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Abstract

The climate of the Middle East is warming and extreme hot temperature events are
becoming more common, as observed by the significant upward trends in mean and extreme
temperatures during the last few decades. Climate modeling studies suggest thati¢neyreq
intensity, and duration of extreme temperature events are expected to increase as the global and
local climate continues to warm. Existing literature about heat waves (HWs) in Saudi Arabia
provides information about HW duration using a single indathout considering the observed
effects of climate change and the subtropical arid climate. With that in mind, this dissertation
provides a series of three sta@dne papers evaluating temporal, geographic, and atmospheric
aspects of the character ofmvaseason (Mageptember) HWs iBaudi Arabia for 1985 to
2014.

Chapter 2 examines the temporal behavior(s) of the frequency, duration, and intensity of
HWs under the observed recent climate change. Several issues are addressed including the
identificationof some improved methodological practices for HW indices. A-Betesitive
approach to define and detect HWs is proposed and assessed. HW events and their duration are
considered as count data; thus, different Poisson magetised for trend detectio@hapter 3
addresses thepatioctemporalpatterns of the frequency and intensity of hot days and nights, and
HWs. The chapter reemphasizes the importance of considering-tferms effects of climate
warming and applies a novel tirseries clustering appach to recognize hot temperature event
behavior through time and space. Chapter 4 explores the atmospheric circulation conditions that
are associated with warm season HW event occurrence and how different HWs aspects are
related to different circulatiotypes. Further, possible teleconnections between HWs and sea

surface temperature (SST) anomalies @frbg large bodies are examined.



Results from Chapters 2 and 3 detected systematic upward trends in maximum and
minimum temperatures at most of the 25istest, suggestingnon-going change in the
climatology of the uppetalil of the frequency distribution. The analysis demonstrated the value
of using a timesensitive approach in studying extreme thermal events. Different patterns were
observed over time drspace not only across stations but also among extreme temperature
events (i.e., hot days and nighand HWSs). The overall results suggest that not only local and
regional factors, such as elevation, latitude, land cover, atmospheric humidity, ancedisian
a large body of water, but also largeale factors such as atmospheric circulation patterns are
responsible for the observed temporal and spatial patterns. Chapter 4 confirmed that as the Indian
Summer Monsoon Trough and the Arabian heat low weyeatnospheric features related to
HW days. SST anomalies seemed to be a more important factor for HWSs intensity. Extreme
thermal events in Saudi Arabia tended to occur during regional warmirtg dtreospheric
circulation conditions and SSTs teleconnediorhis study documents the value of a time
sensitive approach and should initiate further research as some of temporal and spatial

variabilities were not fully explained.
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Abstract

The climate of the Middle East is warming and extreme hot temperature akents
becoming more common, as observed by the significant upward trends in mean and extreme
temperatures during the last few decades. Climate modeling studies suggest that the frequency,
intensity, and duration of extreme temperature events are expeatecetse as the global and
local climate continues to warm. Existing literature about heat waves (HWs) in Saudi Arabia
provides information about HW duration using a single index, without considering the observed
effects of climate change and the subtraparid climate. With that in mind, this dissertation
provides a series of three sta@dne papers evaluating temporal, geographic, and atmospheric
aspects of the character of warm season (Blegtember) HWs in Saudi Arabia for 1985 to
2014.

Chapter 2 exaines the temporal behavior(s) of the frequency, duration, and intensity of
HWs under the observed recent climate change. Several issues are addressed including the
identification of some improved methodological practices for HW indices. Adensitive
approach to define and detect HWs is proposed and assessed. HW events and their duration are
considered as count data; thus, different Poisson magetsused for trend detection. Chapter 3
addresses the spatiemporal patterns of the frequency and initgrsf hot days and nights, and
HWs. The chapter reemphasizes the importance of considering-tferms effects of climate
warming and applies a novel tirseries clustering approachrecognize hot temperature event
behaviors through time and spacea@ter 4 explores the atmospheric circulation conditions that
are associated with warm season HW event occurrence and how different HWs aspects are
related to different circulation types. Further, possible teleconnections between HWs and sea

surface tempetare (SST) anomalies of nearby large bodies are examined.



Results from Chapters 2 and 3 detected systematic upward trends in maximum and
minimum temperatures at most of the 25 stations, suggestimgtgoing change in the
climatology of the uppetalil of the frequency distribution. The analysis demonstrated the value
of using a timesensitive approach in studying extreme thermal events. Different patterns were
observed over time and space not only across stations but also among extreme temperature
events i e., hot days and nightand HWSs). The overall results suggest that not only local and
regional factors, such as elevation, latitude, land cover, atmospheric humidity, and distance from
a large body of water, but also largeale factors such as atmospheirculation patterns are
responsible for the observed temporal and spatial patterns. Chapter 4 confirmed that as the Indian
Summer Monsoon Trough and the Arabian heat low were key atmospheric features related to
HW days. SST anomalies seemed to be eenmaportant factor for HWSs intensity. Extreme
thermal events in Saudi Arabia tended to occur during regional warmirtg dtreospheric
circulation conditions and SSTs teleconnections. This study documents the value ef a time
sensitive approach and shouldiate further research as some of temporal and spatial

variabilities were not fully explained.
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Chapterl-I nt roducti on

1.1 Introduction

Warming of the global mean temperat({fenean)of approximately 0.6 °C over the last
centuy is accompanied by changesdiaily minimum (Tmin) and maximum (Tmax)
temperatures (Easterling et al., 20083cording to the IPCC, the warming value is 0.85 °C for
the period 188to 2012 (IPCC Syntlsts Report, 20140ne aspect ahis changes thatalarge
portonof t he Earthodos terrestrial area has experi
days and cold spells, and increases in the number of hot nights and days and heat waves/warm
spdls (Alexander et al., 2006). Heat wav&B/N's), a period of consecutive dagkhot
temperature, are expected to get considerably worse later inSteertliry (Meehl and Tebaldi,
2004).HWshave significant mpact s on peopl edsndecermhit h, t he et
conditions worldwidde.g.,1995Chicago,2003and 200&Europe and2010RussiaHWs) and
are considered the tapnked severe weather killdfqusky, 2014. Recently, Guirguis et al.
(2014) reported that durirgHW event the hospital admissions in California increased by 7%,
with a significant impact on cardiovascular disease, respiratory diselabgdration, acute renal
failure, heat illness, and mental health. The July 1995 Chidagoesulted inan estimated AL
deathan 10 stategChangnon et al., 199&)hereas the August 2003 Europé#V (considered
as one of the wor$iWsin the lasffive decads) caused about 30 deathscrossseveral
European counties (COPBOGEA, 2003.
In terms of social and econotreffects manytypes of livestock died during the August
2003 EuropeahW while crops failed throughout Europe, costing European farmers about 13.1
billion euros (Met Office, 2013 This HW led to various transportation effects; for example,

some railwaytracks buckled and roadréaces melted (Met Office, 20)1.3Two nuclear power



plants closed down in Gmany as well (Met Office, 20)3Recently, Eskey et al. (2B)Lstudied
the impact oHWs and extreme temperature on some tree species and found that seee
functions are significantly affected duribtyVs. For example, photosynthesis declines, leaf
abscission increases, and the growth rate of remaining |lsawegatively affected; whereas
photooxidative stress and stomatal conductance increasertunately, the health,
environmeral, and economic impacts of extreme weather events inclitigare still topics
about which not much is known in Saudi Arabia.

A warming of 1.7°C over the Sahara and the Arabian Peninsula is predicted by the year
2050(IPCC, 2001), where the continental interior is likely to warm at a higher rate than the
coastal regions (Lioubimtseva, 2004). Nasrallah et al. (2004) reported that during the last decade
of the 20th centuriAW events over Kuwait had become longer andars@vere. In the case of
Saudi Arabia, multiple recent studies have been dedicated to gaining a better understanding of
mean and extreme temperature patterns and trends (e.g., R@d@n\lSarmi and
Washington, 201,12013; Almazroui et al., 20122012b; Rehman and AHadhrami, 2012,
Almazroui et al., 204; Athar, 2014. Previous studies have agreed thatean and both Tmax
and Tmin in their study are&sveincreased during the last few decades; consequently, the
frequency of cool nights and dalyasdecreased and the frequency of warm nights anddes/s
increased. Almazroui et al (2012a), for example, repatedrmingof 0.60C decadelin the
Tmeanover Saudi Arabia for 1972009, which was lower than that of the Tmax (0.71°C
decade ) andgreater thariTmin (0.48C decade}.

Studies of the climatology diWsin Saudi Arabia tend to not provide enough detail
regarding data and methodlse HW definition used and several questioa®out characteristics

of HWs are not addressetlhe recent studs of HW events in Saudi Arabia focus primarily on



duration using a single meteorological factor in their analyses, daily Tmax (e.g., Almazroui et al.,
2014; Athar, 2014; Donat et al., 2014; Raggad, 20THa$. dissertation focusses on four main
points ncluding (1) developing HW definition taking intoaccounthe orgoing climatic

change and theubtropical arid climate; (dpcal spatial and temporal aspectsHiiVs; and (3)
atmospheric circulation patterttsatinduceHWs, and(4) links to sea surfacemperature

anomalies

Analysis ofHWsin theprior research was based only on &tW criterion: the annual
number fordays of events that last at least 6 consecutive days wherein the Tmax exceeds the
90th percentile and this percentile is based on d¢hnieg of record. It can be argued that the
duration threshold of thidW definition (6 days) is too long and fails to include the shorter, and
potentially high impacHWSs. Based on the existing literature, a two threeday threshold is
usually used as the minimum duratioradiW (e.g., Karl and Knight, 1997; Robinson, 2001;
Garciaet al., 2010; Smith et al., 2013; Perkins and Alexander, 2013). By ushuytar
threstold (e.g., twe or threedays), longerHWs (e.g., six or severdays) would not be excluded
(Russo et al., 2014). Whéthdaytime and nighttime temperatures are used in defldivg,
Robinson (2001) suggested thad&y threshold is an appropriate duvatcriterion as this
requirement would not affect detecting extremely rare events:rigleé¢d health impacts of 2
dayHWson humans have been shown to be substantial (Perkins, 2015).

One of the main effects of climatic change is a shift or change mehe climate. In
addition, the shift in central tendency can be accompanied by changes in the characteristics of
extreme weather events including their probability and intensity. As the climate warms the
temperature frequency distribution shifts positivetyl thus new rare warm conditions emerge

(Figure 11). Accordingly, use of a constant threshold, not varying corresponding to the



warming, would not correspond to the warming climate and would be more likely to be reached
more often in the later yearstime time series and ultimately the frequency of events will
increase over time. Most of the previous extreme temperature studies have detected positive
shifts in the frequency distribution of both the mean and high tempevatiuesand yeaito-

year varidility (e.g., Almazroui et al., 2013; Hansen and Sato, 2016), and yet such an aspect of
change has not been considered in the operational definiteoH\M. In fact, Raggad (2017a)
showed that temporal patterns of extreme temperatures are better ddsgnbadtationary

models for most of the country. Important questions that have not been addressed include
whether the warming climate has resulted in increases in average intensity and the duration of
theHWs. Further, changes in the frequencyHWs arenot fully explained by changes in mean
climate,as the temporal patterns of extreme temperature events frequency asensiree to

variance and other shape parameters (e.g., skewness) (Katz and Brown, 1992; Robeson, 2002b).
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Figure 1.1. Changes in the probability distributions with changes in mean and variance of Tmin air
temperature at one of the Saudi Arabian stations (Gizan (25)). Simulations were prepared following
Robeson (2008).

Although previous studies provided insights into the gerofrahges in extreme
temperaturedittle has been done to address possible causes/factors. Further efforts are necessary

to understand the changes in extreme climate and to overcome severdiajeges. In fact,



themajority of previous studies are more focused on the temporal changes aradtétiteon has
been given to the spatial aspad¢hderstanding the spatial patterns and changes would help to
recognize the geography of change and il help to speculate on some possildeal
factors that may havafluenceon changes in extreme temperature such as topography, water
bodies, and vegetation cover. This also would help provide insights into how spatial factors
couldrelateor influence the atmospheric circulationdéferentlevels (e.g., micre, local, and
mesascale$ that induce extreme temperatures. Topography and distance from a coastline can
impactHW events by influencing extreme temperature event patterns at local anubtdgvels
(Kenawy et al., 2012). Thus, detailed studies are needed that investigate the spatial changes in
extreme temperatures and whether or not some spatial factors help explain important aspects of
HWs. Frequencyof hot days/nights are changing antensity and duration of the spatial
patterns should be linked to variations in atmospheric circulation.

A few studies have given attention to atmospheric circulation conditions (i.e., synoptic
patterns) leading to some extreme weather phenomena, suetiggation events (i.e., heavy
rain, cyclones, and wintastorms) in the Middle East (e.g., Lee et al., 1988; Dayan et al., 2001;
Tsvieli et al., 2005). A very limited number of detailed studies has been condootsning
HWs (e.g., Nasrallah et al2004), especially in Saudrabia. Synoptic studies examin@ather
components to identify the meteorological conditions for a given event; these conditions are then
linked to atmospheric circulation at different scales (Harman and Winkler, 1991).ti8ynop
studies tend to explore how variations in the properties and behavior of the atmospheric
circulation induce particular weather conditions (eé-4yVs, sandstorms,or hurricanes) over and
around a given area in order to better understand and predicietltet her event s at

surface. The benefit of synoptic studies is not only found in diagnosing climate and weather and
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how anindividual synoptic system works, but also in detecting changes in frequency,
forecasting,and inempirical and numera modeling (Yarnal et al., 2001).

In addition to synoptic conditions, studies have shown several factors contribute to the
formation, intensity and persistencetdiVs including soil moisture (e.g., Ferranti and Viterbo
2006; Fischer et al2007), drought (e.g., Vautard et a2006) and anomalies in sea surface
temperature (S9Te.g., Feudale and Shuk2007 Carril et al., 2008Feudale and Shukla,

2011). During the European 2088V, SSTs over the Mediterranean dahdBlack Sea were the
warmes on record (Feudale and Shukla, 2007) and it was suggéesteti¢y might have
intensifiedthe HW due toatmospher@ceaninteraction (Feudale and Shukla, 2011). Feudale
and Shukla (2007) modeled the contribution of SSTs to the Europeami¥0@8d showd that

the wam SSTs contributed to increadeeiating of the atmosphere over the Mediterranean basin
and the surrounding regions. Tlasv level heating helped to form arpper levelanticyclone

over the region. The influence of SSTsHW events inthe Arabian Peninsula has not been
addressed.

Therefore and building on the previous research, the main goal this dissertation seeks to
accomplishs to gain a better understanding of the climatolofgyarm season (May
SeptemberHWsin Saudi Arabia, considig theon-goingseffects of climate warmingithin a
subtropical arid climate. More specifically, a statistical climatology of red@vis for Saudi
Arabia is presented in Chapter 2. The analysis uses a definitaad\bfdesigned with the
regionalsubtropcal climatein mind. This was done by lowering the nighttime temperature
(Tmin) threshold (i.e., using the 8percentile). Given the ongoing upward trend of air
temperatures for the region, the analysies anddemonstrates the value of thresholds gisin

time-sensitive approach in studying extreme thermal events.



For chapter 3objectives were to (1) detect temporal changes in the frequency and
intensity in sixwarm seasohot temperature indicators (WSHTIs) using the tspasitive
approach to accoudr the ongoing regional warming treraehd(2) recognize the
spatiotemporal character of warm season hot thermal events with an emphasis on event behavior
through time and spacessing a timeseries clustering approach. In chaptethé objectives were
to (1) identify the general synoptic situations thieassociated with the occurrencewdrm
seasorHW days in Saudi Arabiaxamine how different aspectsté¥Vs (e.g., frequency and
intensity) are related to different circulatiofpes; and (3) assess possible links/associations
betweerHW events and SST anomalies of nearby large bodies of water (i.e., Mediterranean Sea,
Black Sea, Caspian Sea, Arabian Gulf, Arabian Sea, and Red Sea).

1.2 The Dissertation Outline

This dissertation wasrepared as a series of three stafahe but interrelated research
efforts. The first paper, which has begmiblishedn the International Journal of Climatology, is
presented in Chapter 2 and establishes the development of setiisidveHW definition and its
suitability. The second and third papbtsld on the first paper and explore in greater detail some
important spatial, temporal, and atmospheric aspects of HWs in Saudi Arabia. The second paper,
which has beersubmitted to Theoretical and ApplieditGatology, explores spatiotemporal
aspects of warm season hot thermal events. Chapter 4, the third researevhéeffdanas been
submittedto Atmospheric Researckakes on a further step by analyzing the atmospheric
circulation conditions and SST anomesal during selectedW days. This component of the
research has an applied aspect addressing which of these two factors might help in event
forecasting. Gapter 5 brings all these papers together to summarize their main findings,

implications and conclusits.



1.3 Study Area

Saudi Arabia is located in southwestern Asia and occupies 80% of the Arabian Peninsula
with a total area of around 2,000,000%@Imazroui et al., 2013; Saudi General Authority for
Statistics, 2018). Saudi Arabia lies between the Red Sea (west) and Arabian Gulf (east) and is
bordered by Kuwait, Iraq and Jordan (north), Bahrain, Qatar and United Arab Emirates (east),
and Oman and &men (south) (Figure 1.2). According to 2010 census, the country has a
population of 27,136,977 (Saudi General Authority for Statistics, 2010). The Kingdom has 13
administrative/province regions (Figure 1.2 C), where Riyadh, Makkah, and Eastern are3the top
provinces for population (Figure 1.2 C). Riyadh is the location of the capital (Riyadh City),
Makah is where the holy mosque and the Hajj (pilgrimage) takes place, and oil @and gas
produced and exported from the Eastern province

The topography for och of Saudi Arabia isharacterized blpw-elevatiors. Elevation
gradually increases toward the more mountainous southwest region (Figure 1.2 A). The highest
peak, Jabal ABawda (AtSawda Mountain), approaches 3,000 m in elevation and is located
within the Sarawat Mountains. Generally, most of the landscape is barren land except for
portions of the southwestern mountains. About 33% of the landscape cover is sangvdesert
the Al-Rub AlKhali Desert (Empty Quarterjhe Al-Nefud Desert, anthe Ad-Dahra Desert
constitute 85% of the sand desert areas (Saudi Geological Survey, 2012). Most of the vegetation
cover is located within southwestern mountains (Figurdl.duniperus phoenicia, Juniperus
excelsa, Olea Africana, and Acaei@ommiphora scrub atbe common vegetation types within
southwestern mountains (Saudi General Authority for Meteorology and Environmental

Protection, 2016).
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Chapter2-Ti nseensi ti ve analysis of a wze

waves in Saudi Arabia: Tempor al

Abstract

Most of the literature abouWsin Saudi Arabia provides information about the duration
aspecusing a single index, with no detailed information about frequency and intensity aspects.
To help establish a baseline for understanding past and future change, this study explored the
temporal behavior(s) of the frequency, duration, and intensity of iH\8audi Arabia nder the
observed recent climatahange. Several issues are addressed including some methodological
concerns associated with the commonly us@dindex, data quality control and statistical
analysis. A new definition and method to detd@¥s and their changes proposed, considering
theon-goingseffects of climate warming and the subtropical arid climate.

A HW event is defined as a period of two or more consecutive days (i.e., at least 48
hours) with a daily maximum and minimum temperatexceeding the 90th and 85th percentiles
of the maximum and minimum, respectively. Threshold percentiles were calculated monthly and
adjusted for each decade of analysis. For temporal trend analyses, we consider HW events and
their duration as count datising different Poisson models for analysis. HW frequency, intensity,
and duratioracrossSaudi Arabia were found to behave geographically and temporally
differently across the 25 stations studied. Distinct temporal and geographical patterns were
observedndicating a confounding interplay of regional and local factors, such as urbanization,

elevation, latitude, and distance from a large body of water.
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2.1 Introduction

Under the effects of climate warming, the global pattern of the occurrence of extreme
weatherevents such adWs, a period of consecutive days with hot temperatures, is expected to
increase significantlyTebaldi et al., 2006), suggesting an increase in the risk of more severe and
longer HW events (Kent et al., 2014). Extreme high temperadirectly affect human health
(Souch and Grimmond, 2004) and energy consumption (IPCC, 2007). HWSs increase energy
consumption for atconditioning, which has environmental impacts (e.g., pollution) and
economic effects (e.g., increasing energy costjirigdate July 2016, large parts of the Middle
East were under a majblW and aTmax of 54°C in Mitrabah, Kuwait, could be the netves
Asian highest temperature (WM@017). During the summer of 2010, eight power plants
throughout Saudi Arabia were forcexghut down due to the extreme heat (Alghamdi and
Moore, 2014), with Tmax reaching 52°C in Jeddah City (Almazroui et al., 2014). This was an
extraordinary temperature event as it was 7°C higher than the 45°C summer Thpexcetile
of 19852014. Loss bpower left people in several cities exposed and vulnerable (Alghamdi and
Moore, 2014).

Within the Middle East, changes in extreme temperature have been considered at
different spatial scales including the Arab region (e.g., Donat et al., 2014), tharAR&ninsula
(e.g, AlSarmi and Washington, 2012013), Saudi Arabia (e.g., Almazroui et al., 2012a, 2012b,
Almazroui et al., 204; Athar, 2014), and even at the individual city level (e.g., Reh@@&k0);
Rehman and AHadhrami, 2012; Alghamdi and Mog@r2014). These studies indicate that
during the last few decades thmean and both th&max and Tmin in the region have
increased. Consequently, the frequencies of cool nights and cool days have decreased and the

frequencies of warm nights, warm daysd avarm spells/HWs have increased.
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Most of the previous extreme temperature studies have detected a positive shift in the
frequency distribution of both the mean and high temperature, suggesting that HWs would not
only be expected to become more frequeuit aiso more severe. It is clear from the previous
research that HWs have exhibited their maximum frequency during the last few decades.
Important questions that have not been addressed include whether this shift has resulted in
increases in average intéysand the duration of the HWSs. Further, changes in HW frequency
are not fully explained by changes in mean climate, as the character of extreme temperature
events frequency is more sensitive to variance and other shape parameters (e.g., skewness) (Katz
and Brown, 1992; Robeson, 2002b). Recent studies of HW events focus primarily on the
duration aspect by using a single meteorological factor in their analyses, daily Tmax (e.qg.,
Almazroui et al., 2014; Athar, 2014; Donat et al., 2014; Raggad a2017

Climatological studies of HWs in Saudi Arabia tend to not provide enough detail
regarding data and methods and several questions are not addressed. Analysis of HWs in this
prior research was based only on one HW criterion: the annual number of days of extdass th
at least 6 consecutive days wherein the Tmax exceeds the 90th percentile and this percentile is
based on the period of record. It can be argued that the duration threshold of this HW definition
(6 days) is too long and fails to include the shodrd potentially high impact HWs. Based on
the existing literature, a twaor threeday threshold is usually used as the minimum durati@n of
HW (e.g., Karl and Knight, 1997; Robinson, 20@&grciaet al., 2010; Smith et al., 2013;

Perkins and Alexander, 2013). By using a shorter threshold (e.g.otwureedays), longer
HWs (e.g., sixor sevendays) would not be excluded (Russo et al., 2014). When daytime and
nighttime temperatures are used @fiding HWs, Robinson (2001) suggested thaa®

threshold is appropriate as this requirement would not affect detecting extremely rare events.
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Heatrelated health impacts ofday HWs on humans have been shown to be substantial
(Perkins, 2015).

Use of tle 90th percentile threshold is commonly based on data for the period of record.
Use of such a time window to determine the threstwaldld notincorporate climate changes in
the occurrence of HWs if there is a trend (either positive or negative) in theath@imate
because the threshold would remain constant over the analysis period (Radinovic and Curic,
2012). This concern is critical since studies document a positive shift in the frequency
distribution of air temperature for Saudi Arabia. Recently,Jadg2013) showed that temporal
patterns of extreme temperatures are better described kstatmnary models for most of the
country. Thus, under the ongoing change a constant threshold determined from the entire period
of-record would assume a statioypalimate and ignore any temporal variability in the
probability distributions of extreme temperatures. For instance, under a warming climate a
constanthresholdwould identify more HWs for the more recent period and detect fewer events
for the earliesperiod.

In these previous studies, the temporal trend analyses were based on the annual count of
days of HWs and not on the number/frequency of events. Use of this duration metric is arguable
and it cannot be used alone since it does not reflect thaidtlke of the heat hazard. As such,
past research may provide a misleading assessment. In fact, the sum of days usitay thie 6
longer metric only provides count information about the number of participating HW days
(Perkins and Alexander, 2013) rathiean frequency, intensity, or other duration aspects.
Moreover, the quality of observation data for stations in Saudi Arabia has received limited
attention in previous studies. Further details regarding these critical points are presented and

discussed irbection 2.
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A statistical climatology of recent HWs for Saudi Arabia is presented in S&&omhe
analysis uses a definition of HWs designed with the subtropical climate of the vagien
considerationThis was done by lowering the Tmin threshol@ percentile. Given the
ongoing upward trend of air temperatures for the region, the analysis demonstrates the value of

using a timesensitive approach in studying extreme thermal events.

2.2 Research Design and Methods

2.2.1 Study area and data

Saudi Ardia (Figure2.1) occupies a large part of the Arabian Peninsula. Except for the
southwestern mountain area, Saudi Arabia has a tropical/subtropical climate that-latéuoe
warm desert (BWh) according to the Képpen climate classification. The saiénwenountains
lie in an area of lowatitude semiarid steppe (BSh). The climate of the country can be described
as continental, a result derived from the geographical location of the country in the subsidence
part of the Hadley Cell (Alkolibi, 1995). Sking and warming aspects of the Hadley circulation
restricts the sources of water vapor for rainfall over the Arabian Peninsula to bRdaBea
and Arabian Gulf (Almazroui et al., 2013).

Daily maximum and minimum surface air temperature data for #renvgeason months,
were obtained from the Saudi General Authority for Meteorology and Environmental Protection
(GAMEP). Spring and autumn seasons in the study area are short compared to summer season
(Alkolibi, 1995). Spring occurs for approximately onentio(in March or April), autumn in
October and November, and winter for three months (December, January, and February) (Ali,
1994). In Kuwait, May HWs were reported to be equivalent to other summer months and they
could be more severe (Nasrallah et alQ80Given the timing and acclimatization related to

heat events, the early season and late season HWSs are important in terms of health outcomes,
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e.g., heatelated morbidity and mortality (Hajat et al., 200Zhus, the data obtained for this
study ardor the months of May through September and this period was considered as the

summer or warm season.
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Figure 2.1. A map showing the study area and weather stations along with their names and IDs.
Source:adapted from King Abdulaziz City for Science and Technology (KACST) and the GAMEP.
* station was not included in this study.

Data were obtained for 25 weather stations across Saudi Arabia (Eityared Table
2.1). The selected weather stations provide adequate spatial coverage and ofjeahigltand
a relatively longterm series for temporal trend analysis. Data from these stations have been
found to be homogeneous (e.g., AlSarmi and Washington, ZDi8)eriod of record for this
study begins in 1988ue to issues in the station metadata including inhomogeneity, missing data,

and the limited amount of data available prior to 1985. Six stations began recording observations
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in 1985 (AlBaha (6), Sharurah (1,0RiyadhNew (14), Guriat (16), Makkah (19), and-Ahsa
(20)) and examination of their locations (Fig@r&) indicates that these stations can provide
important spatial insights abowithin countryvariations. Some stations started collecting data
earlier than 1985 and previous studies have used 27 sté&ignsAlmazroui et al., 2012a,
2012hb), two of which were excluded in this study because the records have large gaps of missing
data in 20142013 for RiyadkOld and in 19851990 for WadiAldawasser (Fgure2.1). An
attempt was made to use additional stations from the Arab Gulf States to cover the spatial gaps in
the northeast and southast parts of the study area, but Aganmder stations were found to have
both short temporal coverage and poor datality.
2.2.2 Quality control

Prior to statistical analysis, the quality of the air temperate data was carefully assessed.
Two quality control (QC) procedures, which are commonly applied, were used: (1) when a daily
Tmin is higher than the Tmayx, it is markedusseasonable/error and replaced by NA and (2)
observations that are +4 standard deviat(@i3) greater or lesser than the Tmin and Tmax are
identified as possible outliers and marked as errors and replaced by NA. Further, diurnal
temperature ranges thate greater than +4 SD were assessed for possible errors. Instead of
maintaining the marked errors by NA, which is a common practice in previous local studies, a
further step of exploring if there was an obvious reason for these NA observations wa& taken.
guality controlled dataset from the U.S.A. NOAA/NCEI was used to inspect these observations.
Transposition of digits and misplacement of decimal points were found to be the causes of most
the errors and they were fixed accordingly. This step allowedvwlell quality to be increased

by 3-5%, on average, at the station level. To maximize the quality of the data, QC was applied
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twice as the mean and standard deviation statistics change due to changes in the number of
acceptable observations.
Table 2.1. Weather stations with latitude, longitude, elevation, average maximunT{nax) and

minimum (Tmin) temperature of the studied warm season (May through September) for 1985
2014. Elevation data, provided by KACSTwas used to number stationgorm high to low elevation

ID Station name Latitude (°N)  Longitude (°E) Elevation (m) Tmax (°C) Tmin (°C)
1 Abha 18.23 42.66 2096 30.08 16.21
2 Khamis Mushait 18.29 42.8 2057 34.49 21.91
3 Al-Baha 20.29 41.64 1653 31.31 17.18
4 Taif 21.48 40.55 1455 35.05 21.93
5 Najran 17.61 44.41 1217 38.39 22.95
6 Bisha 19.99 42.61 1182 38.97 23.06
7 Hail 27.44 41.69 972 38.04 22.15
8 Turaif 31.68 38.73 846 35.20 19.23
9 Tabuk 28.37 36.6 800 37.55 21.88
10 Sharurah 17.47 47.12 740 41.91 25.22
11 Al-Jouf 29.78 40.10 668 38.27 22.97
12 Gassim 26.20 43.77 646 41.94 24.76
13 Madina 24.54 39.0 636 42.3 28.28
14 RiyadhNew 24.92 46.72 614 42.02 25.02
15 Arar 30.90 41.14 544 39.57 23.47
16 Guriat 31.40 37.28 507 37.02 18.42
17 Rafha 29.62 43.49 449 40.91 23.73
18 Al-Qaysumah 28.33 46.12 362 42.92 26.54
19 Makkah 21.43 39.79 249 42.96 28.89
20 Al-Ahsa 2530 49.49 181 43.99 27.31
21 Wejh 26.20 36.47 21 33.46 24.25
22 Dhahran 26.26 50.16 17 37.02 18.42
23 Jeddah 21.71 39.18 16 38.25 26.07
24 Yenbo 24.14 38.06 10 39.79 25.8

25 Gizan 16.90 42.58 6 38.07 29.32

17



2.2.3 Heat wavedefinition

Due to the fact that extreme weather events, including HWs, have geographic relativism
(i.e., impacts are a function of culture and sograktices), scholars have developed a wide
range of HW definitions and indices (e.g., basic indices, which use air temperature or apparent
temperature are common; more complex indices use physiological reactions of humans or other
organisms under extremerditiong (Souch and Grimmond, 2004). In addition, HWs are of
interest to diverse stakeholders, including health researchers, agricultural producers, energy
providers, climatologists, and meteorologists due to the diversity of impacts (Smith et al., 2013)
For such reasons, it has been concluded that there is no single perfect standard method or
definition fora HWthat works for all applications (e.g., Perkins and Alexarigt3; Smithet
al., 2013; Kent et al., 20)4

Scientific literature has estigghed that HWs can be defined broadly as a period of
consecutive days, including daytime and/or nighttime, where perceived thermal conditions are
well above normal. This involves three aspects that should be determined appropriately (Smith et
al., 2013):(1) relevant meteorological metrics (e.g., Tmax alone or plus any one of or a
combination of Tmin, humidity, wind speed, and solar radiation); (2) a type of threshold value
that the relevant metric should exceed (i.e., an absolute or relative value§) ardli(ation
aspect, (e.g., up to several days).

Although Tmax is the commonly used meteorological metric, it is often combined with
Tmin aswarmnighttime temperature can further intensify the impact of weather conditions
because organisms may not expece a period of stress relief (Perkins and Alexander, 2013).
Relative humidity is another meteorological metric that has been used mostly in assessing the

impacts ofHWs on human and other organism health as high temperature and high humidity
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combined (., apparent temperature or Temperature Humidity Index (THI)) have significant
effectson heat wavaelated mortality (Tong and Kag011). Commonly, humidity is combined
with temperature and then a resulting index, such as apparent temperature orititeekgeiat
used. Because of some limitations that relate to availability and quality of relative humidity
observations (Perkins andekander2013),Tmin has been used to infer the weather conditions
duringa HW as low humidity tends to lead to lowBmins and high humidity to igher minima
(Nairn and Fawcetg015). Thus, combininffmax and Tminn a definition allows the health
impact to be assessed implicitly (Nairn and Faw@&15). It is also possible to assess other
aspects such as climatic andiegiture impacts. Indices, such as the THI and the
Comprehensive Climate Index (CCI), are used to address environmental stresses on livestock
(Mader et al.2010).

Several studies have been conducted to compare different measurements and indices
AppendixA (e.g., Perkins andlexander 2013; Smithet al, 2013; Kent et aJ.2014 and it has
been concluded that there is no single perfect standard method or definitdtMibthat works
for all applications; this is due to the different aims or purposése different studies. Perhaps
the most common extreme temperature indices that have been used extensively, especially in the
Middle East region, are those of the WMO Expert Team on Climate Change Detection and
Il ndi cesdé6 (ETCCDI ) lnfatologiw@imaieovariability and Bredictabdity/ C
Joint Technical Commission for Oceanography and Marine Meteor{$egyAppendix A)

Such indices, however, have been reported to have limitations. They do not capture all the
aspects cAHW in a single measurement (Perkins and Alexari#t3). Some of ETCCDI

indices rely on fixed or absolute thresholds, which may indicate extremes in particular
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homogeneous climates or particular applications, e.g., the effects on a particular type of crop o
livestock (Folland et 811999).

Percentile based thresholds, above which a relevant metric should exceed and are relative
to the area of consideration (i.aplacespecificmetric that allows for spatial comparisons), are
commonly used and considenmeabre appropriate (Klein Tank et al., 2009; Perkins and
Alexander, 2013). Yet selecting the appropriate percentile threshold (e.g., 95th, 90th or 85th), the
estimating time scale (e.g., monthly, seasonally, or annual), and the period of analysis (e.g., a
decade, 30 years, the period of record) become critical decisions. Perkins and Alexander (2013)
reported that the 90th percentile (for both maxima and minima) is an appropriate threshold as it
optimizes the balance of extreme versus other temperature .edentsver, the relevance of
such a threshold may differ from one climate type to another depending on the physical nature of
the temperature regime along with cultural and social practices.
2.2.3.1Implications for Subtropical Arid Climates under warming effects

In arid climates, the diurnal temperature range is usually large as Tmin tends to drop
quickly dueto the nature of radiational cooling in dry environments (Oke et al., 1998). Thus, in
common situations, i.e., no HW, Tmin tends to be low. Thus, a lowesttbld value (e.g., the
85th percentile) might be a more suitable HW criterion for subtropical desert environments. An
implication of using the 85th percentile is that temperatures remain warm enough to limit the
amount of stress relief. Since high humydiénds to lead to higher Tmin, incorporating Tmin in
a definition allows the humidity effect to be assessed implicitly (Nairn and Fawcett, 2015). The
85th percentile has been established as a suitable threshold for heat and hetatdiyhealth
outcoms as it reflects population acclimatization (see Habeeb et al., 2015 for references). The

difference between 85th and 90th percentiles of Tmin during HWs could be more related to local
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factors (e.g., urbanization) than to the prevailing synoptic condittarmshermore, within such
an arid climate type, the nighttime summer temperature is already warm, stress relief is limited,
and a small increase in temperature could be significant.

Defining what constitutes above normal conditions is a critical aspeetiong-term
warming or cooling trends and shoerm variability of temperatures impact the statistics from
which normal/abnormal conditions are determined. Under the effect of adacaétdal warming
trend, the threshold(s) above which a heat extrenaeigified are expected to shift to warmer
values over time. A warming climate could, also, result in both a largaegsgear fluctuation in
climate and an increase in the length of a thermally defined season (e.g., a longer summer)
(Hansen and Sato, 26).

The pace of climate change is an important factor in defining HWs, where evolving
climatic conditions and time frames should be reflected in any metric (Perkins and Alexander,
2013). By definition, HWs are rare events and by the end of this certagxttemehigh
temperatur@vents of today are projected to become the norm (Mora et al., 2017) and new rare
events will emerge in several places in the Arabian Gulf States (Pal and Eltahir, 2015). During
the summer of 1987, the Tmax during-dé HW atRiyadhnew station (14) recordetsi
highest temperature of 47.@ for the period of 1983997. During 1998014 that 47.4C
temperature was exceeded several times, suggesting a change in the character of extreme
conditions.

As the mean climate frequendistribution shifts (to the left or right), the probability of
an extreme event would not necessarily change without changes in the other characteristics of the
distribution such as variance and skewness. Fig@rm@icates observed differences in the

probability distributions and 85percentile of Tmin and 90th percentile of Tmax at three stations
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over different decadal and period of rectde scalesThese three stations represent and
summarize different temporal patterns and climate types for ®aaildia. The Tmin percentiles
of the 30year period were higher thamefirst decade and lower than the third decade at these
stations (Figure .2). The Tmax percentiles of the-3@ar period, were lower than second and

third decades at both Madina (138)daAl-Jouf (11).
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Figure 2.2. Distributions of the probability density function (PDF) of daily temperatures at three
stations for three decades using warm season months (May through September) Tmax, and mmi
alongwith their 85th and 90th percentiles (right). Bottomright plot shows changes in the
probability distributions and the 90th percentile in response to changes in mean and variance of
Tmin at Gizan (25) station. Simulations were prepared following Robeson (200Rt5tations were
selected as they represent different temporal patterns and climate types.

Thus, using the entire 3ar period to estimate the 90th percentile would not highlight
decadal variability and omit the impact of a trend in the climate. Axad and Madina stations,
constant percentiles based on the period of record would result in fewer detected HWs in the first

decade and more HWSs in the last two decades. At the coastal station, Gizan, the Tmax 90th of
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the periodof-record was higher than tisecond and third periods. As such, use of that threshold
would detect fewer hot day events in second and third periods and ntioediist decade.
Differences in decadm-decade percentiles do not have to be very big to result in large changes
in theprobability of extreme temperature events due to the nonlinear relationship between mean
climate and extreme event probabilities (Mearns et al., 1984). Temporal patterns in the frequency
of extreme temperature events are more related to variance chatiasténan to the mean, as
extreme events are more sensitive to variance (Katz and Brown, 1992).

In this work percentiles were determined on a mdiymonth basis (e.g., Pezza et al.,
2012; Cowan et al., 2014) using a decadal 4mmadow (Robeson, 2002aBy estimating
percentiles on a monthly basis, the effects of extreme values and annual and seasonal cycles can
be minimized and the percentile threshold becomes more representative (Robeson, 2004; Pezza
et al., 2012). If percentiles are calculated usisgasonal or annual basis, the warmer months
will dominate the determination of the heat extremes that comprise thetapp@ercentiles
could be also calculated using a centered window (edpy$, Klein Tank et al. (2009), 4y,
Perkins ad Alexarder(2013), or 3idays, Russo et al. (2015)). Cowan et al. (2014) compared
monthly and 15days centered window thresholds regarding their biases and reported no
substantial differences. ThusHW event for Saudi Arabia was defined herein using the
following criteria:

A period of two or more consecutive dayith a daily maximum temperature exceeding
the 90th percentile of the monthly maximum and the minimum temperature exceeding the 85th
percentile of the monthly minimum for the decadguestion(19851994, 19952004 and 2005

2014).
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Foll owing Hyndman and Fandés (1996) recomme
estimate percentiles, as the method provides unbiased estimates and requires no distribution
assumptions. Given the length of available datay€2@s), a 15year, 10year, or 5year time
window could be used. To balance between relatively long andtshoriclimate variability, a
10-year timewindow was selected (e.g., Robeson, 2002a).

HWs can be continuous phenomena that extend over the wars#iween two adjacent
months (Folland et al., 1999). Since HWs were defined and studied on a monthly scale, the
definition has to be an operational one. Therefore, in the casz lthatextends into the next
month, the percentiles (of Tmin and Tmax) led tmonth in which the event started were used to
track the event into the next month, since the relevant synoptic weather system often moves
slowly and can remain quastationary for daysA HW is then reported fahe month in which it
lasts the longest
2.2.4 Heat Wave Intensity and Duration

In defining what constitutes HW event, there are no standard criteria for defining HW
intensity and/or duration. The intensityaHW should be defined in such a way that intensity is
independent of event duration. $hway the separate effects of duration on HW intensity can be
explored.Intensityof a HWin this study was assessed using the Tmean of the hottest day, which
is considered the peak of th&V (e.g., Perkins and Alexander, 2013). Thotensityis not a
metric of the cumulative stress for the duration of the event. Tmean was used since both Tmax
and Tmin are used to characterazBl\W.

Forduration many local studiesaveused the Warm Spell Duration Indicator (WSDI), a
metric from the ETCCDI, where WSIH the annual count of days within events of at least six

consecutive days when the Tmax exceeded the 90th percentile. WSDI provides a general
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assessment that could lead to a misleading conclusion. WSDI relies on the total number of days
that result froméngthy events. With the use of a shorter duration criterion (edgy2or more),
individual years could have an equal total of HW days but with different HW event counts and
different durations (Figur2.3). For instance, all the four years in Figdt® have an equal total
annual count of days, but individual events are different in duration across the four years. Year 1
has 3HWswhich last for 3, 4, and 5 days, respectively, which results in a total of 12 for the
annual count oHW days. Year 2, on thother hand, hasMWs which last for 2, 3, 3, and 4

days, respectively.

Annual count of days

6-days

5-days

4-days

B T T TS TR I TSt SR SRS
TR L T T LT
AL AR R

3-days

Days count per duration

2-days | BYear1 OYear2

WYear3 EYeard

Annual count of events
6-days

5-days

4days

3-days TG

Events count per duration

2-days

Counts

Figure 2.3. A hypothetical comparison between annual events count (bottom) and Annual count of
days/WSDI (upper).

Similarly, yearscould have a similar annual count of days and annual event count but
different durations. For example, both years 1 and 3 have an annual count of days (12 days) and
annual count of events (3 events). Nevertheless, events of each year have different ttugatio
important to note that, for any selected duration threshold, length, (e.g., 2;@apriA

defining WSDI, similar observations are still existing as WSDI relies on the total codilY of
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days, not on the duration threshold. In fact, the WSDiase suitable for providing a
measuremerdbouttrends in annual sum of participating days in lengthy HWSs rather about the
cumulative duration of multiple individual events.

A temporal trend in event duration can be assessed by using the length afytet l6\W
(HWLD) during the year imuestion (e.g., Perkins and Alexander, 2013; Cowan et al., 2014).
This index was selected for use in this work as it relies on the greatest length of an individual
HWi; thus, it can be understood as an indicator abourgehim the upper limits of event duration.
Table 22 summarizes all the HW indices developed for use in this study.

Table 2.2. Definition of HW indices developed and used in this study.

Indices Definitions Units

A period of at least 2 consecutive dayish a daily TmaxOthe 90th

Heat wave percentile of the monthly maximum and the Tr@ithe 85th percentile of Everts

frequency the monthly minimum for the decade in question (12894, 19952004 0r
20052014)

Heat wave

intens\,,i\iyv Annual average of mean temperatures of the hottest ddngsabfvaves °C

H . . . .

djrztti\gsve Thelongestheat wave duration (HWLD) during the yearjuestion Days

2.2.5 Heat Wave Trend Analysis

Trend analysis was applied to the three aspects of HWSs: frequency, duration, and
intensity. For intensity, Kendatl au and Sendés sl ope estimator me
require a normal data distribution. From a statistical perspective, useeafiaanalysis
technique that addresses count data is appropriate (Ryden, 2016). HW frequency and duration
indicators are count indicators rather than a ranking (i.e., number of events or length per unit
time) and thus everdount time series techniques anest suitable. One option is to use ordinary

least squares regression analysis; but for that technique, the data need to be normally distributed.
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More importantly, both the frequency and duration indicators are count variables that can only be
nortnegatie values. Consequently, using a linear regression model is not appropriate as negative
estimated mean responses are not possible (Chatterjee and Simonoff, 2013).

An alternative is the Poisson regression model, and it has been used in HW studies (e.g.,
Bishop-Williams et al., 2015; Ryden, 2016). Unlike a linear regression model, a count regression
model provides slope coefficients of the mean relative change (not the absolute change) in the
expected response/occurrence associated with a unit change liediotop variable. Event
count time series approaches are not free of challenges and three main features should be
addressed: autocorrelation, oxBspersion (variance is greater than the mean), andrzaton
(an excess number of zeros, i.e., no evbservations) (Zeileis et al., 2008; Yang et al., 2015).
Autocorrelation, was found to not be an issue for the data used in this work. For the other two
challenges, a straightforward framework (Tabf®) provided by (Yang et al., 2015) was used.

For exanple, when ovedispersion is present, a negative binomial regression model should be
applied whereas a zeioflated negative binomial regression model is more appropriated when
overdispersion and zerimflation exist. To compare and select models, thedvn g 6 s t e st
(Vuong, 1989) was applied. For theory and implementation, one can refer to Yang et al., (2015)

and Zeileis et al., (2008).

Table 2.3. Used framework for trend analysis of frequency and duratiorof heat waves. Modified
after Yang et al. 015)

Over-dispersion  Zero-inflation Model
No No Poisson regression
Yes No Negative binomial regression
No Yes Zeroinflated Poisson regression
Yes Yes Zeroinflation negative binomial regression
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2.3 Resultsand Discussios

2.3.1 Evaluation
2.3.1.1Thirty -year trends in the upperlimits of Tmax and Tmin

For evaluation and further investigation, thé&'@dd 8% percentiles of Tmax and Tmin,
respectively, were estimated for each of the warm season months on a yearly basis for the period
19852014. Temporal trends in percentile values were selected for evaluation due to the possible
unscaled relationship betweemanges in mean climate and climate extremes and because hot
temperatures and upptil variations in Tmax and Tmin are closely coupled (Seneviratne et al.,
2012). Generally, thirtyear warming trends were detected in both Tmax and Tmin percentile
valuesacross the warm season months with a few downward trenaisar percentiles values
(Figure 2.4. The Tmin percentile values showed more pronounced increases than those of Tmax
not only in the 8% percentile but also for the 9@ercentile. These trendsthe thresholds for
HW events and mulilecade variations in the shape parameters of Tmin and Tmax distribution
(i.e., variance and skewne#gpendix B Figuresl-4) suggest changes in the climatology of the
uppertail conditionshave occurred (i.e., eants are getting hotter, and new norms are emerging).

Thus, using decadal time windows rather than the entiyg=380period for determining
HW thresholds can help adjust for these trends and for-oedade variationis varianceand
skewness of relatetistributions Appendix B Figures 14). It is likely that by using the entire
period of record to estimate thresholds values that the roéitfof a HW event would be
violated. This would result imis-detecting some possible rare events, partityufar short and
low intensityhot events during early years in the data record. Small hot events (with respect to
duration and intensity) can be of high importance locally. Particularly for the vulnerable

populations (e.g., elderly, and children) thataready at higher risk. In arid environments,
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these events could have significant effects such as in managing large electricity demands and
limited water resources. Therefore, a tisansitive approach for detecting threshold statistics

recognizes the omgng change and adjusts exceedance thresholds accordingly.
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Figure 2.4. Heatmaps of decadabased temporal trends in annual Tmin 85th (left) and Tmax 90th
(right) percentile values (°C/yrt) at monthly and warm season (xaxis) time scale for each station

(yaxis). *=*=* **x % and + U = 0.001, 0.01, 0.05,
computedbyKendaII-tau and Sends slope estimator. For stati
Figure 2.1

A few individual stations differ from the national pattern and seven of 25 stations had
declining trends in some of their monthly Tmax values (Figue Such downward trends do

not suggest absences of HW events, but a rather lower probabilitynw$ ebédferencesn the
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heatmap patterns (Figure 2&f Tmax and Tmin thresholds (at monthly and seasonal scales)
indicate that using a single atmospheric factor (e.g., Tmax) would omit important aspects of the
climatology of HWSs. A timesensitive approdc(monthly and decadal) has been established to

be more suitable for loyprobability climate events and their lotgrm change (e.g., Robeson
20023 2002h 2004; Robeson and Doty, 2005). Many terrestrial ecosystem processes are
affected by shofterm varations of hot temperatures (Suseela et al., 2012).

Several studies have reported reductions in-tedated mortality risk as populations
adapted/acclimatized over time due to increased use of air conditioning, warning systems,
improved healtkcare, andmproved public awareness (e.g., Davis et al., 2003a; Davis et al,
2003b; Carson et al., 2006; Kysely and Plave@@4.2). From 1990 to 2010, summer electricity
consumption in Saudi Arabia increased by 35% as a result of the use of air conditioning
(Alrasha and Asif, 2012). Air conditioning usage in the country consumes 60% of summer
electricity (Alrashed and Asif, 2012). Kysely
vulnerability to heat is influenced relatively little by climate change when &dbtars, such as
socioeconomic developments, advance substant.i
acclimatize to heat could be affected by temperature variability, even when populations of hot
cities become more adapted to high temperatures (Btada 2001). Higher yeao-year
variability in the temperature of warm months increasesiebatied mortalities, due to sudden
changes in temperature (e.g., Braga et al., 2001; Md&tanadn and Schwart2007). Thus, a
monthly and decadal timdependenapproach can help to account not only for interdecadal
variations and changes in extreme temperatures, but also for possible changes in population

vulnerability to heat.
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2.3.1.2 Evaluation of the heat wave definition
Frequencyof count data on HWs detectedngsboth a constant and a changeable
threshold determined on monthly and seasonal bases are presented iR Eidtiesarly
different statistics were obtained as constant thresholds tended to detect more (fewer) events in
the later (earlier) years. High&equencies of events in 1987 and 1989 are evident when a
decadesensitive approach is used. Due to the upward trend in the upper lifniteof and Tmin
and thus in hot/warm days and nights in later years (e.g., Almazroui et al., 2014; Athar, 2014,
Dona et al., 2014), a constant threshold is likely to be reached/exceeded more often in the later
years; this choice influences the relative number of HWs and the rate/slope of change in HW
events over time. A decadensitive determination of threshold pertile values resulted in a
higher total number of events. This is du¢h® more equakepresentation of HWs across years,
by taking into the account the warming trend and-yegear variabilities (Figur@.5).
Figure2.5provides the time series tife 90th percentile ofTmaxestimated on monthly
and warm season bases atJAlf. It is clear that the rate of warming and yteayear
variabilities were not the same across months. While thg@®8@entile is increasing, the
inconsistent temporal pattermamong months impact detectidyVs as warm days and nights
were found to be less detected in months with a low rate of warming along with those that had no
significa@t war mi ng trends. The full warm seasonbs
war mest months, which is consistent with Robe
determine the threshold would emphadit&'sin the warm months and vice versace all
months are not represented equally. For example, lateB0s to early 90s, the 90th percentile
of the warm season, had a decreasing tfenduly and August, which was not the case for the

other months. Using a seasonal basis did not detdgtagat late warm season events (i.e., May
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and September) as the threshold was derived fronrsgadon (i.e., warmer months). Use of the
full warm season to establish a threshold would also affe¢i\Wieluration and intensity aspects
as the warming trendse more pronounced in the later yeat®/ duration was found to

decreasggenerally, when the threshold was estimated usargn seasodata.
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Figure 2.5. Monthly and warm season 90th percentile of Tmax tresholds at AFJouf (11) station 5
determined on an annual basi s. * ok ok * ok and * U =
Trends computed by Kendatt au and Senés sl ope estimator .

A constant 36year threshold percentile approach detecteHWs during 2010 whereas
the decadsensitive approach detected six HWg(Fe2.6A andC). Seven different HW
events were found to have daily Tmeans less than 1 SD of the respective 2010 monthly Tmean,
suggesting unreasonable over detection when uskyg&@ to define the relevant threshold.
Using 30 years and the full warm season to determine the threshold, results in a period, 1989

1994, when no events are detected (Fi@Qu8B). This period had lower values for the 90th
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percentile statistics of bothniin (not shown) and Tmax during the warm season months of July
and August (Figur@.5). From a meteorological perspective, such an observation does not
necessarily suggest absences of HWSs. In fact, the events identified by using asdeséoe
percentie for this period (Figur@.6D) were found to have Tmax values above 1.50 SD of the

19852014 warm season mean Tmax.
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Figure 2.6. Annual count of heat waves per year at Alouf (11) station using differenttime-
windows to estimate percentile, A and B constant (3@ears) and C and D decadsensitive
thresholds estimated on monthly (A and C) and warm season (B and D) bases.

2.3.1.3 Evaluation of duration metrics

Using a duration metric that is similar in design tadDI, WSDb, the annual count of
HWs days of events that are two days or longer, and HWLD, the duration of the longest HW
each year, showed relatively similar overall patterns across Saudi Arabia with greater differences
in their magnitudes and substartiaifferent details for a few years (Figu2er). Both

indicators were calculated using the HW definition established in this manuscript.AfgDI
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HWLD showed similar temporal patterns during years with a small range of HW durations that
have low frequecy and exact patterns were found during years with one HWnBtamice, at

Rafha (17) (Figure 2)7#rom 1985 to 1988 both indices followed each other in their temporal
patterndueto smallrange of durations that also had low frequencies. The data hderdical

pattern from 2002 to 2006 as these years each had one event. During yeamsigattange of

HW durations or small range with high frequencies (i.e., a duration occurs several times in a
given year), the curves deviated and sometimes showetsepatterns. At Rafha (17) and Al

Baha (3) stations, different patterns between the two indices were found in 1998 and 2011 due to

the greater numbaf events in these two years.
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Figure 2.7. Duration of the longest event or HWLD (green solid line), number of heat wave events
(blue long-dash line), and the annual count of days or WSDKred dashed line) at four stations,
representing different temporal patterns, elevation, and climate types.

It is alsoclear from Figure 2.that years with a similar WSRIdid not have a similar
range of durations nor similar magnitudes of duration. At Tabuk (9), V&idl a value of 12

days in 1987, 2006 and 2013 whereas the longest durations for these years watk4/days
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respectively. WSDIdid not significantly distinguish among the magnitudes of different
durations, as WSBoes not directly consider individual event length. At Tabuk (9), WSDI
had values of 8 and 11 days in 2003 and 2001 whereas the longggirdwas 8 days in 2003
and only 3 days in 2001. A similar issue can be seems@albfour stations in Figure 2.8uch a
difference in metric values will highly impact the rates and magnitudes of trends, negatively in
the case where there is a pagtirend in duration over time. This analysis raises similar
concerns about another ETCCDI, the cold spell duration indicator (CSDI), the annual count of
days with consecutive days when Tmin <10th percentile.

Clearly, findings on the number, intensitydasturation of HWs will change depending
on the threshold selected for an extreme event. Uséirokaensitivemetric (monthly rather
than seasonal or annual) is helpful in examining the multiple types of HWSs that occur during the
extendedive monthpero d of Osummer 6 in Saudi Arabia. And
to warm, the usef decadal rather thathe periodof record data for threshold determination will
provide findings that better represent the changing warm season climate.
2.3.2 Heat wavebehavior
2.3.2.1Frequency

Classifying the 25 stations into groups based on the dominant month(s) of HW
occurrence reswdt in eight categories (Figure 28 HWs during May were found to be more
frequent at 9 stations (36%) followed by Septermdnd July (eacR0%) (Figure 2.8). Stations
with more frequent events during May were those located at higher elevation (Abha (1), Khamis
Mushait (2), AlBaha (3), and Taif (4)) and in coastal areas (Dhahran (22), and Jeddah (23)),
except Makkah (19) and Ahsa (20). May-eventstations were characterized by a low number

of annual HWSs, exq# station AtBaha (3) (Figure 2B). Most ofMay-eventstations were
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dominated by shotlived events (i.e.,-2lays) and half of these stations recorded their maximum
durationsdurinfay . Mayds events tended extended over
extent that they were recordagdJune events. The tendency for May HWSs to extend into the next
month was more frequent than events from other months. HWs occurring durimgrities of

June through September showed a more random geographical distribution as there was not a
common elevation, longitude or latitude pattern (FiguB8). Some stations showed unique

monthly frequency maxima (e.g., Bisha (6lraif (8), and Wejh (2)) and Gizan (25) had nearly

equal frequency across all months.

F Vegetation
Croplands
4 ' Urban and Built-Up

/8, May
A July
. June

. September
@ June and July
July and August

z‘ June and September ‘.
@ May, June, July and September

Figure 2.8. Classification of stations by the dominant month(s) of heat waves (A) and proportional
symbols for annual frequency (B). Landcover data was obtained and modified after Broxton et al.
(2014). Refer to Figure 2.1 for the elevation legend for (A) and for stations names.

Stations along the northern borders of Saudi Arabia retighest HW frequency
(Figure 2.8B with events moreften occurring in mieto-late summer. Coastal and higher
elevaton stations had low event frequency, except two stations (Wejh (21) and Yenbo (24)) on
the northwest coast. These latter stations and internal stations (Hail (7), Gassim (12), and
RiyadhNew (14)) showed moderate HW frequency (FigRréB). Such a spatial pattern may

indicate that HWs in the north part of Saudi Aradm@induced by a similar and relatively
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frequent synoptic weather pattetrocal factors may play a more important roleriteracting
with regional weather patterns for the other stations. Stations at a higher elevation (excluding Al
Baha (3)), those with a more dense vegetation cover (Abha (1), Khamis Mushait (2), Taif (4),
and Bisha (6)), and those with more moist air presarastal stations (Dhahran (22), Jeddah
(23), and Gizan (25)), tend to haadow frequency of HWs (Figure B3.
2.3.2.2Duration

To map the 25 stations based on HW duration, theegories were selected (Figure)2.9
due tothelow frequency (<6%) of longjved e v e n t-days)@®6% of stations. Lotliged
HWs -fla@sh constituted-26% at only 7 stations. The vast majority of stations had more of
their events as shelit’ed or 24 day events (>85%). Events of this duration are missed by the
ETCCD heat wave daation metric (WSDI). Specific locations where short events dominate were
those stations clustered on the ¢aasat high elevation (Figure 3.9Three other stations (Hail
(7), RiyadhNew (14), and AlAhsa (20)) also had more than 90% of their eventsrfdhe 24-
day category. These stations were found to have a higher frequigheyore events occurring
at the boundary of the warm season (i.e., May and September). Perhaps, local factors (e.g.,
vegetation, topography or a sea breeze) help contrduttaion of events in these areas.
Almazroui et al., (2015) showed that often extrdrigh temperaturevents (warm days and

nights) did not result from just a single weather circulation type within a subclimate type
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Figure 2.9. Number (upper) and percentage (bottom) of HWs based on three duration categories: 2
4-days, 57-d ay s, -days.d-orGt&tions names refer to Figure 2.1.

Relatively long and longjved events (57-d a y s -@lays) cofsBtuted aoteworthy
number of events at stations in the north and at one station in the higher elevation area, Taif (4).
Commonly, stations with frequent shdisted events (90%) tended to have a low frequency of
long-lived events (e.g., Najran (5), Wejh (21), andaa (25)). Stations in northern Saudi Arabia
tended to have infrequent shtivted events and notable and frequent lingd events. A
persistent atmospheric circulation pattern(s) could be responsible for these longer events at the
northern stations.
2.3.2.3Intensity

HW intensity, the Tmean of the warmest day during an event, showed no major patterns
among months in relation to the length of events. HWs during July and August had higher
intensities at a few stations, but consistent monthly patterns wereunaot &ross all stations.

Although longer events were expected to have the higher intensities, shorter events (i.e:, 2 and 3
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days) were often founih be the most intense (Figure 2.1 should be noted that this
comparison across stations is in termamfbsolute value since the intensity value (i.e., Tmean

of the hottest day) depends on dayday temperature anomalies.
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Figure 2.10. Two-dimensional (top) and threedimensional (bottom) scatterplots ofday of peak
(highest Tmean), duration (in day) and intensity (standardized Tmean with zero mean and unit
standard deviation at station level) at all the 25 stations. Coastal, Highland, and other categories
include stations (IDs): 21:25, 1:6, and 7:19, resgtively. Refer to Figure 2.1 for stations names and
locations.

The intensity o HW, was found to peak autonomously in relation to duration as highest
temperatures were sometimes in the middle of the string of days; for other events, the peak
occurred dher after or before the middle of the event. However, dived HWs (2 to 4day)

tended to record maximum intensity a day before event end, wheradsyumintensity was
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observed few days before event end of letiged HWs (>5day) (Figure2.10. Forevents of 2

days duration, this aspect had a more random spatial distribution, suggesting differences in local
and micraeclimate factors. It also suggests that local and itiroate factors could be more
important than the effects of atmospheric ciriataon the association between HW intensity

and their duration.

2.3.3 Trend analyses

By design the decade-decade, longerm warming or cooling (i.eshift in the mean
climate) was relatively removed for this analysis of HWs in Saudi Arabia. Subsequent analysis
for the remaining trend in the HW data for they&@r period from 1982014 could be related
to changes or variation in the upgail characterists (i.e.,variance and skewness). Figure 2.11
displays different temporal trend patterns across stations for the three HW characteristics. It is
worth noting that the values of frequency and duratdfigure 2.1Jare as percentages, so that
aoneunit change per year corresponds to change in frequency or duration of one percent. Only
Makkah (19), had significant upward trends in all the studied aspects (frequency, duration and
intensity), suggesting that the station had experienced not only more frétyfergut also
longer and more intense events. At Makkah City, the Hajj (pilgrimage) takes place, raising a
serious concern about coming years when the Hajj will be dthexgarmseason.

Taif (4), Gassim (12), and Bisha (6) had significant upward trenfiegquency, but an
insignificant trend in duration (HWLD). Only one station had an insignificant decrease in
intensity (AFJouf (11)), whereas 24% and 36% of the stations had decreases in HW frequency
and duration, respectively. For HW intensity, an uplteend was found at 60% of stations,

36% of which had significant intensification trends. The geographical patterns of both frequency

and intensity aspects (Figure 2)Ehowed that coastal and high elevation stations had rising
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trends in event frequencwith lower intensity trends.
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Figure 2.11. Temporal annual trends in frequency (lefttop), intensity (right-top), and
duration/HWLD (bottom) aspects. *** osignificancés, and
respectively. For stations names refer to Figure 2.1.

These findings suggest that local factors impact the regional effects of heat extremes. The
patterns identified, and the tirsensitive criterion (i.e., decadal tiraendow), suggest thahe
trends intheintensityof HWs in Saudi Arabia are related to regional warming and local factors
may play important roles in moderating or enhancing the regional trends. Although several
stations had low trend magnitudes (either upward or downwarsljmportant to remember the
time-sensitive criterion. Temporal trend analysis was not applied at the monthly level due to high
(i.e., excess) number of zeros (no event observations). Howiekarg results from Figures
2.8A and2.11suggests that statis which tended to have frequent events during the early warm

season (May) are those that recorded the greatest increase in frequency over time and had a
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lower intensity trend. These stations were characterizeceuént shottived HWs (Figure

2.9), where they experienced largely decreasing or small increasing trends in event dueation (i.
the HWLD indicator (Figure 2.3}, except AiBaha (3)). Stations with frequent late warm

season HWs (September) (e.g., Najran (5), Sharurah (10), RNasll{14), Raftha (17), and Al
Qaysumah (18)) had low upward trends in intensity and diffgr@térns in their HWLD (Figure
2.11). This could be due to differences in event duration andarirequency aspects (Figures

2.8B and 2.9, which may be the result of difiences in both regional and local factors.
2.4 Summary and Conclusions

The frequency, intensity, and duration aspects of HW events in Saudi Arabia were
explored using data from 25 stations for 1288 4. Data quality received careful attention and a
regionallyrelevant HW definition was developed to account for any possible warming, cooling,
and yeatto-year variability. The importance and effect of different time bases for deternaining
HW thresholdvasexamined and the importance of selecting an approphiegsttold and
indices for different HWs aspects were addressed. Results reveal the need for careful
consideration of HW indicators. HWSs in the study area behave spatially and temporally
differently at the station level, although common patterns were foithdsame grouping of
stations, with local factors proposed to play an important role.

The geographic behavior of HWs was studied using traditional statistical classification
methods (e.g., equal interval) to map different aspects of HWSs. Less subjedtioelsne.g.,
clustering analysis) could be used to provide further insights. Cluster analysis would help to
better understand the spatial and temporal characteristics of HWs across a region. Understanding
the spatial differences would not only help to gguae the geographic pattern(s) of change, but

would also help in speculation about some of the possible factors that may have an important
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influence on changes in extreme temperature and HWs such as topography, local water bodies,
urbanization and surfa@®ver/vegetation. This local knowledge also would provide insights into
how spatial factors (e.g., topography and continentality) could relate to or influence the
atmospheric circulation at different scales (e.g., miammmesaoscale$ that induce extrae
temperatures (Kenawy et al., 2013).

Analyses of HWs were performed at the station level to unravel the intricacies of place
to-place differences and to provide detailed information. The study area contains several
subclimate types (Almazroui et al., Z)Jand it was thought that stations might show common
patterns within these subclimate zones. However, the behavior of HWs within and among
different subclimate zones was not clear, although some coherent spatial patterns were indicated
with some of the mults. The effects and roles of local factors and atmospheric circulation were
discussed from a theoretical point of view and some suggestions were made. However, the
interplay of regional and local factors is not clear, as some stations showed indieldaaior
(e.g., Bisha (6) andiuraif (8)) and local microclimate studies within Saudi Arabia are rare.

Percentiles were estimated using a decadalwmeow, given the length of the
available data record (3@ears) and to balance between long and shiarate variability. With
the availability of longer and highuality data, different timgindows could be used with
different estimation techniques (e.g., movimigdow). The stability and effects of different
methods in defining percentiles is an impottaspect not only to model extreme temperature
events, but also to better understand changes in climate variability. This methodological
assessment was beyond the scope of this work and further studies are needed. Davis et al.
(2003) showed that hedtedth outcomes in many of U.S. citibaveexperienced decadal

variabilities and changes (decreases) and, thus, acclimatization processes and population
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vulnerability may vary through time and space. Modeling and counting for acclimatization as a
factor forHWs involves a substantial level of uncertainty and different methasiseen
developed (Sheridan et al., 2012). Accordingly, it is difficult to detect the time when populations
get adapted/acclimatized (behaviorally and physiologically) to a changmateli This
uncertainty emerges from tinenlinear relationship between adaptation and hetdted effects
on other factors such ascioeconomicconditions and demographic variables. It has been
suggestedhat nonstationary modelare more suitable favaluating the outcome of adaptation
to a changing climate (Gosling et al., 2009).

Although several stations showed no significant temporal changes in soneg éf\h
characteristics (Figure 2.),4it does not imply that climate change is not takinglat these
stations. In fact, significant changes were detected in the-tgippercentiles at most the
studied stations (Figure 3.4Consequently, results should be viewed comprehensively
considering that our HW definition lessens (by detrending)mssible effects related to an
overall warming or cooling trend. As we have discussed, climate change is usually accompanied
by changes in the temperature trend and its distribution characteristics. Thus, any response would
require fundamental changedéptation atifferentscales (locally, nationally, and globally)
given the complexity and sensitivity of the changing climate. One of the main implications of
this work is the importance of considering acclimatization in addressing the outcomes of climate
change as several studies halilewedthe importance of these factors with respect to HWs (refer

to Sheridan et al. (2012), Gosling et al. (2009), and Davis et al.l{p@ifr3additional reviews).
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Chapter3-Tr ends and spati al pattern

hot temperatures in Saudi

Abstract

Temporaltrends and spatial patterns of six warm season {§&ptember) hot
temperature indicators (WSHTIs) were developed and explored for Saudi Arabia. The indicators
focus on the frequency and intensity of hot days and nights, and heat waves. Systematic upward
trends in maximum and minimum temperatures were found at most of the stations, suggesting
ongoing change in the climatology of the uppeit of the frequency distribution. Taking into
the account the observed ef f ieate, kottenfperaturei mat e
events were defined using a monthly and decadal;sensitive approach. Indicators of event
frequency are count data; thus, different Poisson models were used for temporal analysis.

Further, a novel method of tirgeries clusteringvas introduced to recognize spatio
temporal patterns of WSHTIs. Different patterns were observed over time and space not only
across stations but also among WSHTIs. The overall results suggest that not only local and
regional factors, such as elevatitatjtude, and distance from a large body of water, but also
largescale factors such as atmospheric circulation patterns are likely responsible for the

observed temporal and spatial patterns.
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3.1 Introduction

Understandinghe character of change in extreme hot temperature events is of critical

importance for citizens of the Middle East (Pal and Eltahir 2015). An upward trend is the
dominant pattern for thermal aspects of the climate and this warming has been accompanied by
positive shift for both minimum (Tmin) and maximum (Tmax) temperatures for the Arabian
Peninsula, particularly, Saudi Arabia (Zhang et al., 2005; AlSarmi and Washington, 2011, 2013;
Almazroui et al., 2012&012D; Almazroui et al., 2013; Almazroui et,a22014; Rehman and Al
Hadhrami, 2012; Athar, 2014; Donat et al., 2014; Islam et al., 2015). Studies of the area
document that current hot temperature events (i.e., hot days, hot nights, and heat waves (HWs))
reached maximum frequencies during the lastdevades, suggesting that such events may
continue to become more common within the suite of local climate conditions. Almazroui et al.
(2014) identified changes in the mean and variance in the distribution of air temperature over
Saudi Arabia, which correended with decreases in the number of cold events and increases in
the number of warm events. Almazroui et al. (2012b) also found that the warming/upward slope
of the mean temperature trend is steeper for the summer season. Hansen and Sato (2016)
reporteda positive shift of 2.4 standard deviations in the distribution of summer temperature
anomalies in the Mediterranean and the Middle East region compared to an increase of 0.87°C in
winter. This shift has resulted in a larger annual variability and a exteeded summer season.
By the end of the century, the extreme warm temperature events of today are projected to
become the norm and new rare extremely hot events will emerge in several places in the Arabian
Gulf States (Pal and Eltahir, 2015).

Similar tothe reported overall global warming trend with steeper rates since the 1990s

(Bajat et al., 2015), the signal of warming of hot temperature events in the region started
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gradually in the 1970s and a steeper upward trend was evident by the 1990s (Zha2g@d)al
Several studies have shown that temperatures have risen across Saudi Arabia, largely during the
latter part of the 20th and early part of the 21st centuries (AlSarmi and Washington, 2011, 2013;
Almazroui et al., 2012a, b; Almazroui et al., 20R&hman and AHadhrami 2012; Athar, 2014,
Islam et al., 2015). From currently available literature, the overall findings are that the region has
experienced substantial warming in mean annual temperature, annual mean Tmax and Tmin, and
annual highest Tmaand Tmin for the last few decades.

Almazroui et al. (2014) compared trend slopes in several climatic extreme indices
between two subperiods, 198D95 and 19962010, at the national level for Saudi Arabia and
found that the latter period had greater upvanges in the extremes and that the changes were
accompanied by positive shifts in the frequency distributions of both Tmax and Tmin. During the
latter period the rate of change in the frequency of warm days doubled whereas the frequency of
warm nights icreased more than ten times. Islam et al. (2015) used similar subperiods and
detected significant changes in the frequency distributions of the average air temperature
anomalies, where summer had the greatest positive shift. From these findings, giidetau
suggest that there has been a change in the overall suite of climate conditions for Saudi Arabia
and that what used to constitute a rare hot temperature event is now more common and will
become increasingly frequent in the future.

Most of the exiing literature about extreme temperature events and their trends for
Saudi Arabia is based on a single set of climate indices, i.e., those developed by the Expert Team
on Climate Change Detection and Indices (ETCCDI). In addition to the identified iongaif
the ETCCDI indices (see Perkins and Alexander, 2013), results found using the indices could be

affected by the observed changes in the mean and variance of the air temperature distribution
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and, unfortunately, little attention has been paid togbtsntial issue. Event duration has been
the dominant metric used for a good deal of the prior work examining HWs in Saudi Arabia and,
as such, the intensity aspect of hot days and hot nights needs to receive more attention.

Previous studies document thia¢ frequency of warm temperature events has increased,
and that warming trends exist for Tmax and Tmin. However, it is highly possible that the upward
trends in the frequency of warm temperature events are more due to the increases in the
incidence of thexceedance using a constant threshold (static/fixed value), above which
extremes are identified, for the period of record. An important implication of warming is the
impact on evolving climatic conditions and related extreme temperatures (Perkins and
Alexander, 2013; Alghamdi and Harrington, 2018). As the climate warms, its temperature
frequency distribution shifts positively and thus new rare warm conditions emerge. Alghamdi
and Harrington (2018) document a rationale and the value of using-adimsiive approach to
examine warm season extreme heat events for Saudi Arabia.

A warming climate is accompanied by large interannual variability (Hansen and Sato,
2016) and a decadal tinveindow can better reflect the influence of mwldar variations. The
rateof warming or cooling could be different among years and months due to effects of external
climate forcing such as ENSO or meygar droughts. For instance, it has been shown that the
long-term temporal trends of both hot days and HWs in the UnitedsStatiee affected by the
multi-year droughts of 1930s and 1950s (Easterling et al., 2000). It is important to recognize that
shifts in the distribution of mean temperature do not need to be that large to result in a substantial
change in the probability ofppertail events due to the nonlinear relationship between the mean
and the extreme temperatures (Mearns et al., 1984; Katz and Brown, 1992). As an example, the

2003 European HW was very far off from the normal climate digion (Schar et al., 2004).
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For changes in climate extremes to be better understood, knowledge of the change in the
mean climate needs to be supplemented by important changes in the variability and shape of the
frequency distribution since the relationship between changes in meatedinubthose of
climate extremes are not always scaled (Seneviratne et al., 2012). In fact, the overall impacts of
shifts in the average climate are less than those of the increasing climate extremes (Whan et al.,
2015) and it has been established thattsieom variations in extreme weather conditions can
rapidly impact terrestrial ecosystem processes (Suseela et al., 201 2el&teat mortalities, for
instance, have been shown to increase with higher variability in warm season temperatures due
to sudde changes in temperature (e.g., Braga et al., 2001; M&inadn and Schwartz, 2007).

Dominance of extreme events/values during warmer months and the related impact on
selecting extreme value thresholds (e.g., tHe@dcentiles) for climatic analysi®eds to
receive more attention. By estimating percentiles over annual or seasonal time scales, warmer
(cooler) months will dominate the estimation of the ugpér(lowertail) percentiles (Robeson,
2004). Consequently, hot events that occur early oifdtee warm season months are less
likely to be examined whereas warmer month events would dominate the analysis (Coelho et al.,
2008).A time-sensitive approach defining threshold values on a monthly basis would enable
documentation of the early and |sason extreme heat events. Realistic estimates of changes in
hot temperature events will help future planning efforts such as in managing changing demands
for electricity and water resources in an arid environment

Previous studies of Saudi Arabia hdgeused on temporal change using common
climatic indices, with less attention given to the geography of extreme temperature events (i.e.,
spatial patterns). These efforts have not addressed in detail the effects of local and regional

factors (e.g., urbanaion and other land cover shifts or a coastal location), and the effects of
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warming on the frequency of climatic extreme events. Identifying the spatial patterns of the
temporal behavior of hot temperature events will help recognize the varying geogratbérnos

and influences of the local climate and will also help in the speculation and formulation of
hypotheses about possible factors that have important control on the changes such as topography,
distance from water bodies, and vegetation/land cowethé&r identifying places/regions of

similar warm/hot temperature behavior is beneficial for practical purposes including developing
heatwarning systems and other polioyiented planning.

Building on the previous research, the objectives of this stiediog1) detect temporal
changes in the frequency and intensity in six warm season hot temperature indicators (WSHTIs)
using a timesensitive approach to account for the ongoing regional warming trend and (2)
recognize the spatiotemporal character of waeason hot thermal events with an emphasis on

event behavior through time and space using a$ienes clustering approach

3.2 Research Design and Methods

3.2.1 Study area and data

Saudi Arabia liebetween the Red Sea and Arabian Gulf on the Arabian Peminsul
(Figure3.1). Using the Koppen climate classification, the study area has two main climate types.
A large part of the study area is subtropical desert (BWh), which is characterized by hot and arid
conditions. The southwestern mountain areasaogropical steppe (BSh), which is
characterized by hot and searid climate conditions. Accordingly, most of the landscape is
barren except for portions of the southwestern mountains. The latter area is characterized by high
elevation with complex topogphy, moderate temperatures, a bit more precipitation and
vegetation coverHigure3.1). Topography and the geographical location with respect to the

Hadley circulation are the primary climate controls. Sinking air associated with the poleward

50



margin of tle Hadley circulation is the dominant mechanism for limiting precipitation in the

area.
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Figure 3.1. A map showing the study area and weather stations along with their names and IDs.
Source: adapted fromKing Abdulaziz City for Science and Technology (KACST) and the GAMEP.
* station was not included in this study.

Warm season hot temperature events were analyzed, for the perie2QI9Btor 25
meteorological stations using daily Tmax and Tmin data pravigethe Saudi General
Authority for Meteorology and Environmental Protection (GAMEP). The selected weather
stations provide suitable spatial and temporal coverage, a homogeneous time series (AlSarmi and
Washington, 2013; Almazroui et al., 2014), and aeeaable longerm dataset for spatial and

temporal analyses. This study is focused on the behaviors of warm season hot temperature events
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through space and time; thus the period of investigation begins in 1985, as six weather stations
began recording in Bb.

Although a few stations in Saudi Arabia began recording observations earlier, direct
temporal comparisons would be less efficient and some of these stations have issues in their
metadata including missing data, and a limited time span prior to 1988doby some of their
records. The study area is covered by 27 stations with more than 30 years of data, however, two
were excluded in this study as those records have relatively large periods of missing data, 2011
2013 for Riyadh Old and 8%-1990 for Wali-AldawasserFigure3.1). Quality control (QC)
procedures developed by Alghamdi and Harrington (2018) were applied to maximize the
accuracy of the data used in the analysis. Application of the QC procedures improved the overall
dataquality by 35%, on aerage, at the station level (refer to Alghamdi and Harrington (2018)
for details on the used QC procedures).

3.2.2 WSHTIs for subtropical arid climates under changing climateeffects

Although Alghamdi and Harrington (2018) documents the rationale and the efalue
using a timesensitive approach to examine warm season extreme heat events, some relevant
information will be discussed briefly in this section to guide the process of WSHTIs
development and to emphasize some important aspects. Given the naturetefsgasanality
in study area (i.e., long warm season (Ali, 1994; Alkolibi, 1995) and the pronounced magnitudes
and effects of early hot temperature events ontedated morbidity and mortality (Hajat et al.,
2002; Nasrallah et al., 2004), the warm seasas defined for this study as May through
September. The count statistics are limited by the number of days from*NtaBaptember
30" (154 days). Six WSHTIs (warm season hot temperatures indicators) were developed and

explored (Tabl&.1). To detecthanges in these indicators of rare hot temperature events and to
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account for different warming or cooling trends and variabilities among years and months
(Figure 32), percentile thresholds were estimatisthg a timesensitive, decadéandon a
monthby-month basisapproact{Robeson, 2004; Alghamdi and Harrington, 2018).

Table 3.1. The definition of warm season hot temperature indicators (WSHTIs). Percentile values
were estimated using a decadalrtie-window on a month-by-month basis. Tmean, Tmax, and Tmin
are mean, maximum, and minimum temperatures respectively.

Indicators Name Definition Units

Annual count of days wh

HD Hotdays percentile of Tmax

Days
For selectedtays that exceed the 9percentilethe
HDI Hot day intensity averagdlifference between the daily Tmax and montl (A
90th percentile of Tmax

HN Hot nights Annual counft of_nlghts v Nights
percentile of Tmin

Hot niaht For selectedtays that exceed the 9percentilethe
HNI . 9 averagdlifference between the daily Tmin and montt G

intensity . .

90th percentile of Tmin
Annual count of events with two or more consecutiv
Heat wave

HWE events days with a daily Tmaxaridimi n O mont Events
percentile of the Tmax and 85th percentile of Tmin

For heat wave days, average of difference between
Heat wavesvent

HWEI . ; hottest day Tmean and monthly 88th percentile of G
intensity Tmean

The choice of a timsensitive analysis minimizes the role of the hottest months in
determining the relevant threshold values for both May and September. Thietigitve
approach (monthly and decadal) has been established to be more suitablepimblaility
climate events that are impacted by a changing climate (e.g., Robeson,ZiBa2004;
Robeson and Doty, 2005; Alghamdi and Harrington, 2018). The R8 method was used to estimate
percentile thresholds as it delivers unbiased estimates anterena distribution assumptions

(Hyndman and Fan, 1996).
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Figure 3.2. Distributions of the probability density function of daily temperatures at Gizan (25) for
three decades using summer months (Jupugust) Tmean, Tmax, and Tmin (upper) and for 30
years summer season months Tmean, Tmax and Tmin (bottom). Gizan was selected as it
exemplifies different temporal and shape changes found for many of the stations.

To allow direct comparison among the 25 statithmeugh time and space, a relative
indicators approach (i.e., use of the percentile technique for the data from each station) was
applied for the WSHTIs. For the first 4 WSHTIs (hot days and nights and their intensity indices),
the 9" percentile was uskas the threshold. The 90th percentile was selected as it is commonly
used for defining hot days and nights and it has been shown to optimize the balance of extreme
versus other temperature events (Perkins and Alexander, 2013). However, for HW indiées (HW
and HWEI) the percentile thresholds were reduced, since Tmin was built into both indicators.
During periods with hot days, lower nighttime temperatures become necessary to allow for a

period of relief by reducing the cumulative heat stress impact onienga. Given the nature of
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radiational cooling in an arid climate and the tendency of Tmin to drop considerably (Oke et al.,
1998) and the limited nighttime summer stress relief within such an arid climate type; the 85th
percentile (i.e., warm nights) waslected as the Tmin threshold for defining a HW event. For
HW event intensity (HWEI), the 88th percentile of mean temperature (Tmean) was used to
incorporate both Tmax and Tmin into the calculation. Since both Tmax and Tmin are used to
define a HW, interity of a HW was assessed by the Tmean of the hottest day, the peak of the
HW (e.g., Perkins and Alexander, 2013; Alghamdi and Harrington, 2018). The 88th percent
threshold could be critical for several sectors such as agricultural practices and energy
gereration.

3.2.3 Temporal trends analysis

Commonstatistical approaches for trend detection of climatic extreme indices are: rank
based tests for significance testing (e.g., M&wendall and Spearman Rank Correlation) and
slopebased tests for estimating the ratehanges (e.g., Least Squares Linear Regression and
Sends Sl ope estimator) . |l ndi cators of intensi
temperature values that can be rank ordered and thusthekWamrmd al | and Sends S
were used, since thegquire no distribution related assumptions. However, the frequency of
climatic extreme event indicators are count data (i.e., HD, HN and HWE) and thusewent
time series techniques are most suitable (Ryden, 2016; Alghamdi and Harrington, 2018).

In madeling evenicount data, the occurrences of events are rare and commonly assumed
to result from a Poisson process or density (Cameron and Trivedi, 1998; Chatterjee and
Simonoff, 2013). Frequency of extreme climate events are count variables that caavenly h
nortnegative values (e.g., Alghamdi and Harrington, 2018); accordingly, use of a linear

regression model is not appropriate as negative estimated mean responses are not possible
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(Chatterjee and Simonoff, 2013). Further, the Poisson regression mditbsamnetwo critical
assumptions that are fundamentally inline with the nature of extreme temperature events. The
method assumes that the occurrences of events are independent and random. Unlike a linear
regression model, a count regression model proldge coefficients of the mean relative
change (not the absolute change) in the expected response/occurrence associated with a unit
change in the predictor variable.

By definition, extreme climate events are rare and thus variability in their coumghlig h
expected, which usually results in overdispersion (i.e., variance is greater than the mean) and
withzerei nf | ati on (an excess number of zeros or
regression model assumes that the mean and variance are equixa)eguidispersion) and
uses a maximurhikelihood technique to estimate the Poisson mean parameter. Several
techniques have been developed to correct for overdispersion, with the common approach being
a Negative Binomial Estimator (Brandt et al., 2Q@@hich also allows the presence of an excess
number of zeros to be addressed by using a-Kdiated Negative binomial model (Chatterjee
and Simonoff, 2013; Brandt et al., 2000). Tak2 presents the statistical frameworks used in
this study to estimattemporal trends in HD, HN and HWE indicators. To select and compare
model s, the Vuongbs test (Vuong, 1989) was

implementation, refer to Chatterjee and Simonoff (2013).

Table 3.2. Used framework for trend analysisof WD, WN, and HWE indicators. Modified after
Yang et al.(2015).

Over-dispersion Zero-inflation Model
No No Poisson regression
Yes No Negative Bnomial regression
No Yes Zero-inflated Poissomegression
Yes Yes Zero-inflation negative binomial regression
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3.2.4 Spatial and temporal pattern recognition

The aimof this research component is to provide insight into how hot temperature events
at the 25 stations behave through time and space. In other words, were there similarities among
the time series for the stations? And if so, what were the spatial patteengiuBstudies have
commonly used traditional statistical classification methods (e.g., equal interval and standard
deviation) to map the temporal behaviors of climatic extreme events. These methods are one
value classification means; that is, station$wsitnilar temporal statistics (e.g., average
frequency or intensity) are grouped together. However, stations within groups do not necessarily
behave similarly in time (i.e., across the 30 individual years).

Given the subjectivity in the use of such methadd the observed complexity of the HW
events (e.g., Alghamdi and Harrington, 2018), less subjective and more advanced pattern
recognition techniques are required. To explore the similarity and to detect common patterns in
time, a timeseries clusteringl(SC) approach was applied. TSC aims to extract useful
information to help recognize patterns and formulate hypotheses. Different TSC methods are
available and a choice is based on the goal of the analysis. In clustering climate data, the
hierarchical aveige-linkage (HAL) approach is commonly suggested when the goal is to
recognize homogenous regions/stations (Robeson, 2004; Robeson and Doty, 2005). The method
is among those commonly used in TSC particularly for short and smalséres datasets
(Aghaboorgi et al., 2015). A primary goal of the spatial analysis in this study is to identify
stations with similar timeeries (homogeneous temporal behaviors) and thus, the HAL method
was applied as it maximizes cluster homogeneity by minimizing (maximiziniginveluster

(betweenrcluster) variance (Unal et al., 2003).
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One of the critical steps in TSC is the selection of similarity/dissimilarity measures.
Different measurements are available and the choice is based on the objective of the analysis
(Aghabozorget al., 2015; Liao, 2005). When the objective is to identify regions/stations with
similar temporal patterns in time or shape, Euclidean distance or dynamic time warping (DTW)
methods are recommended (Aghabozorgi et al., 2015). This approach, whiatmsotafohe
work (i.e., station level) in this study, is usually referred to as shaped clustering that
operates on the local patterns (Aghabozorgi et al., 2015). The Euclidean distance method is more
suitable in TSC compared to DTW, particularly witftost or moderatéength timeseries with
equal length and when the similarity in time is more important (i.e., the occurrence of events)
(Wang et al. 2006; Aghabozorgi et al., 2015). Refer to Aghabozorgi et al. (2015) and Liao (2005)
for further review andeferences on TSC and statistical distance measures.

To find reasonable grouping solutions and an appropriate number of clusters, three
widely used and recommended cluster validity indices were used: Silhouette width, Dunn, and
Calinski Harabasz (CH) (Lal et al., 2017). For theory and mathematical terms, refer to Lord et
al. (2017). Higher values are the goal in all the validity indices. Thus, they can help find a
suitable solution that provides higher separation between clusters and more similairity with
clusters. To evaluate the results from determining these indices and for further evaluation, the
averages distances between and within clusters indices were used as well. Use of complementary
validation methods is a highly recommended practice in fqnddasonable grouping solutions
(Handl et al., 2005). Cluster analysis was run for each of the hot temperature indicator time

series.
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3.3 Results and Discussios

3.3.1 Evaluation of trendsin the upper-limits of Tmax and Tmin
Temporalpatterns of the 90tpercentile of Tmax and Tmin determined on a yearly basis
were explored. Trends in these percentile values were selected for evaluation due to possible
unscaled relationship between changes in mean climate and the climate extremes and because
hot temperattes and uppetail variations in Tmax and Tmin are closely coupled (Seneviratne et
al., 2012). Generally, warming trends were detected in thresholds for both Tmax and Tmin
across the warm season months with a few surprising exceptionsg&ig). Positive trends in
annual Tmax and Tmin percentile values were found at most of the stations, with more
pronounced increases for Tmin. These increases in the threshold for a hot temperature event
suggest a change in the shape of the probability distributiorhahd thange in the climatology
of the uppettail conditions has occurred (i.e., rare warm events are getting hotter, and new
norms are emerging). The positive trends at most stations support the methodological decision to
use a decadal rather than peraddecord time window for determining extreme event
thresholds. Thus, using the entireyaar period to estimate the 90th percentile would violate the
role of rarity and would result in miss detecting some possible rare events, particularly for short
high-impact events. This could be a critical issue for stations with inconsistent monthly slopes.
As is expected with station level data, a few individual stations differ from the regional
pattern and six of 25 stations had decreasing trends in some of tmiynimin values with
more pronounced declines during either early or late warm season months. Gizan (25), on the
Red Sea coast, had relatively constant negative trends for Tmax. This suggests the possible
importance of local microclimatic conditions ohanges in extreme events. Although some

stations had either no sign of change or very small changes in‘tipe@@ntile for their Tmaxs
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and Tmins during different months, tirsensitive thresholds are still advantageous to account
for possible variabities; given the reported changes in the means and variances (e.g., Almazroui

et al., 2014, Islam et al., 2015; Alghamdi and Harrington, 2018).

] 0.59%  0.61%%% 039%% 0.32%% 050%%% (3§F%*

]. 2 f

51026 000 000 000 011 0.09 {033 033+  0.33%  025%F  0.61%F% 0.20%

34 029% 022+  0.52%%  036%  0.20%%  036%% || 0.40+ 040  043% 023 0.45%% (.33

44 007  0.52%  0.47F  040% 009  029% |, 052+ 041F  0.67FF 0.50% 011 0.48%%

5

61 B I 0.60%%% (.GR%*% (,60%*%%

7 0.58% | | 0.67%  0.67%% 0.80%% 0.73%%% (.63%% 0.67%%

8- 0.61%%% | 1043 0.00 041  0.00 000  0.00

N 0.68%%% | | 014 000 057+ 014 019 020 [("Clyr?)

[
=

044+ | ] 033* 043 023+  0.00 033  027% |1-5
1.0

11 057+ 042+ 0.57*

. 0.5

1218 _ e oo [EERRY -

13+ 0.53%%% | | i 0.19  0.55%  0.00 :

14 050+  0.44%  0.50%  0.36% l A3
| SN -1.0

154 0835

161 0.07

171 - “ {0.25 k 000  0.11

181 0.7 047+  0.50%

19+ 0.24 0.40%*

L 0T1EE T3

20 :0_67** 0.GR#F**
214 0.13 0.00  0.38%% | .0, 0 X 39+ 031 042%
224 0.46%  0.59% 025 032% |07 047 021 021 -0.07
234 0.00 f0.52% | * 11000 067+ 000 027+ 000  0.00
244 0.25 : {0705 078% ' 036 057
254 064555 (G2 (1,53 % 046x*% 0.61%%% 058%%% || 000 0274 025 014

May June July Aug Sep Warm May June July Aug Sep Warm

Season Season

Figure 3.3. Heatmaps of decadabased temporal trends in Tmin(left) and Tmax (right) 90th
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It is also clear from Figre 3.3that the magnitudes of slopes were different among warm
season months. Months were not only under different trend magnitudes but also havd differe
slope directions (i.e., positive or negative). Thus, use of a seasonal time scale (rather than

monthly) will hide differences evident in individual monthly data. At Guriat (16), for example, if
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the 99" percentile were estimated on a warm seasonal, aigvents during months with

upward trends would be over detected and less detected during months with downward trends.
Downward trends largely suggest lower probability and intensity of hot temperature events but
do not indicate an absence of extremengs.

From Figure3.3 it is also clear that using a single atmospheric factor (e.g., just Tmax)
would omit important aspects of the climatology of HWSs, given the differences in the heatmap
patterns for Tmax and Tmin. At a monthly scale, 59.2% of trendimin werehigher than those
of Tmax, whereas 35.2% of Tmax trends were higher than those of Tmin. This suggests that any
possible changes in the nature of a HWE at 59.2% of the studied stations are expected to be
accompanied by more hazardous nighttimativer conditions (i.e., fewer periods of stress
relief). At the 0.001 level of significance, 16 stations had significant positive trends in their Tmin
90th percentile, whereas only 9 stations had significant positive trends in Tmax 90th percentile.
From trese observations, it can be concluded that the impact of climate change on hot weather
events was more pronounced at night for more of the stations in Saudi Arabia.

At the monthly scale, significant warming trends at the 0.001 level of significance were
more frequent during September in the Tmax 90th percentile and during June for the Tmin 90th
percentile. At the station level, Najran (5) had the highest significance level of an upward trend
for Tmax 90th percentile in all months and for the entire waas@efollowed by Gassim (12).

For the Tmin 90th percentile, Abha (1) and Gizan (25), which are both in the southwest part of
the Kingdom but at very different elevations, had the highest significance level of upward trends
across all months and for the ie@twarm season. Data analysis forJaluf (11) in the north also

suggests a strong upward signal for Tmin, especially in June and July. These examples indicate
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the importance of using both Tmax and Tim in studying HWs and the important role of local
compkexity.
3.3.2 Temporal trends in WSHTIs

In contrast to the analysis done for Sectidh13.results presented herein used a decadal
time window.Yearly totals ohotdays andotnights averaged more than 15 days per year and
ranged considerably across the 3@rgeand among the 25 stations (see Tadlén section
3.3.3).The frequency of HW events was also quite variable in time and space. Warm/hot
temperature events largely result from physical processes at either regional (i.e., atmospheric
circulation) or bcal levels (e.g., urban heat island). Accordingly, an event might be reported by
adjacent stations depending on the spatial coverage of the event and the distance between
stations. Distinguishing among events that occur at multiple stations and physoesses is
beyond the scope of this statistical analysis which was performed at the station level.

Hot days (HDs) and hot nights (HNs) had statistically significant increasing trends only
at two stations (Najran (5) and Gassim (12)) and one stationa(d€28)), respectively (Table
3.3). For both HD and HN, a majority of stations in Saudi Arabia have an upward trend.
Analysis of Hot Day Intensity (HDI) produced a significantly rising trend at one station (Taif
(4)) and a significant downward trend a@8irah (10). Hot Night Intensity (HNI) had only a
significant negative trend at Turaif (8). For the Heat Wave Event (HWE) indicator, four stations
had a significant upward trend (Taif (4), Gassim (12), Guriat (16) and Makkah (19)), while only
two stationghad significant upward trends for Heat Wave Event Intensity (HWEI) (Sharurah
(10) and Makkah (19)). It is worth mentioning that the slope coefficients of HD, HN and HWE
are to be interpreted as one unit of change in the predictor variable (i.e., ye@s)auds to

mean relative change of one % in the expected response variable (i.e., HD, HN and HWE).
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Table 3.3. Decadatbased temporal trends in annual warm season hot temperature indicators

(WSHTIs). ***,*»* *'and + U = 0.001, 0.01, O0.05, 0.1 level o
ID HD (% Days) HDI (°C) HN (%Nights) HNI (°C) HWE (%Event) HWEI (°C)
1 10.60 0.03 10.59 -0.04 7.93 0.00
2 7.38 0.06 9.59 0.01 17.44 0.00
3 1.65 -0.01 9.98 0.06 21.40 0.08
4 18.40 0.08* 11.35 0.00 45.95* 0.00
5 24.66+ -0.03 3.66 -0.09 28.37 0.00
6 7.62 0.00 4.85 -0.07 23.83 0.00
7 3.15 -0.03 -1.65 0.04 -11.08 0.00
8 5.47 0.02 9.25 -0.21* 16.53 0.21
9 9.74 0.01 2.01 -0.08 14.26 0.24
10 6.63 -0.06+ 2.72 -0.09 20.69 0.21*
11 -6.72 0.09 151 -0.13 -3.38 -0.18
12 30.18* -0.07 7.32 -0.04 30.62* 0.02
13 6.97 0.04 -3.41 0.07 -4.58 0.00
14 -0.06 -0.03 0.34 -0.01 -0.59 0.00
15 -3.36 -0.04 -2.39 0.12 7.55 0.28
16 -3.64 0.07 0.85 -0.02 25.51+ 0.32
17 -7.62 0.05 -3.26 0.10 0.50 0.23
18 5.52 -0.07 -4.08 0.03 3.31 -0.26
19 2.58 0.06 9.56 0.00 59.80** 0.85***
20 6.19 0.05 -0.20 0.01 20.35 0.00
21 4.20 0.19 2.93 0.01 -2.98 -0.09
22 3.05 -0.10 -0.15 -0.09 -47.34 0.00
23 3.68 0.01 8.03+ 0.04 17.44 0.00+
24 9.48 0.02 5.47 0.03 14.53 0.00
25 -0.42 0.00 4.70 -0.04 8.95 0.00

Different slope patterns (i.e., both upward and downward) were found for all the
indicators and few stations had statistically significant trends. In both HD and HWE indicators,
24% of stations had a negative slope value and 28% of the stations had\erstgae for the
HN indicator. For their corresponding intensity indicators, 36%, 12% and 48% of stations had
negative slopes, respectively. However, it is important to emphasize that the lack of significant
slope values does not mean there are no chéregets. Instead the analysis indicates the

absence of enough evidence to conclude statistically significant changes/trends, since
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significance statistics do not provide real quantitative confidence about the certainty of patterns
(Ambaum, 2010).

Use of adecadal window to determine thresholds for temporal trends has an impact on
data interpretation. Upward and downward trends identified here suggest that there were factors
other than what a changing average climate might have contributed to the obkangebscin a
relatively similar arid environment, Balling et al. (1990) showed that the warming trend in
summer mean temperatures in Phoenix, Arizona, USA, had contributed more to an increased
frequency of moderate Tmax events than of extreme Tmax eMar®hoenix, a considerable
increase in the incidence of hot night events was observed. Differences could be due to urban
growth impacts or to differences in the nature of changes in the shapes of the Tmax and Tmin
probability distributions (Robeson, 2002Bther factors could also have an influence.

Urbanization has been reported not to provide a substantial contribution to the recent temperature
warming in Saudi Arabia (Almazroui et al., 2013). Other potential contributing factors were
reported to includ changes in precipitation patterns, atmospheric circulation, or dew point
temperature (AlSarmi and Washington, 2011, 2013). However, these factors have both spatial
and seasonal differences, highlighting the importance of interpretation at the local scale

There were no clear and consistent geographic patterns among HWs indicators (HWE
and HWEI) and HD or HN indicators, suggesting that local factors might play more important
roles than largescale factors. Except for station 21, the HWE indicator frejubatl a negative
slope whereas there was only one negative slope for either HD or HN (T3bl€hss could
indicate that HWs at these stations are controlled more by the indicator with a negative slope. At
52% of stations, HD, HN, and HWI had similapjsé directions, suggesting the possibility that

hot days and nights had equal contributions to the frequency of HWESs at these stations. Although
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Arar (15) and Rafha (17) had downward slopes in HD and HN indicators, the related HWE
indicator showed an upwaslope. This curious finding could suggest that the physical processes
that induced a majority of the detected hot days and nights events were different from those that
induced the detected HWs. Most of the negative slopes in both HD and HN indica®est wer
stations located in the northern part of the country suggesting hot events in this region are
controlled by different physical processes or there has been a change in their controlling
processes.
3.3.3 Spatial pattern recognition of WSHTIs

To find the suiable spatial grouping solution for each WSHT], validity indices were
carefully examinedrigure3.4 shows the validity indices for the HD indicator (hot days). The
Silhouette index suggested &l2sters solution as it had the highest value. However, tima D
and CH indices did not support that solution. Dunn index results suggéstexb, 7, 8, 9 or 10
clusters. The ®luster solution was supported by the other indices. For instance, a closer look at
the Dunn and CH indices shows that there are noamnitstimprovements between the 6 and 13
cluster solutions. When the number of clusters increased after 6, each new cluster had only one
station until 1ZXlusters, where the additional new two clusters (12 and 13) had two stations in
each, as shown in tleduster dendrograrigure3.4 This indicates a very low improvement in
between and within cluster distances (i.e., separation and homogeneity) after 6. clusters

Such a characteristic of clustering indexes was present for all the other WSHTIs, and it
was maee pronounced in the intensity indicators. This could be due wistence measurssed
and/orthe classifier, oithe climatology of the study area and the selected stations. In a quick
exploration, the Kendall correlation was used as a measaimitdrity/dissimilarity and a

similar case was still present for the intensity indicators. Thugjuster solution was selected
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for the HD indicator because it optimizes between generalization and individual station details. A

similar procedure was flowed to find suitable solutions for the other WSHTIs.
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Figure 3.4. Validity indices for the HD indicator (left) and cluster dendrogram (right) along with
stations IDs.

The spatiotemporal patterns of WSH®lger the 36year period using a timgensitive
approach are displayed in kg 3.5. The general spatial patterasedifferent betweeithe
frequency and intensity of each indicator, which may suggest that the leading factors for each
WSHTI are differentExcept for a few stations, the northern part of Saudi Arabia showed similar
HD and HN spatial behavior. The large areal coverage of cluster 4 in both indicators suggests

that the frequency of hot days and nights were more related tesleatgefactors (&., synoptic
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atmospheric circulation patterns).-Ahsa (20), Wejh (21), Dhahran (22) and Yenbo (24)

behaved differently in their HD and HN indicators, highlighting the possible effects of a nearby
water body, which may have differing impacts during thg a@nd night. Differences could be

due to changes in wind pattern or the effects of other local factors (e.g., urban heat island). The
corresponding intensity indicators (HDI and HNI) showed different spatial patterns. Thus, local
factors could be more ingptant in determining the event intensities. The effects and type of

local factors may differ from daytime to nighttime, as in the case of Wejh (21) and Dhahran (22).
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Figure 3.5. Maps showing the clusterimg of stations of WSHTIs. For stations names refer to Figure
3.1

Stations in the southwestern part of Saudi Arabia showed relatively irregular cluster
patterns for HN and HD (Figure 3.5). However, their corresponding intensity indicators, HDI
and HNI, tended to cluster together. This region has higher elevations wighesomountain
topography and more dense vegetation cover with higher relative humidity, and it is highly likely

that these factors have different roles for each WSHTI aspect (frequency v. intensity). Although
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stations in this region and several statiaosifthe central part of the Kingdom were classified

into similar HDI clusters, the cluster dendrograms showed these stations were not exactly similar
in their temporal behaviors, suggesting differences in local factors. Similarly, HWE and HWEI
indicators poduced different spatial patterns. A large portion of stations in the HWE analysis

was classified into cluster 1 and they are coastal and high elevated stations. This could indicate
that relatively moist air is a major factor.

Although Al-Baha (3) and Téi4) are at higher elevation, they were classified into a
different cluster (cluster 2) with two internal stations (Sharurah (10) adoul(11)), where
other microclimate factors could be more important. These two highland stations had higher
annual mans and standard deviations compared to the other stations at high elevations.
Interestingly, the HWEI indicator showed relatively similar spatial clustering patterns to those of
the HDI indicator. Such a similarity could suggest that HW intensities pattezre related to
the pattern of hot days. Throughout all the 6 indicators, few stations were classified
independently, where they were found to have distinct patterns of either frequency or intensity
compared to their neighboring stations. This is inpsupof the technique employed for
spatiotemporal analysis.

To summarize the overall spatiotemporal patterns of all the 6 WSHTIs, one can use a
dimensionality reduction technique (e.g., principal component analysis). However, two possible
methods were pposed for simple and straight forward analyses (i.e., interpretations). Since the
hierarchical averagknkage (HAL) method uses Euclidian distance to calculate
similarity/dissimilarity among objects (i.e., tinseries of stations) for each indicator, the
resultant measurements could be used to epito

possible method is to average the calculated Euclidian distances among stations of all 6
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indicators and use that average as the similarity/dissimilarity input téugtering algorithm
(i.e., HAL). This measurement could be understood as the mean indicators' distances (MID),
where station cluster membership is determined directly based on their overall memberships
according to their individual distances for each WSHHe second possible method is to
standardize and average WSHTIs for each station and use that average statistic to calculate the
overall Euclidian distance among stations. Then the resulting distance is used as an input to the
clustering algorithm, whicbhan be understood as the distance of mean standardized indicators
(DMSI ) . Here, the overall Euclidian distance
both methods, all indicators are standardized, zero mean and unit variance, and aeel weight
equally in the cluster analysis.

Using similar validation indices and procedures as inf€8.4, 6 and &lusters
solutions were selected for DMSI and MID, respectively{Fe@.6). Arar (15), Makkah (19),
Dhahran (22), Jeddah (23), and Gizan (25)ewstassified differently by the two distance
methods. To evaluate and measure the cluster goodness/degree of fit of both classifications, the
cophenetic correlation coefficient (Sokal and Rohlf, 1962) was calculated for each hierarchical
classification tee. The MID classification had a higher coefficient value of 0.74 compared with
t he DMSI <c¢lassification method (0.68). Furthe
and their corresponding cluster averages were calculated for each WSHTI listsatce
method (Figire3.7). The MID solution tended to have higher median values and a lower range
of correlations. Therefore, the MID solution (Erg 3.6B) was selected to summarize and
describe the overall spatiotemporal patterns of WSHTSs in ty stea.

Overall clustering of the spatiotemporal behaviors of all WSHTIu(Eig.6B)

suggested three large clusters/regions (1, 2 and 3) that showed coherent geographical patterns
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(Table3.4). In linking the results in Fige 3.6B with Table3.4, Table3.5 summarizes the main
characteristics of WSHTI per cluster. Cluster 1 includes stations that are located in highland
areas (southwest) and had higher HD frequency and variability and fewer intense events. Stations
within clusters 2 and 3 are in dryer ¢lnand were characterized by high HWE frequencies and
higher intensities. Stations in Cluster 4 had low HW and HD frequency and variability,
respectively. Clusters-8 are singlestation clusters, and they are located along the Red Sea,
highlighting the inportance of local factors, such as more moisture and a sea breeze. However,

WSHTIs showed differences among these clusters suggesting variation in the effects of local

factors.
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Figure 3.6. Clustering stations using Distance of Mean Standardized Indicators (DMSI), A and
Mean I ndicatorsd Distances (MI D), B. Land cover d
al. (2014). For statons names refer to Figure 3.1.

It is clear that the clusters not only @ifffrom one to another but also from indicator to
indicator. Inverse time and space patterns between event frequency and their intensity were
common for cluster 1 (Tabl&4). The effects of high elevation and vegetation cover could
explain these patterrisr cluster 1 (Figres 3.1 and3.6). Another notable and common statistical

pattern was that clusters with higher annual hot temperature event intensity tended to have higher
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annual variabilities. Frequency aspects showed a relatively similar pattewebeiinconsistent.
Stations within clusters did not experience similar temporal trends within and among WSHTIs
(Table3.3). This could be explained by the nature of the similarity/dissimilarity measure used for
clustering, i.e., Euclidean distance. Thigster measure is based on similarity in time, i.e.,

occurrences, not in shape, i.e., change (Aghabozorgi et al., 2015).
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Figure 3.7. Boxplots of Pearson correlations between each clusterstations andcluster average for

each WSHTI and each distance method. DMSI: Distance of Mean of Standardized Indicators,
MID: Mean Indicators' Distances.
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Table 3.4. Heatmaps of descriptive statistics based on annutatals for the 30-year period 1985

2014.
Average Standard deviation
cumer S F Z F 5 3 EZ |8 % E & % Z
1 1658
2 1707 1697 113 .
3 2043 18.77
1 4 1873 17.97 143
5 192 18.13
6 1733 1697 12 0.29
10 17
7 171 151 [ 10.09 0.27 0.23
12 1.23 | 11.08 0.85
13 18.43 10.52 0.23 078
2 14 17.27 153 0.63 9.94 822 025 033 0.99
15 106 8.34 043041 128
17 953 161 037 031 1.06
18 857 161 039 0.32
17.7 894 932 174 037 0.99
183 17.37 961 16 029 0.80
° 11 1118 8.45 [JORM 0.33 112
16 906 811 172 045
19  16.83 18.07 0.87 072 1.20 0.29 1.16
4 20 0.68 0.68 1.01 131 032 0.27
22 0.96 0.79 0.35 025 1.00
6 23 9.62 0.25
7 24 17.73 173

I — e |
Low Moderate High
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Table 3.5. Summary of WSHTs main characteristics of clustering-, *, and +: low, moderate, and

high year-to-year variability, respectively, SID: station ID.

WSHTs main frequency characteristics

Cluster Name Land type
Low Moderate High
. HDI-, HNI*, and HN*, and
1 South Highland HWEI- HWE* HD+
HD*, HDI*, and HNI+, HWE+,
2 NOI’th—EaSt HN' IIHD*II HWEI*
Interior HWE+, HDI+,
3 North --- HD- andHN* HNI*, and
HWEI+
Highland (SID 19)
. HD-, HN-,
4 Mixed Interior (SID 20) e "HNj-and  HDI*
and Coastal (SID
HWEI+
22)
HDI+, and
- * - [}
5 North-West HD-, andHNI HN-, and HWE HWE+
HWE-, HNI-, HD-, HN+, and
E st and HWEI+ HDI+
Coastal
HN-, HWE?, HDI+ and
7 WestNorth HD- andHNI* HWEI+
HWE-, HDI-,
8 SouthWest HNI-, and HD* HN+
HWEI-

3.4 Summary and Conclusiors

Decent temporal trends and spatial patterns in six hot temperature indicators in Saudi
Arabia were explored for the warm seasons (May through September) e20985The
indicators studied focused on the frequency and intensity of hot days, hot nighté/and@he
definitions of these events were developed for use with a monthly and decaekse tisite/e
approach to accommodate different individual station trends (i.e., warming or cooling) and
variability. Trends in Tmax and Tmin percentiles were analyred monthly time scale to
examine the effects and importance of different time bases for determining the occurrences of

hot temperature events. Further a novel method for$enies clustering was introduced to the
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field of warm/hot temperature event &sis to detect and recognize spatiotemporal patterns of
hot temperature events.

Different patterns were observed over time and space not only across stations, but also
among indicators. Overall, the results suggestdiradpticscale factors such as aispheric
circulation patternandlocal and regional factors, such as elevation, latitude, and distance from a
large body of water are likely responsible fioetemporal and spatial patterns. Decadal and
monthly timesensitive approaches were used towagpany possible general changes or
variations in the Tmax and Tmin probability distributions, however there is a need to use
additional measurements (e.g., variance, kurtosis and skewness) to understand and account for
the differences in the statisticdlaracteristics of thextremetemperature climatology of Saudi
Arabia, particularly for the upper probability events (i.e., high extremes).

As climate warming in the region is accompanied by high-i@gear temperature
variability (e.g., Hansen and Sak016) and changes occur in precipitation, atmospheric
circulation, and dew point patterns (AlSarmi and Washington, 2011, 2013), the statistics of the
upper probability events are highly expected to have notable variabilities if not changes. Extreme
tempeate events are more sensitive to yayear variability, since small changes in the
distribution of mean temperatures could result in substantial changes in the statistical distribution
of upper and lowetails and their corresponding extremes (Meatrad.1984; Katz and Brown,
1992; Schar et al., 2004). This would also raise a challenging question as to whether or not
megaextreme events (e.g., the 2003 European or the 2010 western Russia HWSs) should be
included in defining the mean climates, fromievhthresholds of extremes are determined.

Given the nature of our climate system (sensitivity and nonlinearity) and as climate is

projected to continue to warm with more hot temperature events (e.g., Pal and Eltahir, 2015;
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Mora et al., 2017), one of theaplications of this work is to establish baselines and appropriate
methods for future efforts. This study shows the importance of using definitions that adjust for
changes/variabilities in climate conditions. Adaptation, vulnerability, and future climate

conditions are important for society and among a growing number of research interests. For these
studies to help prepare us for future challenges with climate warming, changes in the features of
climate conditions and possible effects of extraordinaryatknor weather events (e.g., drought

or major HW$ European 2003 HW) should be comprehensively considered and understood.
Hot weather response measures, for instance, have been implemented in several cities and have
resulted in notable reductions in heealiated health outcomes (e.g., Fouillet et al., 2008; Ebi et

al., 2004). Mitigation of heat hazard effects relies on the implementation of effective warning
systems and emergency responses plans (Bao et al., 2015), and requires a good understanding
and detded analyses not only of the adaptation dimension (i.e., the ability to cope with), but also

with the hazard exposure dimension (i.e., hot temperature events).
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Chapter4i Apr el i minary assessment on
sea surfacetékempenaceacatresns for

waves I n Saudi Ar abi a

Abstract

Little information is available about the synoptic patterns and physical factors
contributing to the formation and intensity of heat waves (HWs) in Saudi Arabia. The research
objectives vere to identify the synoptic situations that are relédddW occurrenceto match
different HW aspects (frequency and intensity) to different circulation types$oax@minehe
possible links/associations between HW days and the sea surface tereg&aijranomalies
of closely associated water bodies (i.e., Mediterranean Sea, Black Sea, Caspian Sea, Arabian
Gulf, Arabian Sea, and Red Sea).

Using reanalysis data (198914) three weather/circulation types were detected using
War dds c¢ | usdethar, weathdfypesd and 3 induced 57.5% of HW days and
connected with negative anomalies in sea level pressure with lower heights and warmer
temperatures at the 850 hPa level. Intensification of Indian Summer Monsoon Trough and
Arabian heat lows werleey atmospheric features related to weaihgres 1 and 3Neather
Type 2 induced 42.5% HW days and it was related to positive anomalies at all heights.
Anomalies of SSTs of the Red Sea, Arabian Gulf, Caspian Sea, Black Sea, and Mediterranean
Seawerepostive for both weathelTypes 1 and 3. SSTs anomalies seem to be a more important
factor for HW day intensity. HWs in Saudi Arabia tend to occur during regional warming due to

atmospheric circulation conditions and SST teleconnections
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4.1 Introduction

Theclimate of Saudi Arabia is warming, and extreme temperature events are becoming
more frequent (e.g., Almazroui et al., 2014; Athar, 2014; Donat et al., 2014; Raggaaj, 2017
Alghamdi and Harrington, 2018), as observed by the significant upward trend iedhericy of
extreme temperature events in the last few decades (e.g., AlSarmi and Washington 2011, 2013;
Almazroui et al., 2012a, 2012b; 2014; Rehman anti@dhrami, 2012; Athar, 2014; Donat et
al, 2014; Islam et al., 2015). Climate modeling studies stigjggisthe frequency, intensity, and
duration of heat waves (HWs) are expected to increase as the global and local climate continues
to warm (e.g., Lelieveld et al., 2012; Sharif, 2015; Pal and Eltahir, 2016; Almazroui2&tia),
Changes in precipitatn patterns, atmospheric circulation, dew point temperature, the Southern
Oscillation (ENSO), the North Atlantic Oscillation (NAO), continentality and aridity conditions
are some of possible contributing factors for the warming climate in the region rgAl&aat
Washington, 2011, 2013; Donat et al., 2014; Almazroui et al., 2014; Kenawy et al., 2016).
However, available information is very scarce on the possible effects and the underlying
mechanisms by which these factors contribute to the recent climatgeshand extreme
temperatures for Saudi Arabia.

It has been established in the literature that anomalies in atmospheric circulation, soil
moisture and temperature, and sea surface temperatures (SSTs) are among the major factors
linked to extreme HWSs withespect to their formation and intensity (e.g., Black et al., 2004;
Fischer et al., 2007a, 2007b; Feudale and Shukla, 2011; Perkins, 2015). High pressure synoptic
systems have been reported to be the atmospheric circulation feature most closely associated
with summer HWs at the global scale (Fischer et al., 2007b; Perkins, 2015). However, this may

not be the case for summer HWs in Saudi Arabia, with its subtropical arid climate where thermal
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lows are reported to be the predominant factor controlling the sumtmospheric circulation
across the Arabian Peninsula (Bitan and Saaroni, 1992; Zivet al., 2004; Almazroui, 2006).
Almazroui et al. (2015) showed that cyclonic weather types were the leading circulation
conditions inducing hot days and warm nights onatmeual timescale. Nevertheless, available
detailed information about the synoptic patterns and physical factors contributing to the
formation and intensity of HWs in Saudi Arabia is very scarce

Atmospheric circulation alone has been suggested to npteiktilain the formation and
intensity of HWSs as in the case of the 2003 European HW (e.g., Ferranti and Viterbo, 2006;
Fischer et al., 2007a, 2007b; Gartlarrera et al., 2010; Feudale and Shukla 2011). Positive
feedbacks between land surface temperatndethe atmospheric circulation were suggested to
amplify the 2003 European HW through land surfateosphere interactiasr coupling, low
soil moisture (due to a precipitation deficit during the previous seasons, i.e., winter and spring)
and a warm SSTanomaly (e.g., in the North Atlantic and the Mediterranean) (Ferranti and
Viterbo, 2006; Fischer et al., 2007a, 2007b; Gar#aera et al., 2010; Feudale and Shukla
2011). Surface temperatures are affected by low soil moisture as dryness dé¢loedaisrd
heat flux and increasdise sensible heat flux (Fischer et al., 2007b; Gaktéarera et al., 2010).

The exact contributions of SSTs (global v. local patterns) to HW events (including their
occurrence and intensity) are not entirely agreed uponodibhe ttomplexity of ocean
atmosphere coupling and related teleconnections (Fischer et al., 2007b:HBarera et al.,
2010). However, the general contributions of SSTs to HWs could be summarized as: the warm
SST anomaly heats the lower boundagerof the atmosphere whidhmits the sea surface from
coolingandthe leading circulation condition is intensified (Feudale and Shukla, 2007; Garcia

Herrera et al., 2010). For the 2003 European HW, global SSTs anomalies helped to set up the
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ideal atmospheric circulation while local SSTs contributed more to local HW response (e.g.,
Feudale and Shukla, 2007; Fennessy and Kinter, 2011; Feudale and Shukla, 2011).

The research objectives of this study were to identify the general synoptimsisuiit
cause warm season HW occurrence in Saudi Arebaatchdifferent HW aspects (frequency
and intensity) to different circulation types, andcexaminesome possible links/associations
between HWs and the SST anomalies of nearby large bodiesesf(wa, Mediterranean Sea,

Black Sea, Caspian Sea, Arabian Gulf, Arabian Sea, and Red Sea).

4.2 Research Design and Methods

4.2.1 Study area and data

Duringthe summer season Saudi Arabia is affected by different air masses and pressure
systems (Takahashi ardakawa, 1981; Alkolibi, 1995; Almazroui, 2006). While the
southwestern region is under the influence of maritime Tropical air masses (mT) that migrate
northward from thevesternindian Ocean, the rest of the country is controlled by a continental
Tropicalair Mass (cT) that originates over the central Asia or the African Sahara and thus brings
hot and dry air. The elevation of Saudi Arabia is generally low in the east and gradually increases
toward the more mountainous southwest regiogure 41).

Daily maximum and minimum air temperature data recorded at 25 weather stations
across Saudi Arabidigure 41) over a 30year period (19852014) were used to identify HWSs.
Data sets were obtained from the records of the Saudi General Authority for Meteamdogy
Environmental Protection (GAMEP). Data from 25 weather stations ovge&0period were
selected as they allowed forelativelylong homogeneous time series with fewer gaps of

missing records. Following the procedures described in Alghamdi anchgtarri(2018), data
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guality was assessed and improved B¢ at the station level.
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Figure 4.1. A map showing the study domain (uppetright) and the topography of Saudi Arabia
along with the used weather stions. Source: adapted from King Abdulaziz City for Science and
Technology and GAMEP.

For synoptic analysis, daily values of mean sea level pressure (MSLP), geopotential
heights at 50hPa, 856hPa, and 850Pa temperatures {850) wereobtainedrom the records
of the ERAInterim reanalysis (Dee et al., 2011), at a grid resolution of 0.125°x0.125° latitude
longitude. The ERANterim dataset has been used for synoptic circulation analysis over the
Middle East and it has been reported to be ridiédg., Vries et al., 2013; Almazroui et al.,
2015; Zolina et al., 2017). The area of synoptic circulation analysis encompasses the region
10°Ni 40°N by 10°E 75°E Figure 41), as it provides excellent synoptic resolution to account
for essential circulain systems related to Mediterranean, Sudanttathdian Summer

Monsoon thermal lows. From the ERAterim reanalysis dataset, daily means of SSTs values
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were also obtained for the nearby water bodies including the Red Sea, Arabian Sea, Arabian
Gulf, Caspian Sea, Black Sea, and Mediterranean Sea.
4.2.2 Heat Wavedefinition

Dueto the diversity of impacts, HWs are of interest to diverse stakeholders, including
health researchers, agricultural producers, energy providers, climatologists, and meteorologists
(Smith et al., 2013). There is no single perfect standard method or definition for a HW that works
for all applications (e.g., Perkins and Alexander, 2013; Smith et al., 2013). As discussed in
Alghamdi and Harrington (2018) a HW was defined as a periodlehsit two consecutive days
with a daily maximum temperature equal or higher than the 90th percentile of the monthly
maximum and with a daily minimum temperature equal or higher than the 85th percentile of the
monthly minimum for the decade in question§%9994, 19958004, and 2002014).

A decadal rather than period of record time window was used to determine the monthly
percentile thresholds to account for the regional warming trend. A monthly and decaeal time
dependent approach allows hot temperatuenes to have a better chance of being detected
throughout the warm season since different decades could experience different patterns of
changes. Raggad (20d)suggested that nestationary models are more suitable for analyzing
extreme temperatures ing country. Alghamdi and Harrington (2018) demonstrated the value of
using a timesensitive approach (monthly and decadal timedows) in studying extreme
thermal events in Saudi Arabia due to thegpimg change in the climatology of the upjeit of
the frequency distribution of maximum and minimum temperatures. To explore how station level
HW intensity is responding to different weather types and SST anomalies, the intensities of HW
days were assessed by their temperature departures from their wsom is&@an temperature

climatology.
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4.2.3 Synoptic analysis

A total of 1338 HW days were detected at the 25 stations for the warm stasotise
30-year period (1982014). To eliminate events that could be induced by local factors (e.g.,
urban heat island) ti@er than regional factors (i.e., atmospheric circulation), the synoptic
analysis was restricted to days where a HW was recorded at a minimum of 2 stations. The
criterion of 2stations reduced the number of days to Hgure4.2). A larger criterion (3 n4
stations) could be used, but due to having just 25 stations and to maximize the sample size
(across months and years), thst&ion criterion was selecteBigure4.2). For example, the-4
station criterion resulted in a sum of 322 HW days where twaesyead no HW days (1993 and
1997) and five years had less than two HW days (1986, 1992, 2004, 2009, and 2014). Also,
using the threshold of two stations (as compared with 3 stations) captured most of the HW days
that constitute the onset or the endingsdafylong events. Two groups of stations (IDs: 1, 2, and
4 and 19 and 23) are somewhat questionable for use ofstfagié criterion as they have the
shortest Euclidean distances among the 25 stations. However, most of their HW days (using the
2-stationcriterion) were found to be either the onset or ending day (or with a gap of one day)
associated with long events.

Synopticclimatology analysis involves two general methods: circulatmeanvironment
(C-to-E) and environmenrb-circulation (Eto-C) (Yarral, 1993). The main difference between
these methods is the dependency on the outcome (i.e., the resulting weather events such as
flooding, sand stormand HWSs). In the @o-E approach, the atmospheric flows are classified,
using upper air measurementgpigirculation patterns then an environmeptanomenon (i.e.,
outcome) is analyzed whereasbsso-C, days ofan outcome of atmospheric circulatiare

speified first then the atmosphemabservations of these days are classified (Lee and Sheridan,
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2015. Each approach has its advantages and disadvantages, and the selection is based on the
aims of the investigation (Beck and Philipp, 2010; Lee and Sheridan, 2015; Philipp et al., 2016).
For example, while the-@-E approach provides readily available information that camsbd

for further studies, since all the atmosphéous are classified, the-#-C approach is more

efficient in studying extreme weather events as it provideg@rensights and understanding

about the atmospheric circulatipatternghatproducean extreme evemtccurrence for a

specific area (Lee and Sheridan, 2015).
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Figure 4.2. Annual (A) and monthly (B) heatwave days frequency using different minimum
criterion.

Using an Eto-C approach, the synoptic analysis was applied in two stages including
general synoptic assessment and clustering analyses. General synoptic analysis involved
developing composites andanalies maps for all the 746 HW days to examine the overall
synoptic climatology. Since HWs could result from different daily atmospheric circulation types

(Tomczyk and Bednorz, 2016), and to explore if different HW characteristics (i.e., frequency,
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intensty, and spatial coverage) are related to different atmospheric circulation situations,
clustering analysis was applied to the enviro
(1963) minimum variance classification method was used as it one of gieomomonly
employed techniques not only in classifying atmospheric circulation patterns (e.g., Tomczyk and
Bednorz, 2016; Tomczyk and Sulikowska, 2017), but also in hierarchical agglomerative
clustering as a statisticatlyased technique (Vrac et al., Z00The classification was based on
the gridded pattern of daily MSLP data (1020°N, 10°E 75°E) of the selected HW days,
using Euclidean distance as a measure of similarity/dissimilarity among data objects. Prior
normalization of the daily MSLP datawdso ne as per Estebandés et al
4.2.4 Circulation types, Heat Wavedays frequency, intensity, and SSTs

To explore if different circulation types would provide some insight into the frequency
and intensity characteristics of the 746 HW datythe station level, correlation analysis
(Pearson produghoment) was applied. The analysis was carried out on the anomaly of the
frequency and intensity of each of the identified circulation types and the anomalies of frequency
and intensity of HW dayor each station. The intensity of each of the circulation types was
defined as the mean intensity of its HW day temperature departures from their warm season
(May-September) mean temperature climatology (18854). Similarly, the intensity of a HW
day wa measured by its mean temperature departure from the warm season mean temperature
climatology at station level. Correlation analyses were applied at the annual timescale.

To explore possible links between the selected HW days and the SSTs anomaly patterns
of the selected water bodies, observational and correlation emapygroaches were used to help
establish a baseline for future detailed studies. Correlation analysis (Pearson-praahectt)

was applied on the warm season anomaly of frequency anditgteheach of the identified
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circulation type HW days and the warm season anomaly of corresponding SSTs. All the analyses
were applied on the SST anomalies of HW days, since including previous observations (i.e., few
days or weeks) of the onset of the Hiight not provide essential differences (Boschat et al.,

2016).

4.3 Results

4.3.1 Circulation conditions
4.3.1.1General synoptic conditions

Duringthe warm season, Saudi Arabia is influenced by agogsure system (Rige
4.3A), thelndian Summer Monsoon Trough (ISMT) or Persian Trough (Almazroui, 2006;
Lelieveld et. al, 2016). This trough is a thermal low or heat low that can be distinguished clearly
at the 850 hPa level (Bitan and Saart®®2) (Figire4.3C). Temperatures at 850dRave
higher values centered over the western dr&audi Arabiafigure4.3C). At a higher level
(500 hPa), a subtropical ridge system dominates the areaadBig§A) extending from Africa to
the Arabian Gulf. The overall pattern confirms the figdiof Blake et al. (1983vhere the
heat low over Saudi Arabia exists as a vmeiked layer within the lower levels of the
atmosphere (<~850 hPa). Dry convection and radiation in thesngace mixed layer combined
with the upper level subsidence mosd»~700 hPa) to provide for the necessary conditions for
the heat low to operate during the warm season (Mohalfi et al., 1998).

During HW days, the overall composite pressure and thermal patterns did not change
substantially, but the composite patterhewged features of intensification and spreading to
cover more territory (Figre4.3B, D, E, and F). Associated with a HW day, most of the Arabian
Peninsula is under lower surface pressure than the warm season average, with greater negative

anomalies cented over Red Sea and wesintral Saudi Arabia. The 85(Pa composite showed
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a similar pattern of negative height anomalies with greatest departures over southwestern Saudi
Arabia. At the 500 hPa level, a pattern with two areas of higher heights on trepsa#btridge

was found, one over northwestern Africa and a closed high centered over northwest part of Saudi
Arabia. Thermal anomalies were positive at both the 500 hPa and the 850 hPa levels (Figure

4.3F).
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Figure 4.3. Composite maps for MSLR hPa (A shaded), geopotential height at 56®Pa (A
contour), geopotential height at 850hPa (C shaded) and 850 (C contour) during warm season.
Heat wave days (746 days) composite maps for MSLRPa (B shaded), geaotential height at 500
hPa (B contour), geopotential height at 85thPa (D shaded), 850 (D contour) and their anomalies
(E for MSLP, shaded, and 500hPa, contour, and F for 850 hPa, shaded, and 1850, contour).
Anomalies are departures from 19852014climatology.
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4.3.1.2Clustering

Theinitial synoptic analysis was based on composite maps of 746 HW days, where
individual events could be induced by slightly different atmospheric circulation patterns.
Therefore, the Wardédés clustering method was
Using average distances between and within clusters indices, 3, 4chratie solutions were
suggested. Using the minimum number of clusters criteria (Carvalho et al., t@lbyee
cluster solution (Figure$.4, 4.6, and4.7) was selected. Threeuskers provided a reasonable
balance between minimizing the distances within clusters and maximizing the distances between
clusters. In fact, the composite maps of 4, awtl6ter solutions showed no substantial synoptic

differences from those identifidny 3-cluster solution.
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Figure 4.4. Weather Type 1 composites for MSLP (A shaded and contours for anomaly);
geopotential height at 50€hPa (B shaded and contours for anomaly); geopotential height at 850
hPa (C shaded, contour for anomaly; and 1850 (D shaded and contour for anomaly). Anomalies
are departures from 198% 2014 climatology.

For circulationType 1 (Figire4.4), 301 HWs days (40.3%) were classified into this

cluster and it was more frequent durthg midwarm season (Fige4.5). During HWs related
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to this synoptic weather type (1), most of the Arabian Peninsula was under lower surface
pressure (<999 hPa) than usual for the warm season, with an anonfahPaf situated over the
Arabian Gulf andeastern parts of the Arabian Peninsula. Air mass subsidence helps create the
features at the 500Pa level, where a closed area of higher heights is centered over the west
north part of the Peninsula. Greatest height anomalies were to the noutte F48). The
subtropical ridge over the Mediterranean intensified (by an anomaly of about 10 m) at-the 850
hPa Figure4.4C), with a negative height anomaly at 82a of over 10 m in the ISMrEgion
extending from Iran to most of Saudi Arabia. The negativenahpfor 850hPa heights was
accomparedby higher temperatures centered over Saudi Arabia with a warming anomaly

pattern(Figure 4.4D) extending northward to Eastern Europe.
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Figure 4.5. Monthly frequency of detected weather types during warm season months. Percentages
inside bars are per weather type, that is 9.4%, 70.3%, and 20.3% of type 3 occurred in June, July,
and August.

CirculationType 2 Figure4.6) was comprised of 317 HW days (42.5) and it wastm
frequent during May (48.6% dfype 2 patterns) and September (38.2Ptdure4.5). Type 2 has
a positive MSLP anomaly extending into Saudi Arabia from the north and east. Fhei§bD
anomaly pattern showed a positive anomaly permegratto the Ardian Peninsula from the east

whereas negative heights were centered over the-aasthand nortiwest (<10 m). A ridge with
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higher heights can be clearly seen over the Arabian Gigifife 4.6B). Unlike the pattern for

Type 1, the subtropical ridge at 58@ht over North Africa has shifted south. At the 88%a

height level, most of the study domain was under positive anomalies (ligples 1 and 3)

centered over Iran and Arabian Gulf. Thus, the ISMT is weaker at the lower level (850 hPa) and

temperature anomalies were not very pronounceaygre4.6D).
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Figure 4.6. As in Figure 4.4 but for weather Type 2.
CirculationType 3 (128 HW days or 17.2%) was more frequent during July (70.3% of

type 3 events) andugust (20.3%) Figure4.5). Type 3 has relatively similar anomaly patterns
asType 1, but with a greater magnitude of the anomaliggi(e4.7A). The negative anomalies

in MSLP (<4 hPa) have shifted nortast compared withype 1. The heights at timeid-

tropospheric levels (500 hPa) increased over north (by 10 m) as the African subtropical ridge
shifts slightly to the north and the Arabian subtropical ridge is reduced in size. In the lower levels
(850 hPa), all the study domain was under lower hemydsthe ISMT was more active (kig

4.7C). As a result, temperature at the 3B%a height level had the warmest anomalies among alll

the three typesHgure4.7D).
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Figure 4.7. As in Figure 4.4 but for wedher Type 3.
4.3.2 HeatWavedays frequency, intensity and circulation types

This section explores the question as to whether different circulation types provide some
insights athestation level into the characteristics (frequency and intensity) of the 74ddysV
Correlationcoefficients ranged fror0.22 to 0.67Kigure 48). For HW frequency, circulation
Types 1 and 3 had more significant positive correlations with HW days at most locations except
a few stations on the west coast (Fg48A and C). Circudtion Type 2 was associated with
lower statistical associations and only 5 stations had significant correlationse(BRB). For
HW intensity, circulationTypes 1 and 2 had fewer significant positive associations, compared to
circulationType 3 (Figire4.8D-F).

Correlation coefficients and the variability in their spatial distributions suggest that the
synoptic circulatiorpatterns do not fully explain the patterns of the frequency and intensity of
HW days in Saudi Arabia. This is in agreement with ofirevious studies which have reported
that atmospheric circulation does not usually explain all HW characteristics (Ferranti and

Viterbo, 2006; Fischer et al., 2007a, 2007b; Gakgarera et al., 2010; Feudale and Shukla,
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2011). Low correlation coefficigs here suggest that atmospheric circulation establishes the
required conditions for a HW to form but additional factors, such as soil moisture, atmospheric
humidity, antecedent land surface temperature, or the urban heat island effect, would play
important roles for HW frequency and intensity. AlthouGype 3 had a lower frequency

compared td'ypes 1 and 2, (since it composed of 128 HW days), most of stations showed more
significant associations with this anomaly pattern. In examining the spatial abtiexde
associations, it was found that HW days related to weatyse2 tended to result in greater

spatial coverage (116 stations). Medium spatial coveragel(@stations) was more related to

Typesl and3, respectively.
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Figure 4.8. Correlation coefficients between anomalies of heat wave days frequency-G) and
intensity (D-F) and anomalies of circulation Type 1 (A and D), 2 (B and E), and 3 (C and F). Refer
to Figure 4.1 for station names. ** and * ae statistically significant at the 95% and 90% levels,
respectively.
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4.3.3 Analysis of SST Teleconnections

ForHW events classed in circulatidiypes 1 and 3, all seas showed positive surface

temperature anomalies, except for the Araldan (Figire 49). Amongthe water bodies

analyzed, the Caspian Sea, Black Sea and northern Arabian Gulf had the highest SST warming

anomalies witliTypes 1 and 3. These SST anomaly patterns corresponded to the general spatial

features of 850 hPa temperature anomalies in Dygples 1 and 3 (Figres4.4C and4.7C),

suggesting interaction and some teleconnection with regional warming during HW days. On the

other hand, HW days of circulatidrype 2 were accompanying by warm anomalies only in the

Arabian Sea (0-8.1°C) and negative anomalies in the other nearby s€2as¢-1.5°C). The

highest SSTs warm anomaly-$8C) was found for HW days dfype 3 over the Caspian Sea and

the Black Sea.
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Figure 4.9. SSTs anomalies composites of all heat wave days (upjeit), and circulation Types: 1
(upper-right), 2 (bottom-left), and 3 (bottomright). Anomalies are departures from 19852014
climatology.
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These patterns suggest some possible links between HW events in Saudi Arabia and
nearby SST anomalies. For further exploration, correlation analysis was applied on the warm
season anomaly of frequency and intensity for each of the three HW circulatioanyte
SSTs anomalies. Correlation coefficient values ranged f@oid to 0.42 for event frequency
and from-0.46 to 0.62 for intensity (Tab#l). The frequency anomaly of HW days of weather
Type 1 was linked to theeasurface temperature anomalytbé Black Sea (33%) and the
Caspian Sea (42%) whereas the linksTigoe 3 were only with SSTs anomalies of the Black
Sea (39%). Although the frequency anomalyrgpe 2 HW events had negative correlation
coefficients with all SSTs anomalies, except fa& #&rabian Sea and Red Sea, (as results in
Figure4.9 suggested), no statistically significant correlation was found.

Table 4.1. Correlation coefficients between anomalies of local SSTs and different heat wave days
characteristics for threedetected weather types. ** and * are statistically significant at the 95%
and 90% levels, respectively.

Frequency Intensity

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

Arabian Gulf 0.30 -0.10 0.30 0.51** 0.26 0.45**
Arabian Sea -0.08 0.23 0.28 -0.46** -0.01 0.00

Black Sea 0.33* -0.11 0.39* 0.58** 0.34* 0.51**

Caspian Sea 0.42** -0.08 0.36 0.62** 0.33* 0.29
Mediterranean Sea 0.19 -0.14 0.27 0.44** 0.21 0.47**
Red Sea 0.25 0.09 0.28 0.54** 0.30* 0.38*

For intensity, correlation analysis suggested that the intensity aspect of HW days
responded more to SSTs compared with frequency. The intensity anomaly of HW fggesn
1 and 3 displayed significant associations with all SSTs anomalies except for those for the
Arabian Sea and the Caspian Sea for eventype 3. Interestingly, the intensity of HW days
for type 2 showed significant positive correlations with sea suréampdrature in the Black Sea,

Caspian Sea, and Red Sea
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4.4 Discussion

Clusteranalysis suggested that HW days at two or more stations in Saudi Arabia could be
summarized with three circulation/weather types\feg4.4, 4.6, and4.7). Types 1 and 3 are
similar in their general synoptic conditions and patternsuesyt.4 and4.7), whereType 3
represents an intensification Bype 1. In all the three types, there were two primary surface
pressure systems presented: low pressure over the east ancebgylrg@over the northwest. The
low pressure system is a thermal low that spreads west from India to near the central area of
Saudi Arabia establishing a surface trough of lower pressure (i.e., the ISMT). Dyp@@ the
ISMT intensifies and the region geriences a negative 85®a height anomaly30 m) centered
over the southwest area of the Arabian Peninsula. At 850 hPa, the high temperature anomaly
documents the strength of the thermal low. Type 2, a synoptic pattern more frequent at the
beginning aneénd of the warm season exhibited a different pattern where the ISMT disappears
as the southwest subtropical high (Azores) extends to the southeast, as shown by higher heights
at the 850 hPa pressure level (Figd.6C).

In both synopticlypes 1 and 3wo troughs of lower heights were observed at the 850
hPa level, one over the Arabian Gulf (i.e., ISMT) and one over tHRuBl Al-Khali Desert
(Empty Quarter). The latter is known as a substantial energy source contributing to some major
climate charactestics of surrounding areas; it is commonly referred to as the Arabian heat low
(Blake et al., 1983; Smith 1986a, 1986b; Mohalfi et al., 1998). Smith (1986a) reported that as the
Arabian heat low intensifies, more moisture is transported into its aredy veldiaces sensible
heat transport in the boundary layer. An increase in specific humidity associated with the
Arabian heat low was observed in this study for HW dayBypes 1 and 3 (Fige4.10). Yet, as

distance increases from the center of this heat $ensible heat exchange increases (Smith
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1986a). Such a feature and process can help explain the lower temperatures within the heat low
over the Empty Quarter and the presence of higher temperatures northwest of the heat low for

HW days ofTypes 1 and 8Figure4.10).

z_ 15E 20°E 46°E 60°E 15°E 30°E
‘A sy "W
3_ : ' Tz {Specific humidity anomaly {g/kg™) 3 5 A i
101234568 w
N NASE ¥ ¥ #4 v + -Wind speed-anomaly (mis)- [
o ORI
VAL A AT A SSAIB BN 5 6 ]
T o e N O o
S 4 oy v ARy v
P A A T T N N
A TS
CAr A A A SR B e
o F ok X N NN
P B
e
I A
R Y T N e N B A I S bow -
B e e A 20 B BN N S e i
'i;_‘x\\__x\-\';._‘ \xmﬂf‘--p;\.\‘\'Q{_J\\_L;.':.\,'{. -
Zlw = Ve e RN - I e
8\-«;:;iii'it.-t.\*ix'f\*i\"\a__\-+u\x L R I
“+x:;fiiw_\_\;xttu.:\‘w‘-;._g;-_’x_m‘ t!ii*\i-\_. ‘s
J e N i X I | ir_\_‘ﬁ‘;-.-;‘.{--‘-'x._\"\t‘-a.__,h. P BT 4
g_«’x,x:i ioF f=\|lfw.+,tf\_;-'++'§s- S S PGE K A NS
L S S A e T B | e TRy . W ‘ ;
1= - .o-() P A | "Q -~ i X‘J 3 ‘\
e A A AP == % = ==y
Z|f P = f oA E ww e - - '
T 30°E 45°E 60°E 75E  16°E

Figure 4.10. Specific humidity anomaly composites of circulation Type 1 (A), 2 (B), and 3 (C) and
wind speed anomaly and mean direction composites of circulation Type 1 (D), 2 (E), and 3.(F)
Anomalies are departures from 19862014 climatology.

It is clear from Figre4.10 (D-F) that surface wind speeds did not deviate much from the
mean during HW days over Saudi Arabia, particularlyfigpes 1 and 3. The areas of both heat
lows experienced slight reduction in the wind speed anomaly during HW dayypés 1 and 3
and a positive anomaly during HW dayslgpe 2. It was reported that the surface wind

becomes almost calm when the Arabian heat low reaches its daily maximum intensity (Smith
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1986a). In fact, Mohalfi et al. (1998) disclosed that slow northerly winds reduce air mixing,
allowing the Arabian heat low to intensify.

Based on the findings of Smith (1986a, 1986b) and Mohalfi et al. (1998), the change in
both wind speed and humidity cdube factors explaining the nonappearance of the thermal low
and the circulation conditions @fype 2. During HW days ofype 2 wind speeds were higher
than the warm season average over most of tHeubl Al-Khali Desert. For synopti€ype 2, the
region eyeriences average humidity levels (lig4.10). At the same time, the ISMT recedes
with a shift to the north and most the Arabian Peninsula was under a higher 500 hPa height
anomaly (Figire4.6). The subtropical ridge at 850 hPa intensifies and moves to the southwest
towards the Peninsula, transporting dry and warm air.

The 850 hPa temperature anomaly showed a similar spatial patieqpaa 1 and 3 and a
different pattern for type 2 (Rige4.4,4.6, and4.7). InType 1 and 3, positive anomalies were
over the eastern Mediterranean and the northern Arabian Peninsula and values decreased
southward. Type 2 produced the opposite pattern, with northern areas exhibiting negative
anomalies. Theseafterns can be explained by the lasgale circulation patterns related to
Indian Summer Monsoon (ISM). Whileype 2 was more frequent during the transitional periods
of the ISM seaso(May and September}ypes 1 and 3 were most frequent during peridds o
strong ISMs Figure4.5). It has been shown that when the ISM intensifies (stphrage) the
ascending motions over Mifisia (80100°E) increase and result in greater descending motions
over eastAsia and the eastern Mediterranean down totmugdosphes levels; this subsidence
produces an increase in adiabatic warming (Ziv et al., 2004). In fact, Rodwell and Hoskins
(1996, 2001) showed that the adiabatic subsidence in the North African and eastern

Mediterranean regions are related to the ISM as it eslacRossby wave like response.
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This eastwest oriented atmospheric teleconnection pattern could help explain the
warming SSTs anomalies of Mediterranean Sea, Black Sea, and Caspian Sea during HW days of
circulationTypes 1 and 3, and the cooling anoynédiring HW days of circulatiomype 2. While
the Arabian Sea showed cooler SSTs anomalies during HW dayped 1 and 3, it had warm
SSTs anomalies during HW daysTofpe 2 (Figire4.9). During strong ISM years, the Arabian
Sea usually experiences higlhvend speeds and cooler SSTs compared to years with a weak
monsoon, due to strong upwelling along the Somalia coast (Murtugudde et al., 2007).
Southwesterly winds enhance the coastal upwelling and the spread of cooler water over the
Arabian Sea (Vinayacharan, 2004). As shown in kige4.10, the Arabian Sea had higher wind

speed anomalies ifypes 1 and 3 and a negative wind speed anomallyfoe 2.
4.5 Summary and Conclusions

Atmosphericcirculation patterns and conditions related to HWs at two or matierss in
Saudi Arabia were analyzed using reanalysis data (20&8). Cluster analysis methods were
used to distinguish among different circulation/weather conditions associated with different HWs
and three distinct types were found. The presence darr8limmer Monsoon Trough (ISMT)
was related to two weather typds/pes 1 and 3) and its absence was connected to one weather
type (Type 2). HW days induced by atmospheric conditiongfgres 1 and 3 caused higher
temperatures on average, where the lesguent but strongiype 3 was related to a strong ISMT
and accompanied by an intensification of the Arabian heat low. Further, SSTs anomalies during
the different weather types were mapped and analyzed. HW wésihes 1 and 3 showed
warm SSTs over all dhe selected water bodies except the Arabian Sea, whereas Wegiber
2 showed warm surface temperature only over the Arabian Sea. Generally, the intensity of a HW

day showed a stronger correlation with SSTs anomalies.
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The overall results show the impance of a few points for forecasting and analyzing
HWs in Saudi Arabia. The ISMT and the Arabian heat low are responsible for 57.5% of the
detected HW days over 19@914. The importance of both systems to the climatology of Saudi
Arabia have been statadthe literature and there is a need for more information about their
influences and connections to extreme temperature events in Saudi Arabia. This study provides
some of the first preliminary explorations of synoptic patterns for HWs and should initiate
further research. It seems that HWs in Saudi Arabia tend to occur during regional warming as
suggested by SSTs values particularly over areas to the north. This may be due to increasing
subsidence over the region linked by teleconnection with the asgemdinons over MidAsia
during ISMs (Ziv et al., 2004). Thus, further analysis is needed to address the aspects of the
results that suggest that both the ISM and SSTs of nearby water bodies might help in forecasting
and predicting HWs in Saudi Araba.

It is important, however, to emphasize that the magnitudes of distinctions among the
frequency and intensity of HW days and related atmospheric circulation types and SSTs were not
that large. In most cases, small fractions of the total variance were expliretinding
suggests the importance of other local factors such as soil moisture, humidity, land surface
temperature, and urban heat islands. More work on local microclimatic conditions at weather
stations is needed. Correlation analyses were based dirsamples (each variable was
represented by one annual mean value), where the selected variables did not have a uniform
spatial distribution. Thus, the results of this work should be viewed as a preliminary assessment
and future research should consideing a larger sample (e.g., reanalysis temperature data) and

more advanced analysis methods (e.g., data modeling). Such efforts would not only provide
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insights into how the selected variables (HW days frequency and intensity, atmospheric

circulations, anéSTs) are related, but also into feedbacks and underlying mechanisms.
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Chapter5-Summar yoaoctdu€i ons

This dissertation aimed to advance our understanding of the climatology of heat waves
(HWs) in Saudi Arabia using data for 1985 to 2014. Analyses addressed the frequency, intensity,
and duration characteristics of warm season extreme temperature evestsl iSsues
associated with commonly used indices and methods are addressed and new definitions and
methods help advance specific assessment practices. A new locally relevant eseh8itiee
definition to detect HWs is examinel.HW event is definedsaa period of two or more
consecutive days (i.e., at least 48 hours) with a daily maximum and a minimum temperature
exceeding the 90th and 85th percentiles of the maximum and minimum, respectively. Threshold
percentiles were calculated on a monthly bastsadjusted for each decade of analysis. In
addition,HW temporal changes, spatiotemporal, and atmospheric patterns were assessed.

Chapter 2Timesensitive analysis of a warming climate on heat waves in Saudi Arabia:
Temporal patterns and trendsstablibes the importance and impact of changes/variabilities in
the mean climate for determinigHW threshold. Furthethe importance of selecting indices
for different HWs aspects and trend analysis techniques are addressed. Difidresteworthy
resultswere revealed regarding the temporal behaviors of different characteristics of HWSs in
Saudi Arabia (i.e., frequency, intensity, and duration). Although different geographical and
temporalbehavios were found at the station level, the overall results sstggethat regional and
local factors, such as elevation, latitude, and distance from a large body ofmegtptay
important roles.

Chapter 3Trends and spatial pattern recognition of warm season hot temperatures in
Saudi Arabiatook a further step hbysing timeseries clustering analysis to recognize

spatiotemporal pattermdrelated frequency and intensityld¥Ws andanadditional four hot
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temperature indices (frequency and intensity of hot days and nights). First, the chapter
reemphasized the impgance of the ofgoing change in the climatology of the uppei of the
frequency distribution aihetemperature regime. Thethe spatiotemporal characters of six
warm seasohottemperaturéndices were analyzed with an emphasis on event behavioigtinro
time and spaceA time-series clustering approagas usedA method was proposed to
summarize the overall geographical behavior of warm season hot thermal events and eight
clusters were suggestdacal and regional factors, such as elevation, latitathd distance from
a large body of water, helped explain some the clusté#§\bfocations The analysealso
revealed the importance lairge scale factors such #ise atmospheric circulation.

Chapter 4Circulation conditions and sea surface temperatuobservations of warm
season heat waves in Saudi Arabia: A preliminary assessegibres how synoptic circulation
pattens and sea surface temperature (SST) anomalies are related to frequency and intensity of
HW days. Cluster analysis was useddertify and distinguish among different atmospheric
circulation types that induce HWs. Three weather types were identified. Two of Wijmds(1
and 3) were related to 57.5% of the occurrencé$\idfdays and were connected with negative
anomalies in sea levpressure and in the height of the 8B&level. SynopticType 2 was
responsible for 42.5% of occurrencedHW days and was related to positive anomalies at all
atmospheric heights. The Indian Summer Monsoon Trough and the Arabian Heat Low were key
surface pressuifeatures related to HWs days. Anomalies of surface temperatures of the Red
Sea, Arabian Sea, Arabian Gulf, Caspian Sea, Black Sed]editerranearsea displayed
different anomaly patterns and associations during different weather 83Eanomalies seem
to be a more important factor for the intensityHW days. However, the effects of synoptic

conditions and SST anomalies produced some spatial variabilities and diplanlarge
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fractions of variances in individual station condito suggesting the importance of both large
scale and microclimate factors.

A mainconclusion that can be derived from this dissertation about HWs in Saudi Arabia
using a timesensitive definition is that HWs could not be completely explained by one.factor
Results from chapters£2showed that localmese, and regional or synoptic scales factors all
have important impacts on the behavior of HWSs in time and space. This highligb#é a
complexity aspect of HWs and a need to examine conditions stetiom level. Thus, the main
suggestion this dissertation makes is that HWs in Saudi Arahbt to be understood fully by
one atmospheric variable (e.g., maximum temperature) nor by one spatial factor (e.g., vegetation
cover). Forecasting and predictiohttWW should be carried out considering such complexity. In
fact, through the literature review it was noted that microclimate studies of HWs are mostly
focused on impacts and little work has been done on the local physitzdrologicahspects.

This dissertation provided a detailed investigation of HWs across Saudi Arabia, and
several themes have emerged, as the results in each chapter have higiligtaeadheme is
the needtoconsideranoi ng changes or variadnd | i ties in tF
acclimatization. A decadal timgindow was used to account for these two factélhough,a
different length time window could be used depending on the length of the period of record
and/or the rate of climatic warming. In order to determine the epmopriate window, detailed
statistical analysifor the nature of changes/variabilitiesatemperature regime is required.
Raggad (2017&017b) recently addressed some aspects of such an analysis and showed the
importance of noistationary models ianalyzing extreme temperatures for the country.
However,information about changes in the temperature distributiontaustiape parameters

(e.g., variance and skewness) and how extreme temperature eventsaspaidto such
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changes/variabilities is nawailable as of yet for the study area. Availability of such information
would help document climate change as an important factor and more suitable ways to examine
extreme temperatarevents could be determinediti\Vsuch consideratigplanning and

manaement efforts could be more effective with respeeaintemergency andnable an
improvedresponseelatedto impacts of extreme events undethanging climate.

The timesensitive approactieveloped for this researdoes not imply climate change is
nottaking place. As shown in Figures 2.4 and 3.3, the climate of Saudi Arabia is warming with
considerable muktecade variations in the shape parameters of Tmin and Tmax distribution
(i.e., variance and skewness, AppendiRjures 14). The ime-sensitive approach
acknowledges the egoing change in the climatology of the upiait of the frequency
distribution of Tmin and Tmax by accounting for emerging new rare warm conditions. It also
accounts for changes/ var i adlimatizetta heasover time.tThee p o p
approach establishes a novel baseline for understanding past and future change. By accounting
for changes and variabilities, more realistic estimates of hot temperature events will help future
planning and adaptation effersuch as in managirige changing demandsr electricity and
water resources, develment ofheatwarning systems, and other polioyiented planning in an

arid environment
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extreme t e mpheeraatt uwaevse sand

Table A.1. List of commonly used extreme temperature indicesf ETCCDI. Modified after Athar

at al. (2013.

Index ID Index name Index definition Unit
Annual (JanuaryilDecember 31) count when TN (daily
FDO Frost days o Day
minimum temperature)<@C
Annual count when TX (daily maximum
SuU25 Summer days Day
temperature)>2%C
SuU35 Summer days Annual count when TX>3F% Day
IDO Ice days Annual count when TX<C Day
TR20 Tropical nights Annual count when TN>2C Day
TR25 Tropical nights Annual count when TN>2%& Day
TXX Max TX Annual maximum value of TX °C
TNx Max TN Annual maximum value of TN °C
TXn Min TX Annual minimum value of TX °C
TNn Min TN Annual minimum value of TN °C
TXmean Mean TX Annual mean value of TX °C
TNmean Mean TN Annual mean value of TN °C
DTR Diurnal temperature rang Monthly mean differencbetween TX and TN °C
TX10p Cool days Percentage of days when TX<10th percentile %
TX90p Warm days Percentage of days when TX>90th percentile %
TN210p Cool nights Percentage of days when TN<10th percentile %
TN9Op Warm nights Percentage of days wha&mN>90th percentile %
Warm spell duration Annual count of days with at least 6 consecutive days
WSDI o _ Day
indicator when TX>90th percentile
Cold spell duration Annual count of days with at least 6 consecutive days
CSDI Day

indicator

when TN<10th percentile
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Table A.2. Definitions of heat wave indices (HI)? Apparent temperature is a function of air
temperature, humidity, wind speedand solar radiation. © The Hl is a function of air temperature
and humidity, parameterized to takeaccount of other environmental facors. Modified after Kent

et al. (2014.

HI Definition

HI0O1 Mean daily temperature > 95th percentile f

HI02 Mean daily temperature > 90th percentile f

HIO3 Mean daily temperature > 98th percentile f

HIO4 Mean daily temperature > 99th percentile f

HIO5 Mini mum daily temperature > 95th percentil

HIO06 Maximum daily temperature$ 5t h percentile for O 2 consect

HI0O7 Maxi mum daily temperature O 81st percentil
O 3 nonconsecutive days, and consecutive d

HI0O8  Maximum daily apparent temperatbire85th percentie f or O 1 day

HI0O9  Maximum daily apparent temperatbtee 90t h percentile for O 1

HI10 Maximum daily apparent temperattee 95t h percentile for O 1

HI11 Maxi mum daily temperature > 35AC (95AF) fo

HI12 Minimum daily temperature 26.7°C (80.1°F) or maximum daily temperature > 40.6°C (105.1°F)
O 2 consecutive days

HI13  Maximum daily heatindéx> 8 0AF for O 1 day

HI14  Maximum daily heatindéx> 9 0AF for O 1 day

HI15  Maximum daily heatindé» 105AF for O 1 day

HI16  Maximumdaily heatindex> 130AF for O 1 day
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Table A.3. Definitions of heat wave indices (HI)M odified after Smith et al. (2013.

HI Temperature metric Threshold Duration Type
HI0O1  Mean daily temperature >95th percentile 2+ consecutive days Relative
HIO2  Mean daily temperature >90th percentile 2+ consecutive days Relative
HIO3  Mean daily temperature >98th percentile 2+ consecutive days Relative
HI0O4  Mean daily temperature >99th percentile 2+ consecutive days Relative
HIO5  Minimum daily temperature >95th percentile 2+ consecutive days Relative
HI06  Maximum daily temperature >95th percentile 2+ consecutive days Relative
HIO7  Maximum daily temperature T1: >81st percentile  Every day>T1,; Relative
T2:>97.5th percentile 3+ consecutive days, >T2
MeanTmax>T1 for whole
time period
HI0O8  Maximum daily apparent ~ >85th percentile 1 day Relative
temperature
HI09  Maximum daily apparent  >90th percentile 1 day Relative
temperature
HI10  Maximum daily apparent  >95th percentile 1 day Relative
temperature
HI1l1  Maximum daily temperature >35°C 1 day Relative
HI12  Minimum & maximum Tmin>26.7C 01 threshol cAbsolute
daily temperature Tmax>40.6C consecutive days
HI13  Maximum daily heat index >80°F 1 day Absolute
HI14  Maximum daily heat index >90°F 1 day Absolute
HI15 Maximum daily heat index >105F 1 day Absolute
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Figure B.1. Multi -decadal variation in Tmax skewness at waraseasoAmonthly time scale.
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Figure B.2. Multi -decadal variation in Tmax variance at warmseasormonthly time scale.
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Figure B.3. Multi -decadal variation in Tmin skewness at warrseasoAmonthly time scale.
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