibrium iterations converge along the arc length, forcing the constraint equation 

to be satisfied at every arc length increment [14]. 
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7.5 Results and Applications: 

7.5.1 Numerical Validation 

High Strength Graphite/Epoxy material was mainly used to simulate the composite columns and 

its properties are illustrated in Table 7.1; obtained from typical values in an FRP textbook [15]. 

Table 7.2 presents the comparison between the analytical and numerical results for different 

stacking sequences of composite column with the following dimensions for length, width, and 

thickness: 100 mm x 1.0 mm x 0.4 mm, respectively. The analytical results showed an excellent 

agreement with the finite element results with a maximum error equal to 3.60 % for the balanced 

angle ply layup (30/-30/60/-60) and a minimum error equal to 0.00076% for single specially-

orthotropic layup (90/90/90/90). It is important to note that the layup with maximum error yields 

the analytical load on the conservative side.  

Table 7.1 High Strength Graphite/Epoxy Material Properties [15]. 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 

 

Table 7.2 Comparison of analytical and numerical buckling load for various layup sequences of 

Graphite/Epoxy Composite Column (t = 0.4 mm). 

Ply Orientation Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.19082 0.1908 0.01049 Single Specially 

Orthotropic 

90/90/90/90 0.0131595 0.0131594 0.00076 Single Specially 

Orthotropic 
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30/-30/30/-30 0.05979 0.05997 0.30106 Antisymmetric 

Angle Ply 

45/-45/45/-45 0.02218 0.02226 0.36069 Antisymmetric 

Angle Ply 

60/-60/60/-60 0.01423 0.01425 0.14055 Antisymmetric 

Angle Ply 

60/-60/45/-45 0.01742 0.01752 0.57406 Balanced Angle 

Ply 

30/-30/45/-45 0.03275 0.03337 1.89313 Balanced Angle 

Ply 

30/-30/60/-60 0.02359 0.02444 3.60323 Balanced Angle 

Ply 

30/-30/0/0 0.09127 0.09369 2.65148 Anisotropic 

30/-30/0/90 0.04393 0.04401 0.18211 Anisotropic 

30/30/30/30 0.02711 0.02726 0.55331 Single Anisotropic 

Layer 

30/-30/-30/30 0.04814 0.04833 0.39469 Symmetric Angle 

Ply 

0/90/90/0 0.16903 0.16901 0.01184 Symmetric Cross 

Ply 

30/-60/-60/30 0.02893 0.02909 0.55306 Symmetric 

Multiple Angle 

Layers 
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0/90/0/90 0.08658 0.08775 1.35136 Antisymmetric 

Cross Ply 

-45/30/-30/45 0.02852 0.02863 0.3857 Antisymmetric 

Angle Ply 

90/0/0/90 0.035455 0.03546 0.01411 Symmetric Cross 

Ply 

30/30/-30/-30 0.04043 0.04046 0.07421 Antisymmetric 

Angle Ply 

 

 

Load versus free end displacement curve is plotted for three different stacking sequences obtained 

from the nonlinear finite element Riks analysis along with the analytical solution as shown in 

Figure 7.3. The analytical results showed an excellent agreement with the Riks analysis where the 

anisotropic layup (30/-30/0/0) exhibit the highest buckling load with the maximum error value. 

The three stacking sequences indicate an existence of transverse deformation prior to buckling.  
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Figure 7.3 Analytical versus numerical solutions. 

 

7.5.2 Parametric Study 

7.5.2.1 Effect of Ply Orientation 

Table 7.2 in the previous section presents the effect of having different stacking sequences of 

anisotropic column with the following dimensions for length, width, and thickness: 100 mm x 

1.0 mm x 0.4 mm, respectively. The buckling load values vary between 0.19082 N and 

0.0131595 N for different stacking sequences. Figure 7.4 presents the buckling mode shape of 

the composite fixed-free columns with stacking sequence (30/-30/0/90) obtained from the finite 

element analysis. 
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Figure 7.4 Buckling shape of fixed-free column. 

 

7.5.2.2 Effect of Material Properties 

The effect of having different material properties on the buckling load was performed in this paper. 

High Strength Graphite/Epoxy and S-Glass/Epoxy material properties were used and their 

properties are illustrated in Table 7.1 and Table 7.3; obtained from typical values in FRP textbook 

[15].  

Table 7.3 S-Glass/Epoxy material properties [15]. 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

High Strength Graphite/Epoxy and S-Glass/Epoxy results are presented in Table 7.2 and Table 7.4 

for different stacking sequences. S-Glass/Epoxy showed lower buckling load values compared to 

High Strength Graphite/Epoxy since it has lower stiffness value along the fiber direction. 
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Table 7.4 Analytical and numerical results for various layup sequences for S-Glass/Epoxy (t = 

0.4 mm). 

Ply 

Orientation 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.072378 0.072384 0.00829 Single Specially 

Orthotropic 

90/90/90/90 0.0210552 0.0210559 0.00333 Single Specially 

Orthotropic 

30/-30/30/-30 0.04353 0.04356 0.06892 Antisymmetric 

Angle Ply 

45/-45/45/-45 0.0287 0.02873 0.10453 Antisymmetric 

Angle Ply 

60/-60/60/-60 0.02264 0.02265 0.04417 Antisymmetric 

Angle Ply 

60/-60/45/-45 0.02527 0.02531 0.1583 Balanced Angle Ply 

30/-30/45/-45 0.03472 0.03484 0.34563 Balanced Angle Ply 

30/-30/60/-60 0.02989 0.0301 0.70258 Balanced Angle Ply 

30/-30/0/0 0.05401 0.05426 0.46288 Anisotropic 

30/-30/0/90 0.03441 0.03446 0.14531 Anisotropic 

30/30/30/30 0.03567 0.03573 0.16821 Single Anisotropic 

Layer 

30/-30/-30/30 0.04006 0.0401 0.09986 Symmetric Angle 

Ply 
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0/90/90/0 0.066207 0.06621 0.00454 Symmetric Cross 

Ply 

30/-60/-60/30 0.03535 0.0354 0.14145 Symmetric 

Multiple Angle 

Layers 

0/90/0/90 0.04413 0.04435 0.49853 Antisymmetric 

Cross Ply 

-45/30/-30/45 0.03102 0.03105 0.09672 Antisymmetric 

Angle Ply 

90/0/0/90 0.0275724 0.0275734 0.00363 Symmetric Cross 

Ply 

30/30/-30/-30 0.038219 0.038236 0.04449 Antisymmetric 

Angle Ply 

 

Hybrid material composed of High Strength Graphite/Epoxy and S-Glass/Epoxy was used to study 

the effect of changing material properties on the stability of the composite columns. S-Glass/Epoxy 

material properties were used for layers with orientation equal to 90o and 60o and High Strength 

Graphite/Epoxy for the other orientations. Table 7.5 reports the analytical and numerical results 

for various layup sequences of hybrid material with a maximum error of 2.35% for the balanced 

angle ply layup (30/-30/60/-60) and a minimum error of 0.082% for symmetric cross ply layup 

(0/90/90/0). 
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Table 7.5 Analytical vs. numerical buckling loads for various layup sequences of hybrid Graphite 

and S-Glass/Epoxy composites. 

Ply Orientation Analytical Results, N Numerical Results, N % Error  

30/-30/60/-60 0.03187 0.03262 2.35332 

30/-30/0/90 0.0475 0.04736 0.29474 

0/90/90/0 0.16986 0.16972 0.08243 

0/90/0/90 0.0926 0.09331 0.76674 

90/0/0/90 0.04227 0.04233 0.14195 

 

7.5.2.3 Effect of Element Type in FE Analysis 

A parametric study was conducted to investigate the effect of changing the element type in the 

finite element analysis on the bucking load of the composite columns. Quadratic thick shell 

element (S8R) and quadratic solid element (C3D20R) both with reduced integration schemes were 

utilized with an element size equal to 0.5 mm x 0.5 mm, as illustrated earlier. Table 7.6 reports the 

comparison between the analytical and numerical results for shell and solid element. It was 

observed that the shell element results showed an excellent agreement with the analytical results 

for all stacking sequences. On the other hand, the solid element results were noticeably off for the 

cross-ply and anisotropic stacking sequences having the same mesh size as that of the shell element 

since solid elements have only translation degrees of freedom while shell elements have rotational 

degrees of freedom. Accordingly, shell element might be more reliable than solid element in 

buckling analysis of composite members.  
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Table 7.6 Analytical and numerical results with shell and solid elements. 

Ply Orientation Analytical 

Results, N 

Shell Element 

Results (S8R), 

N 

Solid Element 

Results (C3D20R), 

N 

0/0/0/0 0.19082 0.1908 0.1908 

90/90/90/90 0.0131595 0.01316 0.01317 

30/-30/30/-30 0.05979 0.05997 0.0599 

45/-45/45/-45 0.02218 0.02226 0.02266 

60/-60/60/-60 0.01423 0.01425 0.01425 

60/-60/45/-45 0.01742 0.01752 0.01854 

30/-30/45/-45 0.03275 0.03337 0.04178 

30/-30/60/-60 0.02359 0.02444 0.03831 

30/-30/0/0 0.09127 0.09369 0.12587 

30/-30/0/90 0.04393 0.04401 0.08151 

30/30/30/30 0.02711 0.02726 0.02727 

30/-30/-30/30 0.04814 0.04833 0.06453 

0/90/90/0 0.16903 0.16901 0.10232 

30/-60/-60/30 0.02893 0.02909 0.02817 

0/90/0/90 0.08658 0.08775 0.10231 

-45/30/-30/45 0.02852 0.02863 0.04528 

90/0/0/90 0.035455 0.03546 0.10232 

30/30/-30/-30 0.04043 0.04046 0.03952 
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7.5.2.4 Effect of Element Thickness 

The effect of having thin and thick columns was also studied. Comparison between the analytical 

and numerical results, were conducted, using columns with 0.4 mm and 1.6 mm thickness while 

maintaining the same width to thickness ratio equal to 2.5. Table 7.7 and Table 7.8 presents 

comparisons between the analytical and numerical buckling load results for Graphite/Epoxy and 

S-Glass/Epoxy composite columns with 1.6 mm thickness, respectively. The level of errors 

between the numerical solution, capable of capturing the behavior of thick shells, with the 

analytical solution for thick columns is similar to that of thin columns. This may suggest that the 

present formula can be successfully used to re-produce accurate results in cases of moderately 

thick shells. 

Table 7.7 Comparison of analytical and numerical buckling load for various layup sequences of 

Graphite/Epoxy Composite Column (t = 1.6 mm). 

Ply Orientation Analytical Results, N Numerical Results, N % Error  

0/0/0/0 48.84797 48.749 0.20261 

90/90/90/90 3.368825 3.3681 0.02153 

30/-30/30/-30 15.30558 15.451 0.95012 

45/-45/45/-45 5.6772 5.7491 1.26647 

60/-60/60/-60 3.6404 3.6592 0.51643 

60/-60/45/-45 4.45936 4.5111 1.16026 

30/-30/45/-45 8.38221 8.6099 2.71635 

30/-30/60/-60 6.03803 6.2825 4.04884 

30/-30/0/0 23.36326 24.106 3.1791 

30/-30/0/90 11.2436 11.309 0.58167 
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30/30/30/30 6.93956 7.079 2.00935 

30/-30/-30/30 12.3238 12.489 1.3405 

0/90/90/0 43.27124 43.164 0.24784 

30/-60/-60/30 7.40565 7.5477 1.91814 

0/90/0/90 22.16371 22.431 1.20599 

-45/30/-30/45 7.3007 7.3968 1.31632 

90/0/0/90 9.076407 9.0713 0.05627 

30/30/-30/-30 10.34909 10.334 0.14581 

 

Table 7.8 Comparison of analytical and numerical buckling load for various layup sequences of 

S-Glass/Epoxy Composite Column (t = 1.6 mm). 

Ply Orientation Analytical Results, N Numerical Results, N % Error  

0/0/0/0 18.52854 18.527 0.00832 

90/90/90/90 5.39012 5.3893 0.01522 

30/-30/30/-30 11.14204 11.166 0.21505 

45/-45/45/-45 7.3457 7.3675 0.29678 

60/-60/60/-60 5.79429 5.8028 0.14687 

60/-60/45/-45 6.46851 6.4882 0.3044 

30/-30/45/-45 8.88751 8.9346 0.52985 

30/-30/60/-60 7.64932 7.7148 0.85603 

30/-30/0/0 13.82426 13.906 0.59128 

30/-30/0/90 8.80835 8.8274 0.21628 

30/30/30/30 9.13073 9.1845 0.5889 
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30/-30/-30/30 10.25316 10.296 0.41783 

0/90/90/0 16.9489 16.938 0.06432 

30/-60/-60/30 9.04752 9.0906 0.47616 

0/90/0/90 11.29621 11.347 0.44962 

-45/30/-30/45 7.94057 7.964 0.29507 

90/0/0/90 7.058518 7.0581 0.00593 

30/30/-30/-30 9.784 9.792 0.08177 

 

7.6 Conclusions 

Based on Rayleigh-Ritz approximation, analytical buckling formula for anisotropic laminated 

composite columns with fixed free end conditions under axial compression was developed. The 

derived analytical buckling formula was expressed with respect to the effective extensional, 

coupling, and flexural rigidities along with the column geometry. The analytical results exhibited 

an excellent agreement with the finite element analysis results. The derived analytical formula was 

able to capture the complexity in the behavior of anisotropic columns for different stacking 

sequences, material properties, and hybrid columns yielding an excellent agreement with the 

numerical analysis results. Moreover, using shell elements yielded very accurate buckling load 

results for all stacking sequences compared to the use of solid elements. Furthermore, the derived 

analytical formula yielded accurate results for thin and moderately thick columns when compared 

to finite element predictions.  
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Chapter 8 -  Stability Solution for Clamped-Free Wide Plates under 

Compression Edge Loading 

Rund Al -Masri 1 and Hayder A. Rasheed2 

 

8.1 Abstract 

Buckling of anisotropic laminated composite clamped-free wide plate under compression 

edge loading is investigated.  Using Rayleigh-Ritz approximation based on energy method, a 

generalized analytical critical buckling formula is developed. Based on the generalized 

constitutive relationship, the effective extensional, coupling and flexural stiffness coefficients 

of the anisotropic layup are determined using dimensional reduction of the three dimensional 

composite stiffness matrix. The developed formula is expressed in terms of the generally 

anisotropic material properties in the principal directions along with wide plate geometry. 

The formula reduces down to Euler buckling formula for certain types of layups. The 

analytical solution is confirmed against finite element analysis for wide range of anisotropic 

layups yielding high accuracy. A brief parametric study is then conducted to examine the 

effect of ply orientations, element thickness, and material properties including hybrid 

carbon/glass fiber composites. Relevance of the numerical and analytical results is discussed 

for all these cases. 

 

 

Keywords: Buckling of Composite Wide Plates, Clamped-free Boundary Conditions, Anisotropic 

Laminated Composites, Axial Compression. 
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8.2 Introduction  

In the past few decades, composites had captured the attention in various industrial applications 

such as aerospace, marine, and automotive due to their mechanical advantages. An increase in the 

demand to understand the mechanics of composite material has resulted. Stability analysis is a 

critical issue in the composite members. Although a limited amount of research has focused on the 

stability of anisotropic laminated composite wide plates, sufficient amount of studies has 

investigated the buckling of composite plates, beams, cylinders, and shells [1-10]. Haung et al. [1] 

presented an efficient finite element model to investigate buckling of grid stiffened laminated 

composite plates. Curved beam element was proposed to model the stiffeners. Moreover, the 

developed element was used to solve different numerical examples. Wang and Abdalla [2] studied 

the global and local buckling of grid stiffened composite panels based on Bloch wave theory. The 

presented method is confirmed for different composite configurations. Based on sets of 

trigonometric shape functions, Weber and Middendorf [3] studied the skin buckling of curved 

orthotropic grid-stiffened shells with a semi-analytical Ritz method. Depending on Principal of 

virtual work with linear kinematics, Grover et al. [4] proposed a new inverse hyperbolic shear 

deformation theory (IHSDT) to study static and buckling response of laminated composite and 

sandwich plate depending on the shear strain shape function to ensure a nonlinear distribution of 

transverse shear stresses and satisfies traction at free boundary conditions. Analytical solution was 

determined using Navier type approach of simply supported composite sandwich plate. Several 

numerical examples were solved for the presented theory. The developed theory accurately 

predicted the critical buckling load for simply supported thick plates with minimal numerical error 

and computational cost. Khayat et al. [5] analyzed the buckling of laminated composite cylindrical 

shell under lateral displacement-dependent pressure using semi-analytical finite strip method. 
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Based on the first shear deformation theory with Sanders type of kinematics nonlinearity, the 

governing equations were developed. The results showed a decrease in the buckling pressure when 

the pressure stiffness was taken into consideration. Baba and Baltaci [6] studied the buckling 

characteristics of symmetrical and anti-symmetrical E-glass/Epoxy laminated composite 

rectangular plates with central cutout experimentally and numerically. Different laminate 

configurations, cutout shape, boundary conditions, and length to thickness ratio were taken into 

account. The experimental results were confirmed against finite element analysis yielding a higher 

buckling load values than the numerical ones. Becheri et al. [7] developed an exact analytical 

solution to study the buckling of symmetrical cross-ply plates using nth-order shear deformation 

theory with curvature effects. The closed form solution was compared with previous work. Debski 

[8] presented numerical analysis of buckling and post-buckling of thin-walled simply supported 

laminated composite columns with channel section under axial compression. Eight symmetrical 

layered Carbon/Epoxy columns were modeled using the software Abaqus and Ansys and verified 

with analytical-numerical method [9]. Linear four node shell element with reduced integration 

schemes (S4R) and eight node shell element (Shell99) were attempted in Abaqus and Ansys, 

respectively. A good agreement was observed between the finite element results and results 

obtained from the analytical-numerical method. Cortinez and Piovan [10] proposed a theoretical 

model to study the buckling of composite thin-walled beams with shear deformability using 

nonlinear displacement field depending on Hellinger-Reissner principal. The governing equations 

were solved using finite element with fourteen degrees of freedom. 

Based on Rayleigh-Ritz method, a generalized closed form critical buckling solution of anisotropic 

laminated composite clamped-free wide plates under uniaxial compression loading was developed 

in this work. Using fiber orientations and material properties, the three dimensional stiffness matrix 
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was constructed then reduced down to 1D axial, coupling, flexural stiffness coefficients by 

excluding zero strains and curvatures. Additionally, the analytical critical buckling formula was 

validated along with the finite element analysis yielding an excellent agreement. 

8.3 Analytical Formulation  

8.3.1 Assumptions  

Rayleigh-Ritz method is invoked to develop a generalized closed-form buckling solution for 

clamped-free anisotropic laminated composite wide plates under uniaxial compression loading. 

The following several assumptions are considered prior to the formulation process:  

¶ Buckling occurs by bending parallel to the x-y plane about the z-axis (weak axis). 

¶ The y-axis is perpendicular to the composite lamination surface, Figure 8.1.  

¶ The lamination angle (à) is measured with respect to the x-axis in which 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis. Accordingly, the angle 

(à) is rotated about the y-axis. 

¶ Simple beam theory holds in which Plane sections before bending remain plane after 

bending and perpendicular to the mid surface. 

¶ Classical lamination theory is applicable with shear deformations ignored. 

8.3.2 Kinematics 

Figure 8.1 presents the Cartesian coordinates and the geometry of the clamped-free wide plates. 

Bending takes place about the z-axis which is the weak axis of the plates. Equation (1) presents 

the assumed displacement field based on the isotropic buckling mode:  

◊ ● ║● ;    ○ ●  ╒ ἫἷἻ
Ⱬ●

╛
                                         (1) 
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Where όὼ, v ὼ are the axial and lateral displacement, B1 and C1 are constants to be solved and 

x is the distance along the axis of the wide plates as shown in Figure 8.1.The axial strain Ⱡ● and 

curvature ⱥ● are presented in equation (2) depending on the intermediate class of deformation: 

Ⱡ●
▀◊

▀●

▀○

▀●
 ◊ ○ ;         ⱥ●

▀○

▀●
○                          (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1Wide Plate geometry 

 

8.3.3 Constitutive equations 

The principle material directions are transformed into the wide plate coordinate system. The 

stresses and strains are then related by the transformed reduced stiffness matrix ὗ presented in 

equation (3); as defined in standard composite textbook [11]  

P 
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x 
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Infinite 

Lamination

n 

Infinite 
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Accordingly, the coupled force-strain relationship is established as  
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Where ὃ , ὄ , and Ὀ  are the extensional, coupling, and flexural stiffness coefficients. ὸ = 

thickness of the k-th ply; and N = number of different plies in the stacking sequence.  

Material properties and the fiber orientations are used in Eq. (4) to generate the three dimensional 

(3D) constitutive matrix. Using the static condensation approach, the 3D classical lamination 

matrix is then reduced to one dimensional (1D) anisotropic extensional, coupling, and flexural 

stiffness coefficients after applying the zero strain curvatures. 
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The axial force and in-plane moment versus the axial strain and in-plane curvature relationship are 

extracted to yield.  The first and fourth linear equation of matrix (6) 

                     ╝●
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═ ║
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                                   (7) 

Equation (7) expresses the material properties of wide plates with respect to the extensional, 

coupling, and flexural stiffness coefficients in the principal directions. 

8.3.4 Energy Formulation 

Rayleigh-Ritz approximation based on the energy approach was utilized in developing a 

generalized closed-form buckling solution of anisotropic laminated composite clamped-free wide 

plates under uniaxial compression loading. Strain energy can be expressed in terms of the 

integration of the applied loads multiplying the corresponding deformations. 

The potential of external loads can be expressed as   

                                        ╦ ╟ ◊╛                                                            (9) 

In view of Eq. (8) and (9), the total potential energy function is given by  
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Minimizing the total potential energy with respect to the unknown B1 and C1, by setting the 

differential operators to zero, and manipulating the expressions, the following equations are 

developed  

 

Solving equation (12) for B1 then substituting the resulting expression in equation (15), the 

following cubic equation is formulated in terms of C1 value                                
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Equation (15) does not lend itself to a closed form solution. Therefore, considering the critical 

stability matrix:  
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Setting the determinant of the matrix in Equation (16) to zero, substituting B1 expression from 

equation (14) and solving for C1 using the general solution of a quadratic equation: 
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In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero and manipulating its expression, a closed form solution for the critical 

buckling load per unit width of the plate is derived: 
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The general critical buckling formula for wide plates with any width values other than unity is: 
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Where w is the width of the wide plates, equation (22) reduces down to Euler buckling formula of 

clamped-free wide plates when the coupling term vanishes in case of isotropic or specially-

orthotropic materials.  

Numerical Formulation 

In order to validate the developed formula in the previous section, finite element analysis was 

performed using commercial software package Abaqus. Wide plates with the following 

dimensions for width, length, and thickness: 1000 mm x 100 mm x 0.4 mm were attempted, 

respectively. Linear elastic laminated material was assumed for both orthotropic and anisotropic 

layups where S-Glass/Epoxy material was used as main material. Fixed and free ends were 

illustrated at the bottom and top of the wide plate, respectively. Furthermore, the translation in the 

x-direction (z-direction in Figure 8.1) and the rotation about y-direction (about the x-direction in 

Figure 8.1) were prevented to mimic the infinitely wide plate, see Figure 8.2.  Additionally, edge 

loading was applied at the top of wide plate as shown in Figure 8.2. 

 
Figure 8.2 Boundary conditions and edge loading. 

 

Quadrilateral eight node doubly curved thick shell element (S8R) with reduced integration having 

element size equal to 10.0 mm x 10.0 mm was used to model the anisotropic laminated composite 
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wide plates after performing a convergence study to select the appropriate mesh size. Figure 8.3 

presents the meshed wide plate used in the numerical analysis. 

 

Figure 8.3 Meshed Model 

Based on Lanczos solver, eigenvalue computation was conducted using buckling analysis. Lanczos 

technique extracts the eigenvalue and eigenvector values of a complex Hermitian matrix 

depending on the power method where a symmetric matrix is reduced to tridiagonal matrix using 

recurrence relations [12].  

8.4 Results and Applications 

8.4.1 Numerical Validation  

The generalized closed form buckling solution of anisotropic wide plates was confirmed along 

with the finite element analysis. S-Glass/Epoxy material was attempted in the validation study and 

its properties are reported in Table 8.1; obtained from typical values in an FRP textbook [13]. 

Table 8.1 S-Glass/Epoxy material properties [13]. 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

Table 8.2 illustrates the comparison between the analytical and numerical results for different 

stacking sequences of the anisotropic laminated composite wide plates with the following 
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dimensions for width, height, and thickness: 1000 mm x 100 mm x 0.4 mm, respectively. In 

general, an excellent agreement between the results is observed with maximum error around 4.51% 

for the Antisymmetric angle ply (30/-30/30/-30). It is observed that the stacking sequence with 

maximum error yields the analytical solution on the un-conservative side. 

Table 8.2 Comparison between analytical and numerical results for S-Glass/Epoxy thin plates (h/t 

= 250 mm).  

Ply Orientations Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 

0.074067 0.074066 0.0014 

Single Specially 

Orthotropic 

90/90/90/90 

0.0215466 0.021547 0.0019 

Single Specially 

Orthotropic 

30/-30/30/-30 

0.052773 0.050391 4.5137 

Antisymmetric Angle 

Ply 

45/-45/45/-45 

0.036921 0.035541 3.7378 

Antisymmetric Angle 

Ply 

60/-60/60/-60 

0.026513 0.026124 1.4673 

Antisymmetric Angle 

Ply 

60/-60/45/-45 0.031025 0.030205 2.6431 Balanced Angle Ply 

30/-30/45/-45 0.043712 0.04197 3.9852 Balanced Angle Ply 

30/-30/60/-60 0.036118 0.035157 2.6608 Balanced Angle Ply 

30/-30/0/0 0.061971 0.060086 3.0418 Anisotropic 

30/-30/0/90 0.039123 0.037732 3.5555 Anisotropic 



 

158 

30/30/30/30 0.052773 0.05462 3.4999 Single Anisotropic 

Layer 

30/-30/-30/30 0.052773 0.054813 3.8657 Symmetric Angle Ply 

0/90/90/0 0.067502 0.067498 0.006 Symmetric Cross Ply 

30/-60/-60/30 

0.04949 0.051363 3.7847 

Symmetric Multiple 

Angle Layers 

0/90/0/90 

0.044884 0.045101 0.4835 

Antisymmetric Cross 

Ply 

-45/30/-30/45 

0.038903 0.03774 2.9895 

Antisymmetric Angle 

Ply 

90/0/0/90 0.0281116 0.028112 0.0015 Symmetric Cross Ply 

  

8.4.2 Effect of Ply Orientation  

A parametric study was conducted to investigate the effect of different stacking sequences of the 

anisotropic laminated composite wide plates with the following dimensions: 1000 mm x 100 mm 

x 0.4 mm for width, height, and thickness, respectively, on the stability response. The critical 

buckling load varies between 0.074067 N and 0.021547 N for different ply orientations as shown 

in Table 8.2. Moreover, an edge effect was observed for some staking sequences such as the 

anisotropic layup (30/-60/-60/30) as shown in Figure 8.4. On the other hand, the other stacking 

sequences exhibited a uniform deformation along the plate, see Figure 8.5. 
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Figure 8.4 Buckling mode shape and edge effect of (30/-60/-60/30) layup. 

 

 
Figure 8.5 Bucking mode shape with uniform deformation. 

8.4.3 Effect of Material Properties 

Effect of Hybrid composite wide plates was investigated in this section. S-Glass/Epoxy and High 

Strength Graphite/Epoxy material were used and their properties are reported in Table 8.1 and 

Table 8.3; obtained from typical values in FRP textbook [13]. Layups with ply orientations equal 

to 90o and 60o were composed of S-Glass/Epoxy while High Strength Graphite/Epoxy was used 

for other orientations. Table 8.4 presents the analytical and numerical results of Hybrid wide plates 
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for various stacking sequences in which the balanced angle ply (30/-30/60/-60) and the symmetric 

cross ply (90/0/0/90) exhibited the maximum and minimum error value, respectively. 

Table 8.3 High Strength Graphite/Epoxy Material Properties [13]. 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 

 

Table 8.4 Comparison between analytical and numerical results of Hybrid plates (t = 0.4 mm).  

Ply Orientations Analytical Results, 

N 

Numerical Results, N % Error  

30/-30/60/-60 0.04708 0.04308 8.4962 

30/-30/0/90 0.07403 0.07021 5.1601 

0/90/90/0 0.17038 0.17035 0.0177 

0/90/0/90 0.09285 0.09387 1.0986 

90/0/0/90 0.0428081 0.0428065 0.00374 

 

8.4.4 Effect of Element Thickness 

The effect of thin, moderately thick, and thick wide plate on the critical buckling load values was 

also reported herein. Comparison between the analytical and numerical (FE) results using S-

Glass/Epoxy material were conducted for three different height to thickness ratios equal to 250, 

62.5, and 10.0 to demonstrate thin, moderately thick, and thick wide plates, respectively. Table 8.2 

illustrated the analytical and numerical solutions for thin anisotropic wide plates. Table 8.5 shows 

the results for moderately thick wide plates (h/t =62.5) in which a very good agreement was 

observed between the closed form solution and the finite element analysis with maximum error 

value around 7.4% for the symmetric angle ply (30/-30/-30/30). The analytical and numerical 

results for thick anisotropic wide plates are presented in Table 8.6.The generalized analytical 
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results were off from the finite element results. In general, it was observed the present formula was 

capable of capturing the behavior of moderate thick wide plates in similar manner to that of thin 

wide plates. This may suggest that the developed analytical formula herein can successfully re-

produce accurate estimate of the buckling loads in moderately thick wide plates. On the other hand, 

the consideration of shear deformations is very important to estimate the buckling loads of thick 

wide plates. 

Table 8.5 Comparison between analytical and numerical results for S-Glass/Epoxy moderately 

thick plates (h/t = 62.5) 

Ply 

Orientations 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 4.740247 4.738 0.0475 Single Specially Orthotropic 

90/90/90/90 1.378981 1.3785 0.0349 Single Specially Orthotropic 

30/-30/30/-30 3.377426 3.2234 4.5605 Antisymmetric Angle Ply 

60/-60/45/-45 1.985567 1.9323 2.6828 Balanced Angle Ply 

30/-30/0/90 2.503835 2.4132 3.6199 Anisotropic 

30/-30/-30/30 3.377426 3.1265 7.4296 Symmetric Angle Ply 

0/90/90/0 4.320089 4.3163 0.0878 Symmetric Cross Ply 

0/90/0/90 2.872542 2.885 0.4337 Antisymmetric Cross Ply 

 

 

Table 8.6 Comparison between analytical and numerical results for S-Glass/Epoxy thick plates (h/t 

= 10.0) 

Ply 

Orientations 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 2994.349676 1136.5 62.0452 Single Specially Orthotropic 

90/90/90/90 206.506875 332.24 60.8857 Single Specially Orthotropic 



 

162 

30/-30/30/-30 1790.61043 771.41 56.9192 Antisymmetric Angle Ply 

60/-60/45/-45 575.19047 464.65 19.2181 Balanced Angle Ply 

30/-30/0/90 1078.73674 616.48 42.8517 Anisotropic 

30/-30/-30/30 1790.61043 833.47 53.4534 Symmetric Angle Ply 

0/90/90/0 2645.86933 1019.8 61.457 Symmetric Cross Ply 

0/90/0/90 1354.40817 690.05 49.0516 Antisymmetric Cross Ply 

 

8.5 Conclusion 

A generalized analytical buckling formula for clamped-free anisotropic laminated composite wide 

plates under uniaxial compression was presented in this work based on Rayleigh-Ritz 

approximation. The presented solution is expressed in terms of extensional, coupling, and flexural 

stiffness coefficients in the principal directions as well as infinitely wide plate geometry. In 

general, a very good agreement was observed between the analytical and numerical (FE) results. 

The proposed formula accurately predicted the critical buckling load values for hybrid 

carbon/glass composite fiber, and different ply orientations. Furthermore, the generalized close-

form solution captured the complexity in the behavior of thin and moderately thick anisotropic 

wide plates.  
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Chapter 9 - Buckling Solutions of Clamped-Pinned Anisotropic 

Laminated Composite Columns under Axial Compression using 

Bifurcation Approach and Finite Elements 

Rund Al-Masri 1 and Hayder A. Rasheed2  

 

9.1 Abstract 

Following a bifurcation approach, a generalized closed form buckling solution for  clamped-

pinned anisotropic laminated composite columns under axial compression is developed using 

the energy method. The effective axial, coupling, and flexural rigidity  coefficients of the 

anisotropic layups is determined following the generalized constitutive relationship using 

dimensional reduction by static condensation of 6x6 rigidity  matrix. The presented analytical 

explicit formula reproduces Euler buckling expression in the case of isotropic or specially-

orthotropic materials once the effective coupling term vanishes. On the other hand, the 

analytical formula furnishes two extra terms which are a function of the effective coupling, 

flexural  and axial rigidity .  The analytical buckling formula is confirmed against finite 

element Eigen value solutions for different anisotropic laminated layups yielding high 

accuracy for a wide range of stacking sequences. A parametric study is then conducted to 

examine the effect of ply orientations, material properties including hybrid carbon/glass 

fiber composites and FE element type. Relevance of the numerical and analytical results is 

discussed in comparison to previous results in literature. 

  

 

Keywords: Buckling of Composite Columns, Clamped-Pinned Boundary Conditions, Anisotropic 

Laminated Composites, Axial Compression. 
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9.2 Introduction  

 

The distinguished properties of laminated composite material such as high stiffness-to-weight 

ratio, high strength-to-weight ratio, as well as fatigue and corrosion resistance have captured the 

industry attention in the past few decades. Accordingly, the demand to understand the stability 

mechanics of laminated composite members has increased. Despite the fact that limited amount of 

research studies has addressed the buckling of anisotropic laminated composite columns, 

significant amount of studies has been conducted on the stability of composite shells, plates, 

beams, and cylinders [1-15]. Heidari-Rarani et al. [1] investigated the effect of angle-ply and cross-

ply layups on the stability of E-glass/epoxy square composite laminated plates under axial 

compression with SFSF (S: simply supported, F: Free) boundary conditions analytically, 

numerically, and experimentally. A semi-analytical solution was developed using Rayleigh-Ritz 

approach. Analytical results were verified against finite element analysis yielding an excellent 

accuracy. Moreover, Hashin, Tsai-Wu, and Tsai-Hill failure criteria were attempted in the 

numerical analysis to study the layer failure of the laminated composites.  Experimentally, E-

glass/epoxy plates of four layers were made with angle-ply ([ 3ᴜ0]s and [ᴜ 45]s) and cross-ply 

([0/90]s) stacking sequences using hand layup method. The test was conducted under displacement 

control with rate equal to 0.5 mm/min. On the other hand, the semi-analytical and numerical 

buckling load values were overestimated compared to the experimental results. Tsai-Wu and Tsai-

Hill failure criteria had the same failure mode as the tested plates in which the failure started from 

the plate edge then developed along the plate. Abramovich and Livshits [2] studied the free 

vibrations of non-symmetric cross ply laminated composite beams based on the first order shear 

deformation theory. Longitudinal, transverse displacement, rotary inertia, and shear deformation 
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were considered in the analysis. The following equation of motion of cross ply laminated 

composite beams was solved for different boundary conditions: 

[M]{ή←}+[C] {ή} = {0}                                                         (1) 

Where [M] is the generalized mass matrix, [C] is the matrix differential operator; and {ή} is the 

vector of the generalized displacements. The new approach and Bernoulli-Euler theory were 

verified against numerical solutions. Based on the generalized Galerkin method, Lopatin and 

Morozov [3] proposed analytical formula to predict the buckling of composite cantilever circular 

cylindrical shell under uniform external lateral pressure. Finite element software COSMOS/M was 

used to perform the eigenvalue and eigenvector computations with SHELL4L element, which was 

confirmed against the analytical results yielding an accurate estimate of the buckling load values. 

Cortinez and Piovan [4] presented a theoretical model to study the stability of composite thin-

walled beams with shear deformability using nonlinear displacement field depending on Hellinger-

Reissner principal. A finite elements with fourteen degrees of freedoms were used to solve the 

governing equations. The results showed that shear flexibility had a significant effect on the 

stability of the composite beams. Using equivalent layer shell theory with six degrees of freedom 

and the first shear deformation theory, Rikards et al. [5] presented a triangular finite element to 

study the buckling and vibration of laminated composite stiffened plates and shells. The numerical 

results were confirmed with previous solutions developed by Jaunky et al. [6] yielding a good 

agreement. Kumar and Mukhopadhayay [7] developed a new finite element to investigate the 

buckling of laminated stiffened plate for different boundary conditions based on the first order 

shear deformation theory. The presented finite element predicted the critical buckling load without 

shear locking for thin and thick plates. Furthermore, the numerical results exhibited a good 

agreement with existing solutions (Loughlan [8]).  Kidane et al. [9] introduced analytical model to 
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predict the stability of grid stiffened composite cylinders based on the smeared method. The 

equivalent material properties of the grid stiffened composite cylindrical shells were taking into 

account. Moreover, the results were confirmed against experimental and previous results [10]. 

Debski et al. [11] studied the buckling and post-buckling of simply supported thin-walled 

composite channel column under axial compression loading experimentally. Carbon/epoxy 

columns of eight symmetrical plies [0/-45/45/90]s were tested using Zwick Z100/SN3A universal 

testing machine. The experimental results were verified with numerical (FE) results and analytical-

numerical method (ANM) [12-15].  

A generalized analytical buckling formula was developed for anisotropic laminated composite 

clamped-pinned columns under axial compression loading using the bifurcation solution of pre-

buckling deformation. Applying static condensation method, three dimensional 6 x 6 composite 

rigidity matrix is converted to one dimensional axial, coupling, and flexural rigidities. Moreover, 

the analytical results were confirmed against finite element analysis using commercial software 

Abaqus yielding an excellent agreement. Furthermore, comparison of the analytical results against 

previous finding for cross-ply laminates showed excellent correlations.  

9.3 Analytical Formulation  

9.3.1 Assumptions and Kinematics 

Bifurcation solution is used to develop a generalized analytical critical buckling formula for 

clamped-pinned anisotropic laminated composite columns under axial compression. Prior to 

deriving the analytical solution, several assumptions are considered and presented in the following 

points:   

¶ Buckling takes place in the x-y plane about the weak axis (z-axis). 
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¶ The y-axis runs through the thickness of the column where the composite lamination 

takes place, Figure 9.1 

¶ The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 

¶ Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

¶ Classical lamination theory is applicable with shear deformations ignored. 

Cartesian coordinates and geometry of the clamped-pinned columns used are illustrated in 

Figure 9.1. The bending occurs about the z-axis (weak axis). The following displacement relations 

were assumed based on the isotopic Euler first buckling mode: 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 The column geometry. 
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                           (2) 

where όὼ, and ὺὼ is the axial, and lateral displacements; B1, and C1 are constants to be solved 

for; and x is the distance along the axis of the column starting at the point load. For an intermediate 

class of deformation, the axial strain ‐ and curvature ‖are defined as follow. 
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9.3.2 Constitutive equations 

The principal material directions were transformed into the column coordinate system, the stresses 

and strains are then related in the following equation 
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Where  ὗ  represent the transformed reduced stiffness matrix as defined in standard composite 

textbooks [16]. Accordingly, the coupled force-strain relationship is established as follows: 
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                                  ╓░▒ В ╠░▒◄▓
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In which ὃ ,ὄ  and Ὀ  are the axial, coupling, and flexural rigidity coefficients. ὸ is the 

thickness of the k-th ply; and N is the number of different plies in the stacking sequence.  

Using material properties and fiber orientations into equation (5), the three dimensional (3D) 

rigidity matrix is established. Accordingly, this matrix is reduced to 1D anisotropic axial, coupling 

and flexural rigidities using static condensation approach after applying the zero forces and 

moments.  
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Equation (7) is solved first for the axial strain and axial curvature (Ⱡ● ,ⱥ●) in terms of the rest of 

the deformation components by extracting the second, third, fifth and sixth linear equations from 

the matrix. 
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 Inverting the matrix Q to the other side of equation (8), the condensed deformation components 

are obtained in terms of the axial strain and curvature:  

                                        

Ⱡ◑
♬●◑
ⱥ◑
ⱥ●◑

╠ ╡
Ⱡ●
ⱥ●

                                                      (9) 

Substituting equation (9) into the first and fourth linear equation of the matrix (7); the axial force 

and in-plane moment vs. the axial strain and in-plane curvature relationship can be expressed in 

terms of the generally anisotropic material properties  
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Where 
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9.3.3 Pre-buckling Solution 

Based on the mode shape of clamped-pinned column, pre-buckling solution is considered to derive 

the buckling formula. The in-plane moment (ὓ ) is set to zero during pre-buckling and before 

reaching the buckling load assuming a bifurcation response. 
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By substituting Eq. (13) into the axial force equation, the axial force versus the axial strain can be 

expressed in terms of the generally anisotropic material properties 
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                       ╟● ═▄██ꜗ●                                                               (15) 

Where 

                  ═▄██ ═╪▪░
║╪▪░

╓╪▪░
                                                          (16) 

The axial force (ὖ) is positive and in compression based on the assumed sign convention. 

However, the axial strain () is negative while it is also in compression. Accordingly a negative 

sign is inserted into equation (2) as follow: 

                  ◊ ║ ╛ ●                                                        (17) 

Using the axial strain in Eq. (3), setting the lateral displacement term to zero, and substituting 

equation (17), the axial strain can be expressed as 

                       ●ꜗ ║                                                                 (18) 

By substituting Eq. (18) into Eq. (15), a relationship between the axial force and the unknown 

constant (ὄ) is obtained, i.e.  

                    ║
╟●

═▄██
                                                            (19) 

9.3.4 Bifurcation Solution in terms of Pre-buckling Deformation 

Energy approach is attempted in the bifurcation solution in which the strain energy can be 

expressed in terms of the integration of the applied loads multiplying the corresponding 

deformations. 

 The potential of external loads can be expressed as   
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                                        ╦ ╟ ◊╛                                                           (21) 

   In view of equations (20) and (21), the total potential energy function is given by  
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By substituting Eq. (19) into the total potential energy function given by Eq. (23), one obtains 
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Minimizing the total potential energy with respect to the unknown ὅ, setting the resulting 

expression to zero, and manipulating the equation, one gets 
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The cubic equation (25) with respect to C1 does not lend itself to a close form solution of the 

buckling load. Therefore, the second derivative of Eq. (25) with respect to C1 is considered  
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By solving Eq. (26), one gets 
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In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero, a closed form solution for the critical buckling load is developed in terms of 

the generally anisotropic material properties as well as the column geometry: 

                    ╟╬► Ȣ
╓╪▪░

╛
Ȣ

║╪▪░

═╪▪░╛
Ȣ  

║╪▪░

═╪▪░╓╪▪░╛
                    (28)        

It is observed that Eq. (28) reduces down to Euler buckling formula of the clamped-pinned 

isotropic column in the case of isotropic or specially-orthotropic materials. 

9.4 Numerical Formulation 

The developed analytical formula in the previous section was confirmed against numerical analysis 

(FE) using the commercial software package Abaqus. Columns were assembled with fixed support 

and pin support at the bottom and top of the column, respectively. Furthermore, axial loading was 

applied at the top of the column. Quadrilateral eight node doubly curved thick shell element (S8R) 

was attempted in the modeling process in three dimensional space with element size 0.5 x 0.5 mm 

after performing a convergence study to select the appropriate mesh size. Linear elastic laminated 

material was assumed for orthotropic and anisotropic layups.  The modelôs boundary conditions 

and meshed model are presented in Figure 9.2.  
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Figure 9.2. Left: Boundary conditions and applied load. Right: Meshed Model. 

Using Lanczos solver, buckling analysis was attempted to simulate eigenvalue computation. 

Lanczos method solves eigenvalue and eigenvectors of complex Hermitian matrix based on the 

power method in which ά ὼ ά symmetric matrix is reduced to a tridiagonal matrix using 

multidimensional array values (recurrence relations) [17]. Nonlinear geometry analysis using the 

modified Riks formulation was performed to predict the stability response (pre-buckling and 

buckling) of the laminated composite columns. The modified Riks analysis is based on the Arc-

length method in which it follows the equilibrium path, representing either the bifurcation points 

or the limit loads. During the analysis process, load increments are applied where equilibrium 

iterations converge along the arc length, forcing the constraint equation to be satisfied at every arc 

length increment [18].     
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9.5 Results and Applications 

9.5.1 Numerical Validation 

The analytical formula developed in section 2.4 was verified with the numerical (FE) analysis. 

Table 9.1 presents the material properties of S-Glass/Epoxy; obtained from typical values in FRP 

textbook [19], which was mainly used to simulate composite columns buckling behavior.  The 

comparison between the analytical and numerical results for different stacking sequences is 

presented in Table 9.2 for composite columns with dimensions equal to: 100 mm x 1.0 mm x 0.4 

mm for length, width, and thickness, respectively.  The analytical results exhibited an excellent 

agreement with the numerical results having a maximum error value around 2.7 % for the single 

anisotropic layup (30/30/30/30). Single specially-orthotropic layer (0/0/0/0) exhibits the highest 

buckling load due to having all fibers aligned with the loading axis while the coupling 

coefficient ║╪▪░ vanishes. It is important to note that the layup with the maximum error yields the 

numerical buckling load on the conservative side.  

Table 9.1 S-Glass/Epoxy material properties [19]. 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

Table 9.2 Comparison of analytical and numerical results of S-Glass/Epoxy material. 

Ply 

Orientations 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.59224 0.59218 0.01014 Single Specially 

Orthotropic 

90/90/90/90 0.17229 0.17227 0.01161 Single Specially 

Orthotropic 
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30/-30/30/-30 0.35615 0.35632 0.04774 Antisymmetric 

Angle Ply 

45/-45/45/-45 0.2348 0.23498 0.07667 Antisymmetric 

Angle Ply 

60/-60/60/-60 0.18521 0.18528 0.0378 Antisymmetric 

Angle Ply 

60/-60/45/-45 0.20664 0.20719 0.26617 Balanced Angle 

Ply 

30/-30/45/-45 0.28358 0.28512 0.54306 Balanced Angle 

Ply 

30/-30/60/-60 0.24356 0.2467 1.28922 Balanced Angle 

Ply 

30/-30/0/0 0.44074 0.44535 1.04597 Anisotropic 

30/-30/0/90 0.28139 0.28289 0.53307 Anisotropic 

30/30/30/30 0.29186 0.29967 2.67595 Single 

Anisotropic 

Layer 

30/-30/-30/30 0.32773 0.33201 1.30596 Symmetric 

Angle Ply 

0/90/90/0 0.54175 0.54155 0.03692 Symmetric 

Cross Ply 
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30/-60/-60/30 0.2892 0.29458 1.86031 Symmetric 

Multiple Angle 

Layers 

0/90/0/90 0.35998 0.36275 0.76949 Antisymmetric 

Cross Ply 

-45/30/-30/45 0.25381 0.25401 0.0788 Antisymmetric 

Angle Ply 

90/0/0/90 0.22562 0.22561 0.00444 Symmetric 

Cross Ply 

30/30/-30/-30 0.31274 0.31277 0.0096 Antisymmetric 

Angle Ply 

 

Moreover, the effect of having different stacking sequences of the simulated anisotropic columns 

is reported in Table 9.2 where the buckling load values varies between 0.59218 N and 0.17227 N. 

Furthermore, the buckling mode shape of the clamped-pinned composite columns is illustrated in 

Figure 9.3 for the anisotropic stacking sequence (30/-30/0/90) obtained from finite element 

analysis. 
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Figure 9.3 Buckling mode shape of clamped-pinned anisotropic column. 

 

9.5.2 Nonlinear Geometry Analysis 

Modified Riks analysis based on arc length method was conducted to indicate the existence of pre-

buckling deformation in the transverse direction. Load versus maximum displacement curve is 

plotted for three different stacking sequences obtained from finite element against the analytical 

solution, see Figure 9.4. An excellent agreement is observed between the analytical and numerical 

results in which the Antisymmetric cross-ply (0/90/0/90) showed the highest buckling load 

compared to the other stacking sequences. On the other hand, the balanced angle ply (30/-30/60/-

60) exhibited the lowest buckling load value. While the selected stacking sequences all show pre-

buckling lateral displacement, the bifurcation formula predicted their buckling load very 

accurately.  
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Figure 9.4 Load vs. deflection curve for analytical and numerical results. 

 

9.5.3 Effect of Material Properties 

A parametric study was performed to investigate the effect of having different material properties 

in which S-Glass/Epoxy and High Strength Graphite/Epoxy were assumed and their properties are 

illustrated in Table 9.1 and Table 9.3, respectively, obtained from typical values in FRP textbook 

[19].  

Table 9.3 High Strength Graphite/Epoxy Material Properties [19]. 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 

Critical buckling load values for S-Glass/Epoxy and High Strength Graphite/Epoxy are presented 

in Table 9.2 and Table 9.4, respectively. In general, High Strength Graphite/Epoxy columns 

showed a higher buckling load values compared to S-Glass/Epoxy ones due to the higher stiffness 

values along the fiber directions. The analytical results showed a good agreement against the 
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numerical (FE) results with maximum error and minimum error around 10.35%, 0.0093% for the 

single anisotropic layer layup (30/30/30/30) and single specially orthotropic layup (90/90/90/90), 

respectively. 

Table 9.4 Comparison of analytical and numerical results of S-Glass/Epoxy material. 

Ply Orientations Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 1.56136 1.5598 0.09992 Single Specially 

Orthotropic 

90/90/90/90 0.10768 0.10767 0.00929 Single Specially 

Orthotropic 

30/-30/30/-30 0.48923 0.4904 0.23916 Antisymmetric Angle 

Ply 

45/-45/45/-45 0.18147 0.18212 0.35819 Antisymmetric Angle 

Ply 

60/-60/60/-60 0.11637 0.11654 0.14609 Antisymmetric Angle 

Ply 

60/-60/45/-45 0.14226 0.14386 1.12471 Balanced Angle Ply 

30/-30/45/-45 0.26608 0.27358 2.81871 Balanced Angle Ply 

30/-30/60/-60 0.19156 0.20152 5.19942 Balanced Angle Ply 

30/-30/0/0 0.74085 0.77331 4.38146 Anisotropic 

30/-30/0/90 0.35939 0.36327 1.07961 Anisotropic 

30/30/30/30 0.22182 0.24478 10.35074 Single Anisotropic 

Layer 
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30/-30/-30/30 0.39392 0.40376 2.49797 Symmetric Angle Ply 

0/90/90/0 1.38311 1.3814 0.12364 Symmetric Cross Ply 

30/-60/-60/30 0.23672 0.25552 7.94188 Symmetric Multiple 

Angle Layers 

0/90/0/90 0.70389 0.71751 1.93497 Antisymmetric Cross 

Ply 

-45/30/-30/45 0.23336 0.23424 0.3771 Antisymmetric Angle 

Ply 

90/0/0/90 0.29012 0.29004 0.02758 Symmetric Cross Ply 

30/30/-30/-30 0.3308 0.33021 0.17836 Antisymmetric Angle 

Ply 

Hybrid composite columns were simulated to study the effect of combining two material on the 

stability response. S-Glass/Epoxy material was used for layups with orientations equal to 90o and 

60o while the High Strength Graphite/Epoxy was attempted for the other orientations. In general, 

an excellent agreement was observed between the proposed analytical formula and the finite 

element analysis with maximum error around 3.6% for the balanced angle ply (30/-30/60/-60), see 

Table 9.5. 

Table 9.5 Analytical and numerical results of the hybrid composite columns. 

Ply Orientations Analytical Results, N Numerical Results, N % Erro r  

30/-30/60/-60 0.259 0.26829 3.5869 

30/-30/0/90 0.38864 0.39015 0.3886 

0/90/90/0 1.38986 1.3872 0.1914 



 

183 

0/90/0/90 0.75337 0.76297 1.2743 

90/0/0/90 0.34581 0.34621 0.1157 

 

9.5.4 Effect of Element Type in FE Analysis 

The element type in finite element analysis was changed to study its on the buckling load values 

of composite columns compared to the analytical solution.  Quadratic thick shell element (S8R) 

and quadratic solid element (C3D20R) both with reduced integration schemes were assumed with 

a mesh size equal to 0.5 mm, as mentioned earlier. The comparison between the analytical and 

numerical results for shell and solid element is presented in Table 9.6. Regarding the shell element 

results, an excellent agreement is exhibited between the results for all stacking sequences. 

However, the solid element results were noticeably off for the cross-ply and anisotropic stacking 

sequences having the same mesh size as that of the shell element since solid elements have only 

translation degrees of freedom while shell elements have rotational degrees of freedom. 

Accordingly, solid element might be less reliable than shell element in buckling analysis of 

composite members.  

Table 9.6 Comparison of shell and solid element results  

Ply 

Orientations 

Analytical Results, 

N 

Shell Element S8R, N Solid Element C3D20R, 

N 

0/0/0/0 1.56136 1.5598 1.5598 

90/90/90/90 0.1077 0.1077 0.1077 

30/-30/30/-30 0.4893 0.4904 0.48998 

45/-45/45/-45 0.1815 0.1822 0.1822 

60/-60/60/-60 0.1164 0.1166 0.1166 
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60/-60/45/-45 0.1423 0.1439 0.152 

30/-30/45/-45 0.2661 0.2736 0.3419 

30/-30/60/-60 0.1916 0.2016 0.3144 

30/-30/0/0 0.7409 0.7734 1.0309 

30/-30/0/90 0.3594 0.3633 0.6683 

30/30/30/30 0.2219 0.2448 0.2447 

30/-30/-30/30 0.394 0.4038 0.5279 

0/90/90/0 1.3832 1.3814 0.8368 

30/-60/-60/30 0.2368 0.2556 0.2423 

0/90/0/90 0.7039 0.7176 0.8367 

-45/30/-30/45 0.2334 0.2343 0.3705 

90/0/0/90  0.2902 0.2901 0.8368 

30/30/-30/-30 0.3308 0.3303 0.3233 

9.5.5 Comparison to Previous Work 

The presented analytical solution is compared to previous work conducted by Abramovich et al. 

[20] for non-symmetric cross ply rectangular laminated composite beams. Table 9.7 presents the 

results of Ref. [20] and the proposed analytical solution compared with numerical solution using 

S8R elements for three different material properties (Glass-Epoxy, Carbon Epoxy, and Kevlar-

Epoxy). It was observed that the present analytical formula yields generally more accurate results 

when compared to finite element results for different material properties and number of layers. 
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Table 9.7 Comparison of the analytical formula with previous work. 

Kevlar -epoxy  
D11, Mpa Non-

dimensional 

buckling 

parameter, ɚ, 

Table 2, Ref. 

(20) 

Ref. (20), N Analytical 

solution, N 

Numerical 

solution, N 

%Error , 

Ref. (20) 

%Error, 

Analytical 

solution 

0/90/0/90 15.856 17.688 0.0842 0.0805 0.082 2.6129 1.86336 

0/90/90/0 26.2565 20.093 0.158272 0.158528 0.15829 0.0114 0.15014 

0/90 1.982 10.129 0.0241 0.0188 0.0204 15.3527 8.51064 

0/90/0 12.1062 20.084 0.1297 0.1297 0.1294 0.2314 0.23131 

Glass-epoxy  
D11, Mpa Non-

dimensional 

buckling 

parameter, ɚ, 

Table 2, Ref. 

(20) 

Ref. (20), N Analytical 

solution, N 

Numerical 

solution, N 

%Error ,  

Ref. (20) 

%Error, 

Analytical 

solution 

0/90/0/90 19.9433 19.381 0.116 0.1126 0.1133 2.3276 0.62167 

0/90/90/0 27.4251 20.18 0.166032 0.163096 0.16308 1.778 0.00982 

0/90 2.493 16.965 0.0508 0.0469 0.0482 5.1182 2.77186 

0/90/0 12.3104 20.179 0.1325 0.129931 0.12992 1.9472 0.00847 

Carbon-epoxy  
D11, Mpa Non-

dimensional 

buckling 

parameter, ɚ, 

Table 2, Ref. 

(20) 

Ref. (20), N Analytical 

solution, N 

Numerical 

solution, N 

%Error ,  

Ref. (20) 

%Error, 

Analytical 

solution 

0/90/0/90 36.4888 17.484 0.1914 0.1824 0.1862 2.7436 2.07 

0/90/90/0 61.4403 20.113 0.3708 0.3717 0.3711 0.0985 0.1393 



 

186 

0/90 4.5611 9.207 0.0504 0.038 0.0415 17.6933 9.3397 

0/90/0 28.3893 20.106 0.3045 0.3049 0.3042 0.0828 0.2319 

L/r = 500, k = 5/6, c =  1 mm.
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9.6 Conclusions 

A generalized analytical buckling load formula for anisotropic laminated composite clamped-

pinned columns under axial compression using bifurcation solution was developed herein. The 

presented analytical buckling solution was expressed in terms of column geometry as well as the 

effective composite extensional, coupling and flexural rigidities. An excellent agreement was 

observed between the analytical and numerical (FE) results. The derived formula predicted the 

complex stability response accurately of the anisotropic columns for different stacking sequences, 

material properties including hybrid material. In general, shell element results yielded accurate 

buckling load values compared to element predictions for all stacking sequences. Furthermore, 

the developed analytical formula showed an excellent correspondence to former buckling 

solutions of cross-ply laminated columns. 
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Chapter 10 - Stability Analysis of Pinned-Fixed Wide Plate 

Subjected to Uniaxial Compression 

Hayder A. Rasheed1 and Rund Al-Masri 2 

 

10.1 Abstract 

Stability analysis of pinned-fixed anisotropic laminated composite wide plates subjected to 

uniaxial compression is studied in this work. A generalized closed-form buckling solution is 

derived based on the bifurcation approach of the energy formulation. The three dimensional 

matrix was established in terms of extensional, coupling, and flexural rigidity  coefficients 

then reduced to 1D using dimensional reduction. The proposed formula is expressed in terms 

of extensional, coupling, and flexural coefficients in the principal directions as well as the 

infinitely  wide plate geometry. The analytical solution reduces down to Euler buckling 

formula for isotropic and certain types of layups. Finite element analysis is used to validate 

the presented analytical formula for a wide range of stacking sequences yielding high 

accuracy. A brief parametric study is then conducted to examine the effect of ply 

orientations, plate thickness, and material properties including hybrid carbon/glass fiber 

composites. Nonlinear Riks analysis showed that transverse pre-buckling deformation takes 

place prior to buckling. Relevance of the numerical and analytical results is discussed for all 

these cases. 

 

Keywords: Buckling of Composite Wide Plates, Pinned-Fixed Boundary Conditions, Anisotropic 

Laminated Composites, Axial Compression. 
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10.2 Introduction  

A growth of using composites in various industrial applications such as aerospace, marine, and 

automotive has been noticed in the past few decades due to their distinguished properties. An 

increase in the demand to understand the mechanics of composite material has resulted. Limited 

amount of research has focused on the stability of anisotropic laminated composite wide plates. 

Stability of composite plates, beams, cylinders, and shells has been investigated [1-10]. Silva et al. 

[1] proposed a formulation of a generalized beam theory (GBT) to investigate the local and global 

buckling behavior of fiber reinforced polymer (FRP) composite open-section thin-walled columns. 

The solution for buckling using GBT included solving the following eigenvalue problem:  

                                          ╚ ♬╖▀                                                            (1) 

Where K is the global linear stiffness matrix; G is the geometric stiffness matrix; and d is the 

eigenvector. Haung et al. [2] studied the stability of grid stiffened laminated composite plates by 

presenting an efficient finite element model. Curved beam element was presented to model the 

stiffeners. Additionally, various numerical examples were solved using the developed element. 

Wang and Abdalla [3] studied the global and local buckling of grid stiffened composite panels 

based on Bloch wave theory. The presented method is confirmed for different composite 

configurations. Weber and Middendorf [4] studied the skin buckling of curved orthotropic grid-

stiffened shells with a semi-analytical Ritz method depending on sets of trigonometric shape 

functions. Khayat et al. [5] investigated the buckling of laminated composite cylindrical shell 

under lateral displacement-dependent pressure using semi-analytical finite strip method. The 

governing equations were developed based on the first shear deformation theory with Sanders type 

of kinematics nonlinearity. The results showed a decrease in the buckling pressure when the 

pressure stiffness was taken into consideration. Baseri et al. [6] studied the buckling of embedded 
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laminated composite plates based on higher order shear deformation theory by developing 

analytical solution. The analytical solution was solved using Navier method.  

Becheri et al. [7] proposed an exact analytical solution to investigate the buckling of symmetrically 

cross-ply plates using nth-order shear deformation theory with curvature effects. The closed form 

solution was compared with previous work. Debski [8] presented numerical analysis of buckling 

and post-buckling of thin-walled simply supported laminated composite columns with channel 

section under axial compression. Eight symmetrical layered Carbon/Epoxy columns were modeled 

using finite element software Abaqus and Ansys and verified with analytical-numerical method 

[9]. A good agreement was observed between the finite element results and results obtained from 

the analytical-numerical method. Cortinez and Piovan [10] investigated the buckling of composite 

thin-walled beams with shear deformability using nonlinear displacement field depending on 

Hellinger-Reissner principal by presenting a theoretical model. The governing equations were 

solved using a finite element with fourteen degrees of freedom. 

Based on bifurcation approach, a generalized analytical critical buckling formula of anisotropic 

laminated composite pinned-fixed wide plates under uniaxial edge compression loading was 

derived. The three dimensional laminated stiffness matrix was constructed using fiber orientations 

and material properties and reduced down to 1D axial, coupling, flexural rigidities by applying 

zero strains and curvatures. Additionally, the analytical critical buckling formula was confirmed 

against the numerical (FE) analysis yielding an excellent agreement. 

10.3 Analytical Formulation 

10.3.1 Assumptions and Kinematics 

A generalized closed form critical buckling solution of pinned-fixed anisotropic laminated 

composite wide plates under axial compression is derived by using the bifurcation approach. 
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Several assumptions are taken into consideration before the deriving procedure and presented in 

the following points:   

¶ Buckling takes place in the x-y plane about the weak axis (z-axis). 

The y-axis runs through the thickness of the column where the composite lamination takes place,  

 

¶ Figure 10.1. 

¶ The lamination angle (à) is measured with respect to the x-axis in which 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis. Accordingly, the angle 

(à) is rotated about the y-axis. 

¶ Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

Classical lamination theory is applicable with shear deformations ignored.  

 

Figure 10.1 illustrates Cartesian coordinates and geometry of the pinned-fixed wide plates used. 

The bending occurs about the weak axis (z-axis). The following displacement relations were 

assumed based on the isotopic Euler first buckling mode: 
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Figure 10.1Wide Plate geometry 
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where όὼ, and ὺὼ is the axial, and lateral displacements; B1, and C1 are constants to be solved; 

and x is the distance along the axis of the wide plate. For an intermediate class of deformation, the 

axial strain ‐ and curvature ‖are defined as follow. 
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10.3.2 Constitutive equations 

The principal material directions were transformed into the wide plate coordinate system, the 

stresses and strains are then related in the following equation 
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Where  ὗ  matrix represents the transformed reduced stiffness matrix as defined in standard 

composite textbooks [11]. Accordingly, the coupled force-strain relationship is established as 

follows: 
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Where: 
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In which ὃ , ὄ  and Ὀ  are the axial, coupling, and flexural rigidity coefficients. ὸ is the 

thickness of the k-th ply; and N is the number of different plies in the stacking sequence.  

Using material properties and fiber orientations into equation (5), the three dimensional (3D) 

rigidity matrix is established. Accordingly, the 3D stiffness matrix is reduced to 1D anisotropic 

axial, coupling and flexural rigidities using static condensation approach after applying the zero 

forces and moments.  
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The axial force and in-plane moment vs. the axial strain and in-plane curvature relationship can be 

expressed in terms of the generally anisotropic material properties in the principal directions as 

follow 

╝●
╜●

═ ║
║ ╓

Ⱡ●
ⱥ●

                                     (8) 

 

10.3.3 Pre-buckling Solution 

Pre-buckling deformation is taken into account to derive the buckling formula depending on the 

pinned-fixed mode shape. The in-plane moment (ὓ ) is set to zero during pre-buckling and before 

reaching the buckling load. 
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By substituting Eq. (10) into the axial force equation, the axial force versus the axial strain can be 

expressed in terms of the generally anisotropic material properties 

                   ╟● ═ ●ꜗ ║ ⱥ●                                                      (11) 
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Where 
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                  ═▄██ ═
║

╓
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The axial force (ὖ) is positive and in compression based on the assumed sign convention. 

However, the axial strain () is negative although it is in compression. Accordingly, a negative 

sign is inserted in equation (2) as follow: 

                  ◊ ║ ╛ ●                                                        (14) 

Using the axial strain in Eq. (3), setting the lateral displacement term to zero, and substituting 

equation (14), the axial strain can be expressed as 

                       ●ꜗ ║                                                                 (15) 

By substituting Eq. (15) into Eq. (12), a relationship between the axial force and the unknown 

constant (ὄ) is obtained, i.e.  

                    ║
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═▄██
                                                            (16) 

10.3.4 Bifurcation Solution in terms of Pre-buckling Deformation 

Energy approach is assumed in the bifurcation solution in which the strain energy can be expressed 

in terms of the integration of the applied loads multiplying the corresponding deformations. 

 The potential of external loads can be expressed as   

                                        ╦ ╟ ◊╛                                                           (18) 

 In view of equations (17) and (18), the total potential energy function is given by  
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By substituting Eq. (16) into the total potential energy function given by Eq. (20), one obtains 
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Minimizing the total potential energy with respect to the unknown ὅ, setting the resulting 

expression to zero, and manipulating the equation, one gets 
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The cubic equation (22) with respect to C1 does not lend itself to a close form solution. Therefore, 

the second derivative of Eq. (22) with respect to C1 is considered  

⸗♂

⸗╒
═ Ȣ

╟

═▄██╛
Ȣ

 ╒

╛
Ȣ  ║

╒

╛
Ȣ  

╓

╛
  (23)                 

By solving Eq. (23), one gets 
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In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero, a closed form solution for the critical buckling load is developed in terms of 

the generally anisotropic material properties as well as the column geometry: 
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The general analytical critical buckling formula for different wide plate widthôs values is:    

            ╟╬► Ȣ
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 ◌                      (26)        

Where w is the width of the wide plate. It is observed that Eq. (26) reduces down to Euler buckling 

formula of the pinned-fixed isotropic wide plates in the case of isotropic or specially-orthotropic 

materials. 

10.4 Numerical Formulation 

Finite element analysis was conducted to validate the closed form solution developed earlier 

using commercial software package Abaqus. Wide plates with the following dimensions: 1000 

mm x 100 mm x 0.4 mm were assumed for width, height, and thickness, respectively. Linear 

elastic laminated material was attempted for both orthotropic and anisotropic layups where S-

Glass/Epoxy material was used as main material. Fixed support and pinned support were utilized 

at the bottom and top of the wide plate, respectively. Additionally, the translation in the x-

direction (z-direction in  

 

Figure 10.1) and the rotation about y-direction (about the x-direction in  

 

Figure 10.1) were prevented to mimic the infinitely wide plate, see Figure 10.2.  Furthermore, 

uniaxial edge loading was applied at the top of wide plate as shown in Figure 10.2 
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Figure 10.2 Boundary conditions and edge loading. 

 

Quadrilateral eight node doubly curved thick shell element (S8R) with reduced integration having 

mesh size equal to 10.0 mm was used to model the anisotropic laminated composite wide plates in 

3D space after conducting a convergence study to select the appropriate element size. Figure 10.3 

presents the meshed wide plate used in the numerical analysis. 

 
Figure 10.3 Meshed Model 

 

Eigenvalue computation was conducted using buckling analysis depending on Lanczos solver. 

Lanczos technique simulates the eigenvalue and eigenvector computation for a complex Hermitian 

matrix based on the power method in which a symmetric matrix is reduced to tridiagonal matrix 

using multidimensional arrays [12]. Based on the modified Riks approach, nonlinear geometry 

analysis was performed to indicate the existence of pre-buckling deformation in the transverse 

direction and predict the stability response of the anisotropic laminated composite wide plates. 

Modified Riks analysis uses the arc length method in which the equilibrium path (i.e. bifurcation 
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or limit points) is followed during the load increment application.  Equilibrium iterations converge 

along the arc length forcing the constraint equation to be satisfied at each arc length increment 

[13].  

10.5 Results and Applications 

10.5.1 Numerical Validation 

S-Glass/Epoxy four-layer wide plateôs analytical results were validated against finite element 

results using Abaqus. Table 10.1 presents S-Glass/Epoxy material properties used in the validation 

process; obtained from typical values in an FRP textbook [14]. The comparison between the 

analytical and numerical results are reported in Table 10.2 for various stacking sequences of the 

anisotropic laminated composite wide plates with the following dimensions: 1000 mm x 100 mm 

x 0.4 mm for width, height, thickness, respectively. The analytical results exhibited an excellent 

agreement with finite element results with maximum error around 4.1% for the antisymmetric 

angle ply layup (30/-30/30/-30) and minimum error around 0.0007% for symmetric cross ply layup 

(90/0/0/90). 

Table 10.1 S-Glass/Epoxy material properties [14]. 

Material  E11 E22 G12 ɜ12 

S-Glass/Epoxy 55.0 GPa 16.0 GPa 7.6 GPa 0.28 

 

Table 10.2 Comparison between analytical and numerical results for S-Glass/Epoxy thin plates 

(h/t = 250 mm).  

Ply 

Orientations 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 0.60607 0.606 0.01155 Single Specially 

Orthotropic 
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90/90/90/90 0.17631 0.1763 0.00568 Single Specially 

Orthotropic 

30/-30/30/-30 0.43182 0.41405 4.11515 Antisymmetric 

Angle Ply 

45/-45/45/-45 0.30212 0.29182 3.40925 Antisymmetric 

Angle Ply 

60/-60/60/-60 0.21695 0.21394 1.38742 Antisymmetric 

Angle Ply 

60/-60/45/-45 0.25358 0.248 2.20049 Balanced Angle 

Ply 

30/-30/45/-45 0.35721 0.34473 3.49375 Balanced Angle 

Ply 

30/-30/60/-60 0.2943 0.28874 1.88923 Balanced Angle 

Ply 

30/-30/0/0 0.50649 0.49973 1.33468 Anisotropic 

30/-30/0/90 0.3196 0.31412 1.71465 Anisotropic 

30/30/30/30 0.43182 0.43439 0.59516 Single 

Anisotropic 

Layer 

30/-30/-30/30 0.43182 0.43371 0.43769 Symmetric 

Angle Ply 

0/90/90/0 0.55235 0.55216 0.0344 Symmetric Cross 

Ply 
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30/-60/-60/30 0.40497 0.40708 0.52103 Symmetric 

Multiple Angle 

Layers 

0/90/0/90 0.36616 0.369 0.77562 Antisymmetric 

Cross Ply 

-45/30/-30/45 0.31833 0.30968 2.71731 Antisymmetric 

Angle Ply 

90/0/0/90 0.2300284 0.23003 0.0007 Symmetric Cross 

Ply 

 

10.5.2 Modifi ed Riks Analysis 

Figure 10.4 presents load versus maximum displacement curve is plotted for three different 

stacking sequences obtained from the nonlinear Riks analysis along with the analytical solution. 

An excellent agreement was observed between the results in which the anisotropic layup (30/-

30/0/90) showed the lowest buckling load. The results indicate an existence of pre-buckling 

deformation in the transverse direction for the drawn layups.  
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Figure 10.4 Load versus maximum deflection. 

 

10.5.3 Parametric Study 

10.5.3.1 Effect of Ply Orientation   

The effect of stacking sequences on the stability response of the anisotropic laminated composite 

wide plates was addressed in this study. As reported in Table 10.2, critical buckling load values 

vary between 0.606 N and 0.1763 N for different stacking sequences. For specific stacking 

sequences such as balanced angle ply and anisotropic layups, an edge effect was noticed in which 

the deformation along the plate was not uniform as illustrated in Figure 10.5. However, a uniform 

deformation along the plate was observed for the other stacking sequences, see Figure 10.6. 
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Figure 10.5 Buckling mode shape and edge effect of (30/-30/45/-45) layup. 

 

 
Figure 10.6 Bucking mode shape with uniform deformation 

10.5.3.2 Effect of Material Properties 

A parametric study was addressed herein to assess the effect of Hybrid carbon/glass fiber 

composites on the critical buckling load values.  High Strength Graphite/Epoxy and S-Glass/Epoxy 

material was used for Hybrid wide plates, moreover, their properties are reported in Table 10.1 

and Table 10.3; obtained from typical values in FRP textbook [14]. Layups with ply orientations 

equal to 0o and 30o were composed of High Strength Graphite/Epoxy and S-Glass/Epoxy was 

attempted for the other orientations. A good agreement was observed between the analytical and 
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finite element results as presented in Table 10.4 with maximum error around 6.4% for the 

anisotropic (30/-30/0/90) due to edge effect for the mentioned layup.  

Table 10.3 High Strength Graphite/Epoxy Material Properties [14]. 

Material  E11 E22 G12 ɜ12 

High Strength Graphite/Epoxy 145.0 GPa 10.0 GPa 4.8 GPa 0.25 

 

Table 10.4 Comparison between analytical and numerical results of Hybrid plates (t = 0.4 mm).  

Ply Orientations Analytical Results, 

N 

Numerical Results, N % Error  

30/-30/60/-60 0.38242 0.36252 5.2038 

30/-30/0/90 0.60395 0.56509 6.4344 

0/90/90/0 1.39415 1.3925 0.1184 

0/90/0/90 0.7554 0.7676 1.6151 

90/0/0/90 0.350286 0.35022 0.0189 

 

10.5.3.3 Effect of Element Thickness 

A comparison between results was conducted to investigate the effect of different height to 

thickness ratio on the buckling values. S-Glass/Epoxy thin, moderately thick, and thick wide plates 

were taken into consideration with the following height to thickness ratios: 250, 62.5, and 10.0, 

respectively. Table 10.2 showed the comparison between the analytical and numerical results for 

thin (h/t = 250) laminated composite wide plates yielding an excellent agreement. Table 10.5 and  

 

Table 10.6 illustrates the analytical and numerical results for moderately thick (h/t = 62.5) and 

thick (h/t = 10.0) anisotropic laminated composite wide plates, respectively. In general, an 

excellent agreement was observed between results of moderately thick plates (h/t = 62.5) in which 

the antisymmetric cross ply (0/90/0/90) exhibited the maximum error. However, the closed-form 



 

206 

solution was not capable of predict an accurate estimate for the buckling load values in case of 

thick wide plates with height to thickness ratio equal to 10.0 as shown in Table 10.6 

 

Table 10.6. The proposed formula was able to accurately predict the stability behavior in a similar 

way for moderately thick wide plates. On the other hand, the consideration of shear deformations 

is very important to estimate the buckling loads of thick wide plates. 

Table 10.5 Comparison between analytical and numerical results for S-Glass/Epoxy moderately 

thick plates (h/t = 62.5) 

Ply 

Orientations 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 38.788009 38.631 0.4048 Single Specially 

Orthotropic 

90/90/90/90 11.283785 11.251 0.2906 Single Specially 

Orthotropic 

30/-30/30/-30 27.63646 26.381 4.5428 Antisymmetric Angle 

Ply 

60/-60/45/-45 16.60598 15.819 4.7392 Balanced Angle Ply 

30/-30/0/90 21.17189 20.24 4.4016 Anisotropic 

30/-30/-30/30 27.63646 27.621 0.056 Symmetric Angle Ply 

0/90/90/0 35.34999 35.079 0.7666 Symmetric Cross Ply 

0/90/0/90 25.01988 23.509 6.0388 Antisymmetric Cross 

Ply 

 

 

 

Table 10.6 Comparison between analytical and numerical results for S-Glass/Epoxy thick plates 

(h/t = 10.0) 
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Ply 

Orientations 

Analytical 

Results, N 

Numerical 

Results, N 

% Error  Layup Type 

0/0/0/0 9469.728685 8134.6 14.099 Single 

Specially 

Orthotropic 

90/90/90/90 2754.830163 2460.3 10.6915 Single 

Specially 

Orthotropic 

30/-30/30/-30 6747.18144 5459.3 19.0877 Antisymmetric 

Angle Ply 

60/-60/45/-45 3962.11149 3403 14.1115 Balanced 

Angle Ply 

30/-30/0/90 4993.59686 4307.9 13.7316 Anisotropic 

30/-30/-30/30 6747.18144 5662.2 16.0806 Symmetric 

Angle Ply 

0/90/90/0 8630.36637 6602.6 23.4958 Symmetric 

Cross Ply 

0/90/0/90 5721.24652 4846.7 15.286 Antisymmetric 

Cross Ply 

 

10.6 Conclusion 

Based on the bifurcation approach, a generalized closed form buckling solution for pinned-fixed 

anisotropic laminated composite wide plates subjected to uniaxial compression loading was 

developed herein. The presented solution is expressed in terms of extensional, coupling, and 
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flexural rigidities in the principal directions as well as infinitely wide plate geometry. An excellent 

agreement was observed between the analytical and numerical (FE) results for different stacking 

sequences. The derived formula accurately estimated the critical buckling load values for hybrid 

carbon/glass composite fiber, and different ply orientations. Additionally, the generalized 

analytical buckling formula successfully re-produce accurate prediction in the buckling behavior 

for thin and moderately thick anisotropic laminated composite wide plates.  
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Chapter 11 - Buckling of Simply Supported Anisotropic Steel-FRP 

Hybrid Columns Using Rayleigh-Ritz Formulation with Numerical 

and Experimental Verification  

Rund Al-Masri 1, Hayder A. Rasheed2* and Yu-Szu Chen3 

 

11.1 Abstract 

Limited number of research studies has addressed the topic of buckling of steel-fiber 

reinforced polymer (FRP) members. A generalized analytical buckling formula for simply 

supported anisotropic steel-FRP (hybrid) thin columns under axial compression is developed 

herein using the Rayleigh-Ritz approximation. Following the generalized constitutive 

relationship, the effective axial, coupling, and flexural stiffness coefficients of the anisotropic 

steel-FRP layup is determined using dimensional reduction by static condensation of 6x6 

hybrid stiffness matrix. The analytical explicit formula reproduces Euler buckling 

expression while it furnishes an extra term which is a function of the effective coupling and 

axial stiffness.  For certain types of steel-laminated composites, the analytical formula 

reduced down to Euler buckling formula once the effective coupling term vanishes. The 

analytical buckling formula is verified against finite element Eigen value solutions for 

different anisotropic laminated layups yielding high accuracy. Comparison with 

experimental work is conducted for two categories of anisotropic steel-glass fiber reinforced 

polymer (GFRP) columns in which category A has steel in-between the composite layup and 

category B has steel on the side of the composite layup. Verification of the analytical solution 

against some of the experimental results yielded excellent comparison. Moreover, curing 

methods, roughness of steel and type of epoxy used have a direct influence on the bonding 

conditions and buckling loads. 

 

 

Keywords: Buckling of Steel-FRP Columns, Simply Supported Columns, Anisotropic Laminated 

Material, Rayleigh-Ritz Formulation. 
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11.2 Introduction  

The use of fiber reinforced polymer (FRP) is ever growing in different industrial applications such 

as aerospace, marine, automotive, and civil engineering because of their distinguished properties 

(High stiffness-to-weight ratio, high strength-to-weight ratio, ease of application in construction 

sites, corrosion and fatigue resistance). This growth increased the demand for better understanding 

the mechanics of fiber reinforced polymer (FRP). Fiber reinforced polymer (FRP) is used with 

different types of materials such as steel and concrete making the so called hybrid structures. 

Hybrid columns, like any traditional members subjected to axial compression, undergo stability 

issues prior to failure. Limited amount of researches have focused on the buckling of hybrid 

columns if any, however, a significant amount of research has been performed to study the 

buckling behavior of composite members like plates and shells in the recent years [1-20]. Herenica 

et al. [1] derived a closed form solution for buckling of long anisotropic plates under axial 

compression (Nx) with various boundary conditions. The closed form solution can be expressed 

as:  

                                           ╝●
╬► ⱥ●

Ⱬ

╫
╓ ╓                                                                    (1) 

Where ╓░▒ is the bending stiffness; b is the width of the plate; and əx is the non-dimensional 

buckling coefficient related to the boundary conditions. The results showed an excellent agreement 

when validated with existing solutions (Weaver [2] [3], Qiao and Shan [4]), and finite element 

solutions. Mahesh et al. [5] developed a general buckling formulation for plates under linearly 

varying uniaxial compressive load with general out-of-plane boundary conditions using Rayleigh-

Ritz method based on the energy approach along with orthogonal polynomials generated by a 

Gram-Schmidt process. Results showed a good agreement with differential quadrature (DQ) 

models [6]. Silva et al. [7] presented a formulation of a generalized beam theory (GBT) to study 
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local and global buckling behavior of fiber reinforced polymer composite open section thin-walled 

columns. The solution for buckling using GBT included solving the following eigenvalue problem: 

                                          ╚ ♬╖▀                                                              (2) 

Where K is the global linear stiffness matrix; G is the geometric stiffness matrix; and d is the 

eigenvector. 

Silvestre and Camotim [8] developed a second order generalized beam theory (GBT) to predict 

buckling behavior for thin walled arbitrary orthotropic members and compared it with Bauld and 

Lih-Shyng theory [9]. The results showed that the critical load exists for all isotropic or cross-ply 

orthotropic members. On the other hand, non-linear primary path is exhibited and no specific 

bifurcation is detected for asymmetric orthotropic lay-ups. Rasheed and Yousif [10], derived a 

closed form solution for buckling of anisotropic laminated composite rings and long cylinders 

subjected to external hydrostatic pressure. The analytical results were confirmed against finite 

element solutions and also concluded that the buckling modes are symmetric with respect to 

rotated axes of the twisted section of the pre-buckling solution in case of anisotropy. Xu et al. [11] 

presented an approximate analytical solution to predict buckling of a tri-axial woven fabric 

composite structure under bi-axial loading based on the equivalent anisotropic plate method. 

Results showed that the analytical solution gives an upper bound buckling load and it can be used 

to predict buckling behavior for real world problems subjected to bi-axial loading. Using first order 

shear deformation and von-Karman type nonlinearity, Shukla et al. [12] predicted the critical 

buckling loads for laminated composite plates with various boundary conditions under in-plane 

uniaxial and biaxial loading. Span to thickness ratio, plate aspect ratio, lamination scheme, number 

of layers and modulus ratio effects were considered in estimating the buckling behavior. Sun and 

Harik [13] developed analytical buckling solution of stiffened antisymmetric laminated composite 
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plates with bending-extension coupling using analytical strip method (ASM) which was first 

developed by Harik and Salamoun [14] to analyze bending of thin orthotropic and stiffened 

rectangular plates. The results showed that plates with free boundary conditions contribute the 

weakest stiffening effect. Moreover, the number of layers of ply orientations equal to 0 and 90 had 

no effect on the critical buckling load since the coupling stiffness matrix vanishes. 

Debski et al. [15] studied buckling and post-buckling behavior of thin-walled composite channel 

column sections experimentally. The results were compared with numerical solutions obtained 

from finite element models (Abaqus and ANSYS) and analytical-numerical method (ANM). The 

results showed that the stability of angle-ply laminated plates improved under biaxial 

compression/tension and shear. Moreover, additional in-plane forces were created due to the in-

plane restrains. Haung et al. [16] addressed the stability of grid stiffened laminated composite 

plates by presenting an efficient finite element model. Curved beam element was presented to 

model the stiffeners. Furthermore, different numerical examples were solved using the developed 

element. Wang and Abdalla [17] presented a method to study the global and local buckling of grid 

stiffened composite panels based on Bloch wave theory and confirmed for different composite 

configurations. Khayat et al. [18] studied the stability of laminated composite cylindrical shell 

under lateral displacement-dependent pressure using semi-analytical finite strip method. The 

governing equations were developed based on the first shear deformation theory with Sanders type 

of kinematics nonlinearity. Baseri et al. [19] proposed analytical solution to investigate the 

buckling of embedded laminated composite plates based on higher order shear deformation theory. 

The analytical solution was solved using Navier method. Becheri et al. [20] presented an exact 

analytical solution to study the buckling of symmetrically cross-ply plates using nth-order shear 
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deformation theory with curvature effects. The analytical solution was compared with previous 

work. 

In this work, a generalized analytical buckling formula for simply supported anisotropic steel-FRP 

hybrid columns under axial compression is developed using Rayleigh-Ritz approximation. Axial, 

coupling and flexural rigidities in 1D are determined using dimensional reduction by the static 

condensation approach starting with the 3D rigidity matrix. The analytical buckling formula is 

verified against finite element Eigen value solutions for different anisotropic laminated layups 

yielding high accuracy. Comparison with experimental work is conducted for two categories of 

anisotropic steel-glass fiber reinforced polymer (GFRP) columns in which category A has steel 

sandwiched in-between the composite layers and category B has steel on the side of the composite 

layup. Verification of the analytical solution against some of the experimental results yielded 

excellent comparison. Moreover, curing methods, roughness of steel and type of epoxy used have 

a direct influence on the bonding conditions and the buckling loads. 

11.3 Analytical Formulation  

Using Rayleigh-Ritz approximation, a generalized closed form buckling formula for simply 

supported anisotropic steel-FRP columns under axial compression is realized. 

11.3.1 Assumptions: 

¶ Buckling takes place in the x-y plane about the z-axis (weak axis). 

¶ The y-axis runs through the thickness of the column and perpendicular to the lamination 

composite surface. 

¶ The lamination angle (à) is measured with respect to the x-axis (i.e. 0° fibers run 

parallel to the x-axis and 90° fibers run parallel to the z-axis). Accordingly, the angle 

(à) is rotated about the y-axis. 
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¶ Plane sections before bending remain plane after bending and perpendicular to the mid 

surface (i.e. simple beam theory holds). 

¶ Classical lamination theory is applicable with shear deformations ignored. 

Geometry and the Cartesian coordinates of the simply supported column used are illustrated in 

Figure 11.1. The z-axis is the weak axis of the column about which bending takes place. The 

following displacement relations were assumed based on the isotopic Euler first buckling mode: 

 

 

 

 

 

 

 

 

 

 

Figure 11.1 The column geometry. 

 

                                     ◊ ● ║● ;    ○ ●  ╒Ἳἱἶ
Ⱬ●

╛
                                             (3) 

Where όὼ, and ὺὼ is the axial, and lateral displacements; B1, and C1 are constants to be solved; 

and x is the distance along the axis of the column. For an intermediate class of deformation, the 

axial strain ‐ and curvature ‖are defined as follow. 
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11.3.2 Constitutive equations 

The principal material directions were transformed into the column coordinate system, the stresses 

and strains are then related in the following equation 

                                            

Ɑ●
Ɑ◑
Ⱳ●◑

╠ ╠ ╠

╠ ╠ ╠

╠ ╠ ╠

Ⱡ●
Ⱡ◑
♬●◑

                               (5)  

Where  ὗ  matrix represents the transformed reduced constitutive matrix defined in standard 

composite textbooks [21]. The reduced constitutive matrix is simplified to the expression in 

Equation (6) for the steel sheet. 
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                               (6)  

Accordingly, the coupled force-strain relationship is established as follows: 
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Where: 

═░▒ ╠░▒◄▓
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In which ὃ , ὄ , and Ὀ  are the axial, coupling, and flexural rigidity coefficients. ὸ = thickness 

of the k-th ply; and N = number of different plies in the stacking sequence.  

The three dimensional (3D) rigidity matrix is established first using the material properties and the 

fiber orientations into equation (7). Then the dimension is reduced to 1D anisotropic axial, 

coupling and flexural rigidities using static condensation approach after applying the zero forces 

and moments.  
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               (9) 

Equation (9) is solved first for the axial strain and axial curvature (Ⱡ● ,ⱥ●) in terms of the rest of 

the deformation components by extracting the second, third, fifth and sixth linear equations from 

the matrix. 

             

═
═

║
║

║
║

╓
╓

Ⱡ●
ⱥ●

═ ═
═ ═

║ ║
║ ║

║ ║
║ ║

╓ ╓
╓ ╓

Ⱡ◐
♬●◑
ⱥ◐◑
ⱥ●◑

 

 

 

(10) 

        ╡
Ⱡ●
ⱥ●

╠

Ⱡ◑
♬●◑
ⱥ◑
ⱥ●◑

        

 

 Inverting the matrix Q to the other side of equation (10), the condensed deformation components 

are obtained in terms of the axial strain and curvature:  
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Ⱡ◑
♬●◑
ⱥ◑
ⱥ●◑

╠ ╡
Ⱡ●
ⱥ●

                                                   (11) 

Substituting equation (11) into the first and fourth linear equation of the matrix (9); the axial force 

and in-plane moment vs. the axial strain and in-plane curvature relationship can be expressed in 

terms of the generally anisotropic material properties  

                     ╝●
╜●

═╗ ║╗
║╗ ╓╗

Ⱡ●
ⱥ●

                                   (12) 

Where 

                
═╗ ║╗
║╗ ╓╪╗

═ ║
║ ╓

╡╣╠ ╡                              (13) 

11.3.3 Energy Formulation 

A generalized buckling formula was derived using Rayleigh-Ritz approximation based on the 

energy approach. Strain energy can be expressed in terms of the integration of the applied loads 

multiplying the corresponding deformations. 

                     ╤ ᷿ ╝●Ⱡ● ╜●ⱥ● ▀●
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The potential of external loads can be expressed as shown in equation (15)  

                                        ╦ ╟ ◊╛                                                          (15) 

Taking the total potential energy function and substituting equations (14) and (15) into equation 

(16)  

             ♂ ╤ ╦   ᷿ ═╗Ⱡ● ║╗Ⱡ●ⱥ● ╓╗ⱥ● ▀● ╟ ◊╛
╛

                 (16) 
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╟║╛                                      (17) 

Minimizing the total potential energy function with respect to B1 and C1 and setting the resulting 

expressions to zero, performing the integrations and manipulating the equations to give: 
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Solving equation (18) for B1 then substituting the resulting expression in equation (19), the 

following cubic equation is formulated in terms of C1 value 
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Equation (21) does not lend itself to a closed form solution. Therefore, considering the critical 

stability matrix:  
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Setting the determinant of the matrix in Equation (22) to zero, substituting B1 expression from 

equation (20) and solving for C1 using the general solution of a quadratic equation: 
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                 (24) 

In order for the C1 value to be real, the discriminant must be at least zero. By setting the 

discriminant to zero and manipulating its expression, a closed form solution for the critical 

buckling load is derived: 

                                             ╟╬►
╓╗Ⱬ

╛

║╗

═╗╛
                                                    (25)

In the case of isotropic or specially-orthotropic materials, the coupling term vanishes reducing the 

equation to that of Euler buckling.
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11.4 Numerical Formulation 

Finite element buckling analysis was used to verify the analytical solution using the commercial 

software package Abaqus for hybrid columns. Columns were constructed with simply supported 

ends, in which roller and pin supports were introduced on the top and bottom of the column, 

respectively. Moreover, a concentrated load was applied at the top of the column. Linear elastic 

laminated material was used for orthotropic and anisotropic layups, respectively. Quadrilateral 

eight-node doubly curved thick shell element (S8R) was used for modeling the columns in 3D-

space. Element size of 2.5 x 2.5 mm was used with total number of elements equal to 300 for 

hybrid columns after conducting a convergence study to select the appropriate mesh size. 

Figure 11.2 illustrates the modelôs boundary conditions and mesh for the shell elements.  

 

 

 

 

Figure 11.2 Left: Boundary conditions and applied load. Right: Meshed Model. 

Two types of analyses were performed in this study. Buckling analysis to simulate eigenvalue 

computation was attempted using Lanczos solver. Lanczos method is one of the methods used to 

solve for eigenvalues and eigenvectors for complex Hermitian matrix using power methods. 

Lanczos method reduces ά ά symmetric matrix using recurrence relations (multidimensional 

Roller Support 

Pin Support 
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array values) to a tridiagonal matrix [22]. To predict the stability response (pre-buckling and 

buckling), nonlinear geometry analysis using the modified Riks formulation was conducted. The 

modified Riks analysis is based on the Arc length method in which it follows the equilibrium path, 

representing either the bifurcation points or the limit points. Load increments are applied during 

the analysis in which equilibrium iterations converge along the arc length, forcing the constraint 

equation to be satisfied at every arc length increment [23]. 

11.5 Experimental Program 

11.5.1 Specimen Preparation 

Twenty four hybrid columns were designed and prepared in the laboratory with two categories of 

anisotropic steel-glass fiber reinforced polymer (GFRP) columns in which category A has steel 

sandwiched in-between the composite layers and category B has steel on the side of the composite 

layup. Steel plate; of 14.73 mm thickness, surface was roughed to insure a good bond with the 

composite layups, see Figure 11.3. 

 

Figure 11.3 Roughened surface of steel plate. 

 

V-Wrap EG50 unidirectional fabric was cut at different angles (-30, 0, 30, and 90 degree) as shown 

in Figure 11.4. Properties of V-Wrap EG50 fabric are shown in Table 11.1 [24]. 
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-30 0 30 90 

Figure 11.4 Glass fiber orientations 

 

Table 11.1 Dry fiber properties [21]. 

Tensile Strength 3240 MPa (470,000 psi) 

Tensile Modulus 72,400 MPa (10.5 x 106 psi) 

Elongation 4.5 % 

Density 2.55 g/cm3 (0.092 lbs/in3) 

 

Epoxy resin and hardener were mixed together to make the matrix material with 100 to 34.5 ratio 

by volume, respectively, using a mechanical rotary mixer as shown in Figure 11.5. The epoxy resin 

was first applied to the non-stick preparation sheet then a ply of fiber is laid by a paint roller against 

the resin. A second layer of resin was applied with the roller on top of the fiber ply and the process 

is repeated as many times as the number of fiber plies in the stacking sequence. Pressure was 

implemented to remove excess epoxy and insure steel plate was bonded to the fibers, Figure 11.6. 
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Figure 11.5 Matrix material. 

 

Figure 11.6 Specimen preparation 

 
 

Figure 11.7 shows the composite strips before the cutting process and uniform load applied to 

ensure a strong bond between the layers. Four different stacking sequences were constructed by 

the wet layup process. The strips were then left to harden for one week at room temperature under 

uniform load then were cut to column final sizes using a band-saw.  

  

Figure 11.7 Composite strip after the wet layup process and uniform load. 

 

Thickness and width of the hardened specimens were measured using a digital caliper at three 

locations to take the average. Layer thickness (ti) is assumed equal to one quarter of the average 

specimenôs thickness since each laminate was composed of four plies. Fiber and matrix volume 

fractions (Vf and Vm) were calculated using equation (26). Using rule of mixtures and the Halpin-

Tsai equation, elastic properties in the fiber, transverse and in-plane shear directions were 

obtained. 
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Where the thickness tf was measured to be 0.305 mm, the thickness ti varied based on the different 

laminates as shown in Table 2 below. 
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In which Ef, and Em are fiber and matrix modulus, Gf, and Gm are fiber and matrix shear modulus, 

ɝ value was taken equal to one to provide more accurate results [25]. Equation (29) determines the 

minor Poissonôs ratio:  

  

 

(29) 
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11.5.2 Test Setup 

After one week of curing, the four different stacking sequences, shown in Table 11.2, were tested. 

Columns were tested under axial compression using the Shimadzu AG-IC 50 kN testing machine, 

operating with Trapezium X software following a displacement control protocol with a 

displacement rate of 1 mm/minute.  

Table 11.2 Samples of the four different stacking sequences 

Specimen Number Category A Specimen Number Category B 

1 30/-30/S/0/90 5 90/0/-30/30/S 

2 30/90/S/-30/0 6 0/-30/90/30/S 

3 0/30/S/-30/90 7 90/-30/30/0/S 

4 30/-30/S/30/-30 8 -30/30/-30/30/S 

 

Simply supported boundary conditions were utilized at the ends of the composite columns, see 

Figure 11.8. Columns were aligned horizontally and vertically and loaded in axial compressive 

displacement until the load dropped indicating the attainment of a limit load.  
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Figure 11.8 Axial Compression Test Setup for Category B. 

 

11.6 Results and Discussion 

The average thickness, and width of the tested specimen for category A and B with length equal 

to 128 mm is presented in Table 11.3 where the difference in column sizes is due to wet layup 

procedure that has a limited control over the amount of epoxy applied at each layer and personal 

error in the cutting process. Table 11.4 presents mechanical properties of composite. 

Table 11.3 Geometry of column specimen. 

Category A Category B 

Specimen # Thickness Width  Specimen # Thickness Width  

mm mm mm mm 

1-1 5.64 12.45 5-1 6.07 14.91 

1-2 5.66 12.50 5-2 N.A. N.A. 

1-3 5.54 12.78 5-3 N.A. N.A. 

2-1 5.97 12.95 6-1 5.54 15.14 

2-2 5.82 12.50 6-2 5.61 14.86 
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2-3 5.66 12.40 6-3 5.56 15.11 

3-1 5.77 12.40 7-1 5.64 14.83 

3-2 5.82 12.70 7-2 5.64 14.10 

3-3 5.79 12.19 7-3 5.84 13.79 

4-1 5.64 12.78 8-1 5.21 14.61 

4-2 5.26 12.55 8-2 5.79 15.47 

4-3 5.61 12.88 8-3 5.59 15.34 
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Table 11.4 Composite properties of E-glass/epoxy used in experiments. 

  Vf  Vm E1 E2 G12 ɜ12 ɜ21 

1_1 0.549055 0.450946 41555.356 11734.4728 4323.5068 0.320586 0.09053 

1_2 0.548233 0.451768 41499.101 11711.7193 4315.0226 0.32066 0.0905 

1_3 0.560405 0.439596 42331.649 12055.3317 4443.1837 0.319564 0.09101 

2_1 0.519444 0.480557 39529.946 10954.7148 4032.9595 0.323251 0.08958 

2_2 0.532674 0.467327 40434.871 11293.3324 4159.0814 0.32206 0.08995 

2_3 0.547823 0.452178 41471.037 11700.3926 4310.7994 0.320697 0.09048 

3_1 0.537761 0.46224 40782.839 11427.6576 4209.134 0.321602 0.09012 

3_2 0.533839 0.466162 40514.586 11323.8975 4170.4695 0.321955 0.08999 

3_3 0.535401 0.4646 40621.416 11365.0517 4185.8041 0.321814 0.09004 

4_1 0.550708 0.449293 41668.372 11780.38494 4340.627192 0.320437 0.090594 

4_2 0.589278 0.410723 44306.5529 12933.82176 4771.213083 0.316966 0.092528 

4_3 0.553205 0.446796 41839.1778 11850.28442 4366.695138 0.320212 0.090695 

5_1 0.510034 0.489967 38886.2876 10722.84614 3946.642788 0.324097 0.08937 

6_1 0.560834 0.439167 42361.0175 12067.72735 4447.808611 0.319525 0.091026 

6_2 0.55237 0.447631 41782.0706 11826.84546 4357.953561 0.320287 0.090661 

6_3 0.55657 0.443431 42069.3431 11945.46112 4402.195233 0.319909 0.090838 

7_1 0.549055 0.450946 41555.3555 11734.47276 4323.506764 0.320586 0.090528 

7_2 0.549385 0.450616 41577.9045 11743.61179 4326.914551 0.320556 0.090541 

7_3 0.530743 0.469258 40302.7842 11242.95361 4140.312262 0.322234 0.089891 

8_1 0.595026 0.404975 44699.7236 13120.31564 4840.918443 0.316448 0.092885 

8_2 0.534619 0.465382 40567.9229 11344.41697 4178.11519 0.321885 0.090012 

8_3 0.555303 0.444698 41982.7037 11909.50063 4388.781548 0.320023 0.090783 
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Two out of twenty one specimen was excluded from testing due to imperfection after the cutting 

process in which the steel plate observed partial de-bonding from glass fiber as shown in 

Figure 11.9.  

  

Figure 11.9 Imperfections in specimens before test. 

Table 11.5 presents columns limit loads comparison between analytical, numerical, and 

experimental results for category A. an excellent agreement between analytical and numerical 

results was observed. Moreover, stacking sequences 1 and 4 showed a good agreement between 

analytical and experimental results. On the other hand, stacking sequence 2 and 3 experimental 

results were off from analytical and numerical due to initial imperfection and weak bond between 

steel and glass fiber. 

Table 11.5 Comparisons of results for category A 

Results Analytical, N 

(1) 

Numerical, N 

(2) 

Experimental, N 

(3) 

Error %  

[(1) & (3)]  

Error %  

[(1) & (2)]  

1_1 2858.823 2898.1 2375 16.924 1.374 

1_2 2924.716 2964.6 2315.63 20.826 1.364 

1_3 2801.257 2842 2185.94 21.966 1.455 

2_1 5536.154 5602.5 2431.25 56.085 1.199 

2_2 5023.719 5085.4 1864.06 62.895 1.228 

2_3 4672.077 4733 1743.75 62.678 1.304 

3_1 3490.341 3469.5 1925 44.848 0.598 

3_2 3595.326 3573.8 1732.81 51.804 0.599 
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3_3 3436.664 3416.1 1521.88 55.717 0.599 

4_1 3465.665 3428 3229.69 6.809 1.087 

4_2 3055.181 3026.2 2553.13 16.433 0.949 

4_3 3518.552 3480.2 3010.94 14.427 1.09 

 

 

Comparison between results for category B is presented in Table 11.6. Analytical and numerical 

results showed an excellent agreement with maximum error equal to 4.427% for stacking sequence 

7_1.  The experimental results were off for all stacking sequence in category B because of partial 

or entire de-bonding of steel plate from composite. Curing method, and amount of epoxy applied 

in the wet layup process may have contributed to the de-bonding failure in the tested specimens. 

Table 11.6 Comparisons of results for category B 

Results Analytical, N 

(1) 

Numerical, N 

(2) 

Experimental, N 

(3) 

Error %  

[(1) & (3)]  

Error %  

[(1) & (2)]  

5_1 7264.572 7310.9 1009.38 86.106 0.638 

6_1 9129.856 8973.2 4542.19 50.25 1.716 

6_2 9162.398 9000 3139.06 65.74 1.773 

6_3 9118.312 8962.6 3512.5 61.479 1.708 

7_1 5369.325 5607 1934.38 63.974 4.427 

7_2 5170.103 5395.8 3070.56 40.61 4.366 

7_3 5337.616 5569.1 1521.88 71.488 4.337 

8_1 6152.170 6248.3 4265.63 30.665 1.563 

8_2 7949.617 8050.7 5128.13 35.493 1.272 

8_3 7187.544 7291.9 4479.69 37.675 1.452 
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Load versus mid-height deflection from the numerical Riks analysis was plotted in  

Figure 11.10 along with the analytical solution for the antisymmetric angle ply sequence in 

category A and B for comparison. An excellent agreement between the results is observed.  

 

 

 
 

Figure 11.10 Analytical vs. Numerical (FEM) solution. 
 

 

Buckling shape of the tested specimen, and de-bonding of columns after testing in category A and 

B is illustrated in Figure 11.11. The first three critical buckling mode shape obtained from 

numerical (FEM) analysis is presented in Figure 11.12. This confirms the applicability of the 

lowest mode shape from isotropic columns used to formulate the present analytical solution. 
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    Buckling Shape Failure Mode: De-

bonding, Category A 

Failure Mode: De-

bonding, Category B 

Figure 11.11 Failure modes. 

 

  
 

Buckling Shape I Buckling Shape II Buckling Shape III 

Figure 11.12 Buckling Mode Shapes I, II and III 

 

11.7 Conclusion 

A generalized analytical buckling formula of simply supported anisotropic steel-FRP hybrid 

columns using Rayleigh-Ritz approximation was developed under axial compression. The explicit 

formula is an extension to Euler buckling formula with extra term expressed with respect to 

effective coupling and axial stiffness.  An excellent agreement between the analytical formula and 

the finite element results is observed. Two of the stacking sequences in category A showed a good 

agreement between analytical and experimental results. On the other hand, results of category B 
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were off due to initial imperfection and entire or partial de-bonding of steel plate from composite. 

Moreover, steel provide more buckling load in category B than category A since the overall 

flexural stiffness is higher for category B.  Different curing method should be considered in order 

to achieve the appropriate bond between composites and steel plate. 
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Chapter 12 - Conclusions and Recommendations 

 

12.1 Conclusions 

Generalized analytical buckling formulas of anisotropic laminated composite columns and 

infinitely wide plates subjected to axial compression with various boundary conditions are 

developed in this work based on Rayleigh-Ritz approximation. The presented formulas may be 

considered as an extension to the buckling formulas of the isotropic cases and the first of their kind 

since Euler solutions. The buckling load formulas are expressed in terms of the generally 

anisotropic material properties along with the member geometry. Motivated by reducing some of 

the discrepancy with the numerical analysis, the bifurcation approach was attempted in the case of 

fixed-fixed anisotropic laminated composite columns and plates. Furthermore, the bifurcation 

method was substituted in the pre-buckling deformation for the pinned-fixed anisotropic laminated 

composite columns and plates since the Rayleigh-Ritz approximation was not able to accurately 

predict the closed-form stability solution.  Finite element analysis was performed using 

commercial software ABAQUS to validate the developed formulas. Moreover, quadrilateral eight 

node doubly curved thick shell elements (S8R) were utilized in the numerical analysis process. 

The new analytical formulas exhibited excellent agreements with the numerical (FE) analysis 

results for a wide range of stacking sequences. In addition, Modified Riks analysis was performed 

to investigate the nonlinear stability response and indicate the existence of pre-buckling 

deformation. The effects on the stability response of different aspects of the studied problems were 

addressed in this work and the conclusions are illustrated in the corresponding sections.  
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12.1.1 Effect of Material Properties 

In general, composite materials with high stiffness ratio (E11/E22) where E11 is the modulus along 

the fiber direction and E22 is the modulus in the transverse direction has yielded higher error values 

compared to one with lower stiffness ratio. Additionally, the results demonstrate that using a single 

composite material type per column or plate yielded less deviation of the analytical solution from 

the finite element solution compared to using a two-material hybrid composite (carbon/glass fibers 

composite) for a limited and specific number of layups. 

12.1.2 Effect of Element Type in Finite Element Analysis 

It is observed that quadrilateral eight-node doubly curved thick shell element (S8R) and quadratic 

triangular thin shell element (STRI65) both with reduced integration schemes accurately estimate 

the buckling load values for various stacking sequences. Moreover, quadratic solid element 

(C3D20R) with reduced integration schemes has yielded an excellent agreement with the 

analytical solution for the single specially-orthotropic layups and Antisymmetric angle ply layups. 

However, solid element (C3D20R) was not capable of capturing the complexity of behavior of the 

anisotropic and Antisymmetric cross ply when benchmarked against the present analytical 

solutions. 

12.1.3 Effect of Element Thickness 

The developed formulas successfully predicted accurate buckling loads in cases of moderately 

thick shells in which the level of errors between the numerical and the analytical solution is 

comparable to that of thin shells. In some boundary conditions, the use of the developed formulas 

to predict buckling loads for thick shells was reasonably accurate compared to the errors obtained 

for thin shells.   
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12.2 Recommendations  

Recommendations relevant to the results and observations obtained from this work are described 

in this section. The use of the presented solutions is highly recommended in predicting the stability 

response of the anisotropic laminated composite members since the generalized analytical 

formulas developed herein were capable of accurately estimating the buckling values for different 

boundary conditions and structural members as well as capturing the complexity of behavior in 

case of hybrid composites, thin, and moderately thick shells. Furthermore, the 3D quadratic 20-

nodes solid element with reduced integration schemes (C3D20R) was not reliable in reproducing 

the analytical or other numerical buckling results. 

12.3 Future Work  

This work provides a foundation for future work in the following several areas.  

¶ Developing a computer program to estimate the buckling load values for various boundary 

conditions, material properties, structural members, and number of layers using the 

developed formals and Excel-based Visual Basic computer language. 

¶ Establishing analytical buckling solutions for thin-walled columns with sections different 

from rectangular and verifying the experimental buckling results conducted by Debski et 

al. [43] for simply supported thin-walled composite channel section columns. 

¶ Implementing the bifurcation approach in the case of simply supported and clamped-free 

members. 
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