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Abstract 

The climate of the Middle East is warming and extreme hot temperature events are 

becoming more common, as observed by the significant upward trends in mean and extreme 

temperatures during the last few decades. Climate modeling studies suggest that the frequency, 

intensity, and duration of extreme temperature events are expected to increase as the global and 

local climate continues to warm. Existing literature about heat waves (HWs) in Saudi Arabia 

provides information about HW duration using a single index, without considering the observed 

effects of climate change and the subtropical arid climate. With that in mind, this dissertation 

provides a series of three stand-alone papers evaluating temporal, geographic, and atmospheric 

aspects of the character of warm season (May-September) HWs in Saudi Arabia for 1985 to 

2014. 

Chapter 2 examines the temporal behavior(s) of the frequency, duration, and intensity of 

HWs under the observed recent climate change. Several issues are addressed including the 

identification of some improved methodological practices for HW indices. A time-sensitive 

approach to define and detect HWs is proposed and assessed. HW events and their duration are 

considered as count data; thus, different Poisson models were used for trend detection. Chapter 3 

addresses the spatio-temporal patterns of the frequency and intensity of hot days and nights, and 

HWs. The chapter reemphasizes the importance of considering the on-goings effects of climate 

warming and applies a novel time-series clustering approach to recognize hot temperature event 

behavior through time and space. Chapter 4 explores the atmospheric circulation conditions that 

are associated with warm season HW event occurrence and how different HWs aspects are 

related to different circulation types. Further, possible teleconnections between HWs and sea 

surface temperature (SST) anomalies of nearby large bodies are examined. 



  

Results from Chapters 2 and 3 detected systematic upward trends in maximum and 

minimum temperatures at most of the 25 stations, suggesting an on-going change in the 

climatology of the upper-tail of the frequency distribution. The analysis demonstrated the value 

of using a time-sensitive approach in studying extreme thermal events. Different patterns were 

observed over time and space not only across stations but also among extreme temperature 

events (i.e., hot days and nights, and HWs). The overall results suggest that not only local and 

regional factors, such as elevation, latitude, land cover, atmospheric humidity, and distance from 

a large body of water, but also large-scale factors such as atmospheric circulation patterns are 

responsible for the observed temporal and spatial patterns. Chapter 4 confirmed that as the Indian 

Summer Monsoon Trough and the Arabian heat low were key atmospheric features related to 

HW days. SST anomalies seemed to be a more important factor for HWs intensity. Extreme 

thermal events in Saudi Arabia tended to occur during regional warming due to atmospheric 

circulation conditions and SSTs teleconnections. This study documents the value of a time-

sensitive approach and should initiate further research as some of temporal and spatial 

variabilities were not fully explained. 
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Abstract 

The climate of the Middle East is warming and extreme hot temperature events are 

becoming more common, as observed by the significant upward trends in mean and extreme 

temperatures during the last few decades. Climate modeling studies suggest that the frequency, 

intensity, and duration of extreme temperature events are expected to increase as the global and 

local climate continues to warm. Existing literature about heat waves (HWs) in Saudi Arabia 

provides information about HW duration using a single index, without considering the observed 

effects of climate change and the subtropical arid climate. With that in mind, this dissertation 

provides a series of three stand-alone papers evaluating temporal, geographic, and atmospheric 

aspects of the character of warm season (May-September) HWs in Saudi Arabia for 1985 to 

2014. 

Chapter 2 examines the temporal behavior(s) of the frequency, duration, and intensity of 

HWs under the observed recent climate change. Several issues are addressed including the 

identification of some improved methodological practices for HW indices. A time-sensitive 

approach to define and detect HWs is proposed and assessed. HW events and their duration are 

considered as count data; thus, different Poisson models were used for trend detection. Chapter 3 

addresses the spatio-temporal patterns of the frequency and intensity of hot days and nights, and 

HWs. The chapter reemphasizes the importance of considering the on-goings effects of climate 

warming and applies a novel time-series clustering approach to recognize hot temperature event 

behaviors through time and space. Chapter 4 explores the atmospheric circulation conditions that 

are associated with warm season HW event occurrence and how different HWs aspects are 

related to different circulation types. Further, possible teleconnections between HWs and sea 

surface temperature (SST) anomalies of nearby large bodies are examined. 



  

Results from Chapters 2 and 3 detected systematic upward trends in maximum and 

minimum temperatures at most of the 25 stations, suggesting an on-going change in the 

climatology of the upper-tail of the frequency distribution. The analysis demonstrated the value 

of using a time-sensitive approach in studying extreme thermal events. Different patterns were 

observed over time and space not only across stations but also among extreme temperature 

events (i.e., hot days and nights, and HWs). The overall results suggest that not only local and 

regional factors, such as elevation, latitude, land cover, atmospheric humidity, and distance from 

a large body of water, but also large-scale factors such as atmospheric circulation patterns are 

responsible for the observed temporal and spatial patterns. Chapter 4 confirmed that as the Indian 

Summer Monsoon Trough and the Arabian heat low were key atmospheric features related to 

HW days. SST anomalies seemed to be a more important factor for HWs intensity. Extreme 

thermal events in Saudi Arabia tended to occur during regional warming due to atmospheric 

circulation conditions and SSTs teleconnections. This study documents the value of a time-

sensitive approach and should initiate further research as some of temporal and spatial 

variabilities were not fully explained.  
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Chapter 1 - Introduction 

1.1 Introduction  

Warming of the global mean temperature (Tmean) of approximately 0.6 °C over the last 

century is accompanied by changes in daily minimum (Tmin) and maximum (Tmax) 

temperatures (Easterling et al., 2000). According to the IPCC, the warming value is 0.85 °C for 

the period 1880 to 2012 (IPCC Synthesis Report, 2014). One aspect of this change is that a large 

portion of the Earthôs terrestrial area has experienced decreases in the number of cool nights and 

days and cold spells, and increases in the number of hot nights and days and heat waves/warm 

spells (Alexander et al., 2006). Heat waves (HWs), a period of consecutive days of hot 

temperature, are expected to get considerably worse later in the 21st century (Meehl and Tebaldi, 

2004). HWs have significant impacts on peopleôs health, the environment, and economic 

conditions worldwide (e.g., 1995 Chicago, 2003 and 2006 Europe, and 2010 Russia HWs) and 

are considered the top-ranked severe weather killer (Kousky, 2014). Recently, Guirguis et al. 

(2014) reported that during a HW event the hospital admissions in California increased by 7%, 

with a significant impact on cardiovascular disease, respiratory diseases, dehydration, acute renal 

failure, heat illness, and mental health. The July 1995 Chicago HW resulted in an estimated 718 

deaths in 10 states (Changnon et al., 1996) whereas the August 2003 European HW (considered 

as one of the worst HWs in the last five decades) caused about 30,000 deaths across several 

European counties (COPA-COGECA, 2003).  

In terms of social and economic effects, many types of livestock died during the August 

2003 European HW while crops failed throughout Europe, costing European farmers about 13.1 

billion euros (Met Office, 2013). This HW led to various transportation effects; for example, 

some railway tracks buckled and road surfaces melted (Met Office, 2013). Two nuclear power 
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plants closed down in Germany as well (Met Office, 2013). Recently, Eskey et al. (2015) studied 

the impact of HWs and extreme temperature on some tree species and found that several tree 

functions are significantly affected during HWs. For example, photosynthesis declines, leaf 

abscission increases, and the growth rate of remaining leaves is negatively affected; whereas 

photo-oxidative stress and stomatal conductance increase. Unfortunately, the health, 

environmental, and economic impacts of extreme weather events including HWs are still topics 

about which not much is known in Saudi Arabia. 

A warming of 1.7°C over the Sahara and the Arabian Peninsula is predicted by the year 

2050 (IPCC, 2001), where the continental interior is likely to warm at a higher rate than the 

coastal regions (Lioubimtseva, 2004). Nasrallah et al. (2004) reported that during the last decade 

of the 20th century HW events over Kuwait had become longer and more severe. In the case of 

Saudi Arabia, multiple recent studies have been dedicated to gaining a better understanding of 

mean and extreme temperature patterns and trends (e.g., Rehman, 2010; AlSarmi and 

Washington, 2011, 2013; Almazroui et al., 2012a, 2012b; Rehman and Al-Hadhrami, 2012, 

Almazroui et al., 2014; Athar, 2014). Previous studies have agreed that Tmean, and both Tmax 

and Tmin in their study areas have increased during the last few decades; consequently, the 

frequency of cool nights and days has decreased and the frequency of warm nights and days has 

increased. Almazroui et al (2012a), for example, reported a warming of 0.60°C decadeī1 in the 

Tmean over Saudi Arabia for 1978ï2009, which was lower than that of the Tmax (0.71°C 

decadeī1) and greater than Tmin (0.48°C decadeī1).  

Studies of the climatology of HWs in Saudi Arabia tend to not provide enough detail 

regarding data and methods, the HW definition used, and several questions about characteristics 

of HWs are not addressed. The recent studies of HW events in Saudi Arabia focus primarily on 
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duration using a single meteorological factor in their analyses, daily Tmax (e.g., Almazroui et al., 

2014; Athar, 2014; Donat et al., 2014; Raggad, 2017a). This dissertation focusses on four main 

points including (1) developing a HW definition taking into account the on-going climatic 

change and the subtropical arid climate; (2) local spatial and temporal aspects of HWs; and (3) 

atmospheric circulation patterns that induce HWs, and (4) links to sea surface temperature 

anomalies.  

Analysis of HWs in the prior research was based only on one HW criterion: the annual 

number for days of events that last at least 6 consecutive days wherein the Tmax exceeds the 

90th percentile and this percentile is based on the period of record. It can be argued that the 

duration threshold of this HW definition (6 days) is too long and fails to include the shorter, and 

potentially high impact HWs. Based on the existing literature, a two- or three-day threshold is 

usually used as the minimum duration of a HW (e.g., Karl and Knight, 1997; Robinson, 2001; 

García et al., 2010; Smith et al., 2013; Perkins and Alexander, 2013). By using a shorter 

threshold (e.g., two- or three-days), longer HWs (e.g., six- or seven-days) would not be excluded 

(Russo et al., 2014). When both daytime and nighttime temperatures are used in defining HWs, 

Robinson (2001) suggested that 2-day threshold is an appropriate duration criterion as this 

requirement would not affect detecting extremely rare events. Heat-related health impacts of 2-

day HWs on humans have been shown to be substantial (Perkins, 2015). 

One of the main effects of climatic change is a shift or change in the mean climate. In 

addition, the shift in central tendency can be accompanied by changes in the characteristics of 

extreme weather events including their probability and intensity. As the climate warms the 

temperature frequency distribution shifts positively and thus new rare warm conditions emerge 

(Figure 1.1). Accordingly, use of a constant threshold, not varying corresponding to the 
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warming, would not correspond to the warming climate and would be more likely to be reached 

more often in the later years in the time series and ultimately the frequency of events will 

increase over time. Most of the previous extreme temperature studies have detected positive 

shifts in the frequency distribution of both the mean and high temperature values and year-to-

year variability (e.g., Almazroui et al., 2013; Hansen and Sato, 2016), and yet such an aspect of 

change has not been considered in the operational definition of a HW. In fact, Raggad (2017a) 

showed that temporal patterns of extreme temperatures are better described by non-stationary 

models for most of the country. Important questions that have not been addressed include 

whether the warming climate has resulted in increases in average intensity and the duration of 

the HWs. Further, changes in the frequency of HWs are not fully explained by changes in mean 

climate, as the temporal patterns of extreme temperature events frequency are more sensitive to 

variance and other shape parameters (e.g., skewness) (Katz and Brown, 1992; Robeson, 2002b).  

 

Figure 1.1. Changes in the probability distributions with changes in mean and variance of Tmin air 

temperature at one of the Saudi Arabian stations (Gizan (25)). Simulations were prepared following 

Robeson (2002b). 

Although previous studies provided insights into the general changes in extreme 

temperatures, little has been done to address possible causes/factors. Further efforts are necessary 

to understand the changes in extreme climate and to overcome several open challenges. In fact, 
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the majority of previous studies are more focused on the temporal changes and little attention has 

been given to the spatial aspect. Understanding the spatial patterns and changes would help to 

recognize the geography of change and also it will help to speculate on some possible local 

factors that may have influence on changes in extreme temperature such as topography, water 

bodies, and vegetation cover. This also would help provide insights into how spatial factors 

could relate or influence the atmospheric circulation at different levels (e.g., micro-, local-, and 

meso-scales) that induce extreme temperatures. Topography and distance from a coastline can 

impact HW events by influencing extreme temperature event patterns at local and regional levels 

(Kenawy et al., 2012). Thus, detailed studies are needed that investigate the spatial changes in 

extreme temperatures and whether or not some spatial factors help explain important aspects of 

HWs. Frequency of hot days/nights are changing and intensity and duration of the spatial 

patterns should be linked to variations in atmospheric circulation. 

A few studies have given attention to atmospheric circulation conditions (i.e., synoptic 

patterns) leading to some extreme weather phenomena, such as precipitation events (i.e., heavy 

rain, cyclones, and winter storms) in the Middle East (e.g., Lee et al., 1988; Dayan et al., 2001; 

Tsvieli et al., 2005). A very limited number of detailed studies has been conducted concerning 

HWs (e.g., Nasrallah et al., 2004), especially in Saudi Arabia. Synoptic studies examine weather 

components to identify the meteorological conditions for a given event; these conditions are then 

linked to atmospheric circulation at different scales (Harman and Winkler, 1991). Synoptic 

studies tend to explore how variations in the properties and behavior of the atmospheric 

circulation induce particular weather conditions (e.g., HWs, sand storms, or hurricanes) over and 

around a given area in order to better understand and predict the weather events at the earthôs 

surface. The benefit of synoptic studies is not only found in diagnosing climate and weather and 
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how an individual synoptic system works, but also in detecting changes in frequency, 

forecasting, and in empirical and numerical modeling (Yarnal et al., 2001).  

In addition to synoptic conditions, studies have shown several factors contribute to the 

formation, intensity and persistence of HWs including soil moisture (e.g., Ferranti and Viterbo, 

2006; Fischer et al., 2007b), drought (e.g., Vautard et al., 2006) and anomalies in sea surface 

temperature (SST) (e.g., Feudale and Shukla, 2007; Carril et al., 2008; Feudale and Shukla, 

2011). During the European 2003 HW, SSTs over the Mediterranean and the Black Sea were the 

warmest on record (Feudale and Shukla, 2007) and it was suggested that they might have 

intensified the HW due to atmosphere-ocean interaction (Feudale and Shukla, 2011). Feudale 

and Shukla (2007) modeled the contribution of SSTs to the European 2003 HW and showed that 

the warm SSTs contributed to increased heating of the atmosphere over the Mediterranean basin 

and the surrounding regions. This low level heating helped to form an upper level anticyclone 

over the region. The influence of SSTs on HW events in the Arabian Peninsula has not been 

addressed.  

Therefore and building on the previous research, the main goal this dissertation seeks to 

accomplish is to gain a better understanding of the climatology of warm season (May-

September) HWs in Saudi Arabia, considering the on-goings effects of climate warming within a 

subtropical arid climate. More specifically, a statistical climatology of recent HWs for Saudi 

Arabia is presented in Chapter 2. The analysis uses a definition of a HW designed with the 

regional subtropical climate in mind. This was done by lowering the nighttime temperature 

(Tmin) threshold (i.e., using the 85th percentile). Given the ongoing upward trend of air 

temperatures for the region, the analysis uses and demonstrates the value of thresholds using a 

time-sensitive approach in studying extreme thermal events. 
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For chapter 3, objectives were to (1) detect temporal changes in the frequency and 

intensity in six warm season hot temperature indicators (WSHTIs) using the time-sensitive 

approach to account for the ongoing regional warming trend; and (2) recognize the 

spatiotemporal character of warm season hot thermal events with an emphasis on event behavior 

through time and space using a time-series clustering approach. In chapter 4, the objectives were 

to (1) identify the general synoptic situations that are associated with the occurrence of warm 

season HW days in Saudi Arabia; examine how different aspects of HWs (e.g., frequency and 

intensity) are related to different circulation types; and (3) assess possible links/associations 

between HW events and SST anomalies of nearby large bodies of water (i.e., Mediterranean Sea, 

Black Sea, Caspian Sea, Arabian Gulf, Arabian Sea, and Red Sea). 

1.2 The Dissertation Outline 

This dissertation was prepared as a series of three stand-alone but interrelated research 

efforts. The first paper, which has been published in the International Journal of Climatology, is 

presented in Chapter 2 and establishes the development of a time-sensitive HW definition and its 

suitability. The second and third papers build on the first paper and explore in greater detail some 

important spatial, temporal, and atmospheric aspects of HWs in Saudi Arabia. The second paper, 

which has been submitted to Theoretical and Applied Climatology, explores spatiotemporal 

aspects of warm season hot thermal events. Chapter 4, the third research effort which has been 

submitted to Atmospheric Research, takes on a further step by analyzing the atmospheric 

circulation conditions and SST anomalies during selected HW days. This component of the 

research has an applied aspect addressing which of these two factors might help in event 

forecasting. Chapter 5 brings all these papers together to summarize their main findings, 

implications and conclusions. 
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1.3 Study Area  

Saudi Arabia is located in southwestern Asia and occupies 80% of the Arabian Peninsula 

with a total area of around 2,000,000 km2 (Almazroui et al., 2013; Saudi General Authority for 

Statistics, 2018). Saudi Arabia lies between the Red Sea (west) and Arabian Gulf (east) and is 

bordered by Kuwait, Iraq and Jordan (north), Bahrain, Qatar and United Arab Emirates (east), 

and Oman and Yemen (south) (Figure 1.2). According to 2010 census, the country has a 

population of 27,136,977 (Saudi General Authority for Statistics, 2010). The Kingdom has 13 

administrative/province regions (Figure 1.2 C), where Riyadh, Makkah, and Eastern are the top 3 

provinces for population (Figure 1.2 C). Riyadh is the location of the capital (Riyadh City), 

Makah is where the holy mosque and the Hajj (pilgrimage) takes place, and oil and gas are 

produced and exported from the Eastern province. 

The topography for much of Saudi Arabia is characterized by low-elevations. Elevation 

gradually increases toward the more mountainous southwest region (Figure 1.2 A). The highest 

peak, Jabal Al-Sawda (Al-Sawda Mountain), approaches 3,000 m in elevation and is located 

within the Sarawat Mountains. Generally, most of the landscape is barren land except for 

portions of the southwestern mountains. About 33% of the landscape cover is sand desert, where 

the Al -Rub Al-Khali Desert (Empty Quarter), the Al -Nefud Desert, and the Ad-Dahna Desert 

constitute 85% of the sand desert areas (Saudi Geological Survey, 2012). Most of the vegetation 

cover is located within southwestern mountains (Figure 1.2 B). Juniperus phoenicia, Juniperus 

excelsa, Olea Africana, and Acacia - Commiphora scrub are the common vegetation types within 

southwestern mountains (Saudi General Authority for Meteorology and Environmental 

Protection, 2016).   
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Figure 1.2. Maps showing the topography (A) along with major cities, land cover (B) along with 

major geographical features, and administrative regions along with population (C) for the study 

area. Source: adapted from King Abdulaziz City for Science and Technology (A), modified after 

Broxton et al. (2014) (B), and Saudi General Authority for Statistics (C). 
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Chapter 2 - Time-sensitive analysis of a warming climate on heat 

waves in Saudi Arabia: Temporal patterns and trends 

Abstract 

Most of the literature about HWs in Saudi Arabia provides information about the duration 

aspect using a single index, with no detailed information about frequency and intensity aspects. 

To help establish a baseline for understanding past and future change, this study explored the 

temporal behavior(s) of the frequency, duration, and intensity of HWs in Saudi Arabia under the 

observed recent climatic change. Several issues are addressed including some methodological 

concerns associated with the commonly used HW index, data quality control and statistical 

analysis. A new definition and method to detect HWs and their changes is proposed, considering 

the on-goings effects of climate warming and the subtropical arid climate. 

A HW event is defined as a period of two or more consecutive days (i.e., at least 48 

hours) with a daily maximum and minimum temperature exceeding the 90th and 85th percentiles 

of the maximum and minimum, respectively. Threshold percentiles were calculated monthly and 

adjusted for each decade of analysis. For temporal trend analyses, we consider HW events and 

their duration as count data using different Poisson models for analysis. HW frequency, intensity, 

and duration across Saudi Arabia were found to behave geographically and temporally 

differently across the 25 stations studied. Distinct temporal and geographical patterns were 

observed indicating a confounding interplay of regional and local factors, such as urbanization, 

elevation, latitude, and distance from a large body of water. 
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2.1 Introduction  

Under the effects of climate warming, the global pattern of the occurrence of extreme 

weather events such as HWs, a period of consecutive days with hot temperatures, is expected to 

increase significantly (Tebaldi et al., 2006), suggesting an increase in the risk of more severe and 

longer HW events (Kent et al., 2014). Extreme high temperatures directly affect human health 

(Souch and Grimmond, 2004) and energy consumption (IPCC, 2007). HWs increase energy 

consumption for air-conditioning, which has environmental impacts (e.g., pollution) and 

economic effects (e.g., increasing energy cost). During late July 2016, large parts of the Middle 

East were under a major HW and a Tmax of 54°C in Mitrabah, Kuwait, could be the newest 

Asian highest temperature (WMO, 2017). During the summer of 2010, eight power plants 

throughout Saudi Arabia were forced to shut down due to the extreme heat (Alghamdi and 

Moore, 2014), with Tmax reaching 52°C in Jeddah City (Almazroui et al., 2014). This was an 

extraordinary temperature event as it was 7°C higher than the 45°C summer Tmax 99th percentile 

of 1985-2014. Loss of power left people in several cities exposed and vulnerable (Alghamdi and 

Moore, 2014). 

Within the Middle East, changes in extreme temperature have been considered at 

different spatial scales including the Arab region (e.g., Donat et al., 2014), the Arabian Peninsula 

(e.g., AlSarmi and Washington, 2011, 2013), Saudi Arabia (e.g., Almazroui et al., 2012a, 2012b, 

Almazroui et al., 2014; Athar, 2014), and even at the individual city level (e.g., Rehman, 2010; 

Rehman and Al-Hadhrami, 2012; Alghamdi and Moore, 2014). These studies indicate that 

during the last few decades the Tmean, and both the Tmax and Tmin in the region have 

increased. Consequently, the frequencies of cool nights and cool days have decreased and the 

frequencies of warm nights, warm days, and warm spells/HWs have increased. 
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Most of the previous extreme temperature studies have detected a positive shift in the 

frequency distribution of both the mean and high temperature, suggesting that HWs would not 

only be expected to become more frequent, but also more severe. It is clear from the previous 

research that HWs have exhibited their maximum frequency during the last few decades. 

Important questions that have not been addressed include whether this shift has resulted in 

increases in average intensity and the duration of the HWs. Further, changes in HW frequency 

are not fully explained by changes in mean climate, as the character of extreme temperature 

events frequency is more sensitive to variance and other shape parameters (e.g., skewness) (Katz 

and Brown, 1992; Robeson, 2002b).  Recent studies of HW events focus primarily on the 

duration aspect by using a single meteorological factor in their analyses, daily Tmax (e.g., 

Almazroui et al., 2014; Athar, 2014; Donat et al., 2014; Raggad, 2017a). 

Climatological studies of HWs in Saudi Arabia tend to not provide enough detail 

regarding data and methods and several questions are not addressed. Analysis of HWs in this 

prior research was based only on one HW criterion: the annual number of days of events that last 

at least 6 consecutive days wherein the Tmax exceeds the 90th percentile and this percentile is 

based on the period of record. It can be argued that the duration threshold of this HW definition 

(6 days) is too long and fails to include the shorter, and potentially high impact HWs. Based on 

the existing literature, a two- or three-day threshold is usually used as the minimum duration of a 

HW (e.g., Karl and Knight, 1997; Robinson, 2001; García et al., 2010; Smith et al., 2013; 

Perkins and Alexander, 2013). By using a shorter threshold (e.g., two- or three-days), longer 

HWs (e.g., six- or seven-days) would not be excluded (Russo et al., 2014). When daytime and 

nighttime temperatures are used in defining HWs, Robinson (2001) suggested that 2-day 

threshold is appropriate as this requirement would not affect detecting extremely rare events. 
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Heat-related health impacts of 2-day HWs on humans have been shown to be substantial 

(Perkins, 2015). 

Use of the 90th percentile threshold is commonly based on data for the period of record. 

Use of such a time window to determine the threshold would not incorporate climate changes in 

the occurrence of HWs if there is a trend (either positive or negative) in the thermal climate 

because the threshold would remain constant over the analysis period (Radinovic and Curic, 

2012). This concern is critical since studies document a positive shift in the frequency 

distribution of air temperature for Saudi Arabia. Recently, Raggad (2017a) showed that temporal 

patterns of extreme temperatures are better described by non-stationary models for most of the 

country. Thus, under the ongoing change a constant threshold determined from the entire period-

of-record would assume a stationary climate and ignore any temporal variability in the 

probability distributions of extreme temperatures. For instance, under a warming climate a 

constant threshold would identify more HWs for the more recent period and detect fewer events 

for the earliest period. 

 In these previous studies, the temporal trend analyses were based on the annual count of 

days of HWs and not on the number/frequency of events. Use of this duration metric is arguable 

and it cannot be used alone since it does not reflect the full picture of the heat hazard. As such, 

past research may provide a misleading assessment. In fact, the sum of days using the 6-day or 

longer metric only provides count information about the number of participating HW days 

(Perkins and Alexander, 2013) rather than frequency, intensity, or other duration aspects. 

Moreover, the quality of observation data for stations in Saudi Arabia has received limited 

attention in previous studies. Further details regarding these critical points are presented and 

discussed in Section 2. 
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A statistical climatology of recent HWs for Saudi Arabia is presented in Section 2.3. The 

analysis uses a definition of HWs designed with the subtropical climate of the region under 

consideration. This was done by lowering the Tmin threshold to 85th percentile. Given the 

ongoing upward trend of air temperatures for the region, the analysis demonstrates the value of 

using a time-sensitive approach in studying extreme thermal events. 

2.2 Research Design and Methods 

2.2.1 Study area and data 

Saudi Arabia (Figure 2.1) occupies a large part of the Arabian Peninsula. Except for the 

southwestern mountain area, Saudi Arabia has a tropical/subtropical climate that is a low-latitude 

warm desert (BWh) according to the Köppen climate classification. The southwestern mountains 

lie in an area of low-latitude semi-arid steppe (BSh). The climate of the country can be described 

as continental, a result derived from the geographical location of the country in the subsidence 

part of the Hadley Cell (Alkolibi, 1995). Sinking and warming aspects of the Hadley circulation 

restricts the sources of water vapor for rainfall over the Arabian Peninsula to be from Red Sea 

and Arabian Gulf (Almazroui et al., 2013).  

Daily maximum and minimum surface air temperature data for the warm season months, 

were obtained from the Saudi General Authority for Meteorology and Environmental Protection 

(GAMEP). Spring and autumn seasons in the study area are short compared to summer season 

(Alkolibi, 1995). Spring occurs for approximately one month (in March or April), autumn in 

October and November, and winter for three months (December, January, and February) (Ali, 

1994). In Kuwait, May HWs were reported to be equivalent to other summer months and they 

could be more severe (Nasrallah et al., 2004). Given the timing and acclimatization related to 

heat events, the early season and late season HWs are important in terms of health outcomes, 
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e.g., heat-related morbidity and mortality (Hajat et al., 2002).  Thus, the data obtained for this 

study are for the months of May through September and this period was considered as the 

summer or warm season. 

 

Figure 2.1. A map showing the study area and weather stations along with their names and IDs. 

Source: adapted from King Abdulaziz City for Science and Technology (KACST) and the GAMEP. 

* station was not included in this study. 

Data were obtained for 25 weather stations across Saudi Arabia (Figure 2.1 and Table 

2.1). The selected weather stations provide adequate spatial coverage and offer high-quality and 

a relatively long-term series for temporal trend analysis. Data from these stations have been 

found to be homogeneous (e.g., AlSarmi and Washington, 2013). The period of record for this 

study begins in 1985 due to issues in the station metadata including inhomogeneity, missing data, 

and the limited amount of data available prior to 1985. Six stations began recording observations 
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in 1985 (Al-Baha (6), Sharurah (10), Riyadh-New (14), Guriat (16), Makkah (19), and Al-Ahsa 

(20)) and examination of their locations (Figure 2.1) indicates that these stations can provide 

important spatial insights about within country variations. Some stations started collecting data 

earlier than 1985 and previous studies have used 27 stations (e.g., Almazroui et al., 2012a, 

2012b), two of which were excluded in this study because the records have large gaps of missing 

data in 2011-2013 for Riyadh-Old and in 1985-1990 for Wadi-Aldawasser (Figure 2.1). An 

attempt was made to use additional stations from the Arab Gulf States to cover the spatial gaps in 

the north-east and south-east parts of the study area, but near-border stations were found to have 

both short temporal coverage and poor data quality. 

2.2.2 Quality control  

Prior to statistical analysis, the quality of the air temperate data was carefully assessed. 

Two quality control (QC) procedures, which are commonly applied, were used: (1) when a daily 

Tmin is higher than the Tmax, it is marked as unreasonable/error and replaced by NA and (2) 

observations that are ±4 standard deviations (SD) greater or lesser than the Tmin and Tmax are 

identified as possible outliers and marked as errors and replaced by NA. Further, diurnal 

temperature ranges that are greater than ±4 SD were assessed for possible errors. Instead of 

maintaining the marked errors by NA, which is a common practice in previous local studies, a 

further step of exploring if there was an obvious reason for these NA observations was taken. A 

quality controlled dataset from the U.S.A. NOAA/NCEI was used to inspect these observations. 

Transposition of digits and misplacement of decimal points were found to be the causes of most 

the errors and they were fixed accordingly. This step allowed the overall quality to be increased 

by 3-5%, on average, at the station level. To maximize the quality of the data, QC was applied 
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twice as the mean and standard deviation statistics change due to changes in the number of 

acceptable observations. 

Table 2.1. Weather stations with latitude, longitude, elevation, average maximum (Tmax) and 

minimum (Tmin) temperature of the studied warm season (May through September) for 1985-

2014. Elevation data, provided by KACST, was used to number stations form high to low elevation. 

 

ID  Station name Latitude (ºN) Longitude (ºE) Elevation (m) Tmax (ºC) Tmin (ºC) 

1 Abha 18.23 42.66 2096 30.08 16.21 

2 Khamis Mushait 18.29 42.8 2057 34.49 21.91 

3 Al -Baha 20.29 41.64 1653 31.31 17.18 

4 Taif 21.48 40.55 1455 35.05 21.93 

5 Najran 17.61 44.41 1217 38.39 22.95 

6 Bisha 19.99 42.61 1182 38.97 23.06 

7 Hail 27.44 41.69 972 38.04 22.15 

8 Turaif 31.68 38.73 846 35.20 19.23 

9 Tabuk 28.37 36.6 800 37.55 21.88 

10 Sharurah 17.47 47.12 740 41.91 25.22 

11 Al -Jouf 29.78 40.10 668 38.27 22.97 

12 Gassim 26.30 43.77 646 41.94 24.76 

13 Madina 24.54 39.70 636 42.30 28.28 

14 Riyadh-New 24.92 46.72 614 42.02 25.02 

15 Arar 30.90 41.14 544 39.57 23.47 

16 Guriat 31.40 37.28 507 37.02 18.42 

17 Rafha 29.62 43.49 449 40.91 23.73 

18 Al -Qaysumah 28.33 46.12 362 42.92 26.54 

19 Makkah 21.43 39.79 249 42.96 28.89 

20 Al -Ahsa 25.30 49.49 181 43.99 27.31 

21 Wejh 26.20 36.47 21 33.46 24.25 

22 Dhahran 26.26 50.16 17 37.02 18.42 

23 Jeddah 21.71 39.18 16 38.25 26.07 

24 Yenbo 24.14 38.06 10 39.79 25.80 

25 Gizan 16.90 42.58 6 38.07 29.32 
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2.2.3 Heat wave definition  

Due to the fact that extreme weather events, including HWs, have geographic relativism 

(i.e., impacts are a function of culture and social practices), scholars have developed a wide 

range of HW definitions and indices (e.g., basic indices, which use air temperature or apparent 

temperature are common; more complex indices use physiological reactions of humans or other 

organisms under extreme conditions) (Souch and Grimmond, 2004). In addition, HWs are of 

interest to diverse stakeholders, including health researchers, agricultural producers, energy 

providers, climatologists, and meteorologists due to the diversity of impacts (Smith et al., 2013). 

For such reasons, it has been concluded that there is no single perfect standard method or 

definition for a HW that works for all applications (e.g., Perkins and Alexander, 2013; Smith et 

al., 2013; Kent et al., 2014).  

Scientific literature has established that HWs can be defined broadly as a period of 

consecutive days, including daytime and/or nighttime, where perceived thermal conditions are 

well above normal. This involves three aspects that should be determined appropriately (Smith et 

al., 2013): (1) relevant meteorological metrics (e.g., Tmax alone or plus any one of or a 

combination of Tmin, humidity, wind speed, and solar radiation); (2) a type of threshold value 

that the relevant metric should exceed (i.e., an absolute or relative value), and (3) a duration 

aspect, (e.g., up to several days). 

Although Tmax is the commonly used meteorological metric, it is often combined with 

Tmin as warm nighttime temperature can further intensify the impact of weather conditions 

because organisms may not experience a period of stress relief (Perkins and Alexander, 2013). 

Relative humidity is another meteorological metric that has been used mostly in assessing the 

impacts of HWs on human and other organism health as high temperature and high humidity 
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combined (e.g., apparent temperature or Temperature Humidity Index (THI)) have significant 

effects on heat wave-related mortality (Tong and Kan, 2011). Commonly, humidity is combined 

with temperature and then a resulting index, such as apparent temperature or the heat index, is 

used. Because of some limitations that relate to availability and quality of relative humidity 

observations (Perkins and Alexander, 2013), Tmin has been used to infer the weather conditions 

during a HW as low humidity tends to lead to lower Tmins and high humidity to higher minima 

(Nairn and Fawcett, 2015). Thus, combining Tmax and Tmin in a definition allows the health 

impact to be assessed implicitly (Nairn and Fawcett, 2015). It is also possible to assess other 

aspects such as climatic and agriculture impacts. Indices, such as the THI and the 

Comprehensive Climate Index (CCI), are used to address environmental stresses on livestock 

(Mader et al., 2010).  

Several studies have been conducted to compare different measurements and indices, 

Appendix A (e.g., Perkins and Alexander, 2013; Smith et al., 2013; Kent et al., 2014) and it has 

been concluded that there is no single perfect standard method or definition for a HW that works 

for all applications; this is due to the different aims or purposes of the different studies. Perhaps 

the most common extreme temperature indices that have been used extensively, especially in the 

Middle East region, are those of the WMO Expert Team on Climate Change Detection and 

Indicesô (ETCCDI) of the Commission for Climatology/Climate Variability and Predictability/ 

Joint Technical Commission for Oceanography and Marine Meteorology (see Appendix A). 

Such indices, however, have been reported to have limitations. They do not capture all the 

aspects of a HW in a single measurement (Perkins and Alexander, 2013). Some of ETCCDI 

indices rely on fixed or absolute thresholds, which may indicate extremes in particular 
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homogeneous climates or particular applications, e.g., the effects on a particular type of crop or 

livestock (Folland et al., 1999). 

Percentile based thresholds, above which a relevant metric should exceed and are relative 

to the area of consideration (i.e., a place-specific metric that allows for spatial comparisons), are 

commonly used and considered more appropriate (Klein Tank et al., 2009; Perkins and 

Alexander, 2013). Yet selecting the appropriate percentile threshold (e.g., 95th, 90th or 85th), the 

estimating time scale (e.g., monthly, seasonally, or annual), and the period of analysis (e.g., a 

decade, 30 years, the period of record) become critical decisions. Perkins and Alexander (2013) 

reported that the 90th percentile (for both maxima and minima) is an appropriate threshold as it 

optimizes the balance of extreme versus other temperature events. However, the relevance of 

such a threshold may differ from one climate type to another depending on the physical nature of 

the temperature regime along with cultural and social practices. 

2.2.3.1 Implications for Subtropical Arid Climates under warming effects 

In arid climates, the diurnal temperature range is usually large as Tmin tends to drop 

quickly due to the nature of radiational cooling in dry environments (Oke et al., 1998). Thus, in 

common situations, i.e., no HW, Tmin tends to be low. Thus, a lower threshold value (e.g., the 

85th percentile) might be a more suitable HW criterion for subtropical desert environments. An 

implication of using the 85th percentile is that temperatures remain warm enough to limit the 

amount of stress relief. Since high humidity tends to lead to higher Tmin, incorporating Tmin in 

a definition allows the humidity effect to be assessed implicitly (Nairn and Fawcett, 2015). The 

85th percentile has been established as a suitable threshold for heat and humidity-related health 

outcomes as it reflects population acclimatization (see Habeeb et al., 2015 for references). The 

difference between 85th and 90th percentiles of Tmin during HWs could be more related to local 
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factors (e.g., urbanization) than to the prevailing synoptic conditions. Furthermore, within such 

an arid climate type, the nighttime summer temperature is already warm, stress relief is limited, 

and a small increase in temperature could be significant. 

Defining what constitutes above normal conditions is a critical aspect since long-term 

warming or cooling trends and short-term variability of temperatures impact the statistics from 

which normal/abnormal conditions are determined. Under the effect of a multi-decadal warming 

trend, the threshold(s) above which a heat extreme is identified are expected to shift to warmer 

values over time. A warming climate could, also, result in both a large year-to-year fluctuation in 

climate and an increase in the length of a thermally defined season (e.g., a longer summer) 

(Hansen and Sato, 2016). 

The pace of climate change is an important factor in defining HWs, where evolving 

climatic conditions and time frames should be reflected in any metric (Perkins and Alexander, 

2013). By definition, HWs are rare events and by the end of this century, the extreme high 

temperature events of today are projected to become the norm (Mora et al., 2017) and new rare 

events will emerge in several places in the Arabian Gulf States (Pal and Eltahir, 2015). During 

the summer of 1987, the Tmax during a 7-day HW at Riyadh-new station (14) recorded its 

highest temperature of 47.4 ºC for the period of 1985-1997. During 1998-2014 that 47.4 ºC 

temperature was exceeded several times, suggesting a change in the character of extreme 

conditions. 

As the mean climate frequency distribution shifts (to the left or right), the probability of 

an extreme event would not necessarily change without changes in the other characteristics of the 

distribution such as variance and skewness. Figure 2.2 indicates observed differences in the 

probability distributions and 85th percentile of Tmin and 90th percentile of Tmax at three stations 
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over different decadal and period of record time scales. These three stations represent and 

summarize different temporal patterns and climate types for Saudi Arabia. The Tmin percentiles 

of the 30-year period were higher than the first decade and lower than the third decade at these 

stations (Figure 2.2). The Tmax percentiles of the 30-year period, were lower than second and 

third decades at both Madina (13) and Al-Jouf (11). 

 

Figure 2.2. Distributions of the probability density function (PDF) of daily temperatures at three 

stations for three decades using warm season months (May through September) Tmax, and Tmin 

along with  their 85th and 90th percentiles (right). Bottom-right plot shows changes in the 

probability distributions and the 90th percentile in response to changes in mean and variance of 

Tmin at Gizan (25) station. Simulations were prepared following Robeson (2002b). Stations were 

selected as they represent different temporal patterns and climate types. 

Thus, using the entire 30-year period to estimate the 90th percentile would not highlight 

decadal variability and omit the impact of a trend in the climate. At Al-Jouf and Madina stations, 

constant percentiles based on the period of record would result in fewer detected HWs in the first 

decade and more HWs in the last two decades. At the coastal station, Gizan, the Tmax 90th of 
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the period-of-record was higher than the second and third periods. As such, use of that threshold 

would detect fewer hot day events in second and third periods and more in the first decade.  

Differences in decade-to-decade percentiles do not have to be very big to result in large changes 

in the probability of extreme temperature events due to the nonlinear relationship between mean 

climate and extreme event probabilities (Mearns et al., 1984). Temporal patterns in the frequency 

of extreme temperature events are more related to variance characteristics than to the mean, as 

extreme events are more sensitive to variance (Katz and Brown, 1992). 

In this work percentiles were determined on a month-by-month basis (e.g., Pezza et al., 

2012; Cowan et al., 2014) using a decadal time-window (Robeson, 2002a). By estimating 

percentiles on a monthly basis, the effects of extreme values and annual and seasonal cycles can 

be minimized and the percentile threshold becomes more representative (Robeson, 2004; Pezza 

et al., 2012). If percentiles are calculated using a seasonal or annual basis, the warmer months 

will dominate the determination of the heat extremes that comprise the upper-tail. Percentiles 

could be also calculated using a centered window (e.g., 5-days, Klein Tank et al. (2009), 15-day, 

Perkins and Alexander (2013), or 31-days, Russo et al. (2015)). Cowan et al. (2014) compared 

monthly and 15-days centered window thresholds regarding their biases and reported no 

substantial differences. Thus, a HW event for Saudi Arabia was defined herein using the 

following criteria: 

A period of two or more consecutive days with a daily maximum temperature exceeding 

the 90th percentile of the monthly maximum and the minimum temperature exceeding the 85th 

percentile of the monthly minimum for the decade in question (1985-1994, 1995-2004 and 2005-

2014).  
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Following Hyndman and Fanôs (1996) recommendation, the R8 method was used to 

estimate percentiles, as the method provides unbiased estimates and requires no distribution 

assumptions. Given the length of available data (30 years), a 15-year, 10-year, or 5-year time-

window could be used. To balance between relatively long and short-term climate variability, a 

10-year time-window was selected (e.g., Robeson, 2002a).   

HWs can be continuous phenomena that extend over the transition between two adjacent 

months (Folland et al., 1999). Since HWs were defined and studied on a monthly scale, the 

definition has to be an operational one. Therefore, in the case that a HW extends into the next 

month, the percentiles (of Tmin and Tmax) of the month in which the event started were used to 

track the event into the next month, since the relevant synoptic weather system often moves 

slowly and can remain quasi-stationary for days. A HW is then reported for the month in which it 

lasts the longest. 

2.2.4 Heat Wave Intensity and Duration 

In defining what constitutes a HW event, there are no standard criteria for defining HW 

intensity and/or duration. The intensity of a HW should be defined in such a way that intensity is 

independent of event duration. This way the separate effects of duration on HW intensity can be 

explored. Intensity of a HW in this study was assessed using the Tmean of the hottest day, which 

is considered the peak of the HW (e.g., Perkins and Alexander, 2013). Thus, intensity is not a 

metric of the cumulative stress for the duration of the event. Tmean was used since both Tmax 

and Tmin are used to characterize a HW.  

For duration, many local studies have used the Warm Spell Duration Indicator (WSDI), a 

metric from the ETCCDI, where WSDI is the annual count of days within events of at least six 

consecutive days when the Tmax exceeded the 90th percentile. WSDI provides a general 
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assessment that could lead to a misleading conclusion. WSDI relies on the total number of days 

that result from lengthy events. With the use of a shorter duration criterion (e.g., 2-days or more), 

individual years could have an equal total of HW days but with different HW event counts and 

different durations (Figure 2.3). For instance, all the four years in Figure 2.3 have an equal total 

annual count of days, but individual events are different in duration across the four years. Year 1 

has 3 HWs which last for 3, 4, and 5 days, respectively, which results in a total of 12 for the 

annual count of HW days. Year 2, on the other hand, has 4 HWs which last for 2, 3, 3, and 4 

days, respectively. 

 

Figure 2.3. A hypothetical comparison between annual events count (bottom) and Annual count of 

days/WSDI (upper). 

Similarly, years could have a similar annual count of days and annual event count but 

different durations. For example, both years 1 and 3 have an annual count of days (12 days) and 

annual count of events (3 events). Nevertheless, events of each year have different duration. It is 

important to note that, for any selected duration threshold, length, (e.g., 2, 6, or 7-day) in 

defining WSDI, similar observations are still existing as WSDI relies on the total count of HW 
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days, not on the duration threshold. In fact, the WSDI is more suitable for providing a 

measurement about trends in annual sum of participating days in lengthy HWs rather about the 

cumulative duration of multiple individual events.  

A temporal trend in event duration can be assessed by using the length of the longest HW 

(HWLD) during the year in question (e.g., Perkins and Alexander, 2013; Cowan et al., 2014). 

This index was selected for use in this work as it relies on the greatest length of an individual 

HW; thus, it can be understood as an indicator about change in the upper limits of event duration. 

Table 2.2 summarizes all the HW indices developed for use in this study. 

Table 2.2. Definition of HW  indices developed and used in this study. 

Indices Definitions Units 

Heat wave 

frequency 

 

A period of at least 2 consecutive days with a daily Tmax Ó the 90th 

percentile of the monthly maximum and the Tmin Ó the 85th percentile of 

the monthly minimum for the decade in question (1985-1994, 1995-2004 or 

2005-2014) 

Events 

Heat wave 

intensity 
Annual average of mean temperatures of the hottest days of heat waves ºC 

Heat wave 

duration 
The longest heat wave duration (HWLD) during the year in question Days 

 

2.2.5 Heat Wave Trend Analysis 

Trend analysis was applied to the three aspects of HWs: frequency, duration, and 

intensity. For intensity, Kendall-tau and Senôs slope estimator methods were used as they do not 

require a normal data distribution. From a statistical perspective, use of a trend analysis 

technique that addresses count data is appropriate (Ryden, 2016). HW frequency and duration 

indicators are count indicators rather than a ranking (i.e., number of events or length per unit 

time) and thus event-count time series techniques are most suitable. One option is to use ordinary 

least squares regression analysis; but for that technique, the data need to be normally distributed. 
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More importantly, both the frequency and duration indicators are count variables that can only be 

non-negative values. Consequently, using a linear regression model is not appropriate as negative 

estimated mean responses are not possible (Chatterjee and Simonoff, 2013).  

An alternative is the Poisson regression model, and it has been used in HW studies (e.g., 

Bishop-Williams et al., 2015; Ryden, 2016). Unlike a linear regression model, a count regression 

model provides slope coefficients of the mean relative change (not the absolute change) in the 

expected response/occurrence associated with a unit change in the predictor variable. Event 

count time series approaches are not free of challenges and three main features should be 

addressed: autocorrelation, over-dispersion (variance is greater than the mean), and zero-inflation 

(an excess number of zeros, i.e., no event observations) (Zeileis et al., 2008; Yang et al., 2015). 

Autocorrelation, was found to not be an issue for the data used in this work. For the other two 

challenges, a straightforward framework (Table 2.3) provided by (Yang et al., 2015) was used. 

For example, when over-dispersion is present, a negative binomial regression model should be 

applied whereas a zero-inflated negative binomial regression model is more appropriated when 

over-dispersion and zero-inflation exist. To compare and select models, the Vuongôs test 

(Vuong, 1989) was applied. For theory and implementation, one can refer to Yang et al., (2015) 

and Zeileis et al., (2008).  

Table 2.3. Used framework for trend analysis of frequency and duration of heat waves. Modified 

after Yang et al. (2015). 

 

 

 

 

Over-dispersion Zero-inflation  Model 

No No Poisson regression 

Yes No Negative binomial regression 

No Yes Zero-inflated Poisson regression 

Yes Yes Zero-inflation negative binomial regression 
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2.3 Results and Discussions 

2.3.1 Evaluation 

2.3.1.1 Thirty -year trends in the upper-limits of Tmax and Tmin  

For evaluation and further investigation, the 90th and 85th percentiles of Tmax and Tmin, 

respectively, were estimated for each of the warm season months on a yearly basis for the period 

1985-2014. Temporal trends in percentile values were selected for evaluation due to the possible 

unscaled relationship between changes in mean climate and climate extremes and because hot 

temperatures and upper-tail variations in Tmax and Tmin are closely coupled (Seneviratne et al., 

2012). Generally, thirty-year warming trends were detected in both Tmax and Tmin percentile 

values across the warm season months with a few downward trends in Tmax percentiles values 

(Figure 2.4). The Tmin percentile values showed more pronounced increases than those of Tmax 

not only in the 85th percentile but also for the 90th percentile. These trends in the thresholds for 

HW events and multi-decade variations in the shape parameters of Tmin and Tmax distribution 

(i.e., variance and skewness, Appendix B- Figures 1-4) suggest changes in the climatology of the 

upper-tail conditions have occurred (i.e., events are getting hotter, and new norms are emerging).  

Thus, using decadal time windows rather than the entire 30-year period for determining 

HW thresholds can help adjust for these trends and for multi-decade variations in variance and 

skewness of related distributions (Appendix B- Figures 1-4). It is likely that by using the entire 

period of record to estimate thresholds values that the role of rarity of a HW event would be 

violated. This would result in mis-detecting some possible rare events, particularly for short and 

low intensity hot events during early years in the data record. Small hot events (with respect to 

duration and intensity) can be of high importance locally. Particularly for the vulnerable 

populations (e.g., elderly, and children) that are already at higher risk. In arid environments, 
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these events could have significant effects such as in managing large electricity demands and 

limited water resources. Therefore, a time-sensitive approach for detecting threshold statistics 

recognizes the ongoing change and adjusts exceedance thresholds accordingly. 

 

Figure 2.4. Heatmaps of decadal-based temporal trends in annual Tmin 85th (left) and Tmax 90th 

(right) percentile values (ºC/yr-1) at monthly and warm season (x-axis) time scale for each station 

(y-axis). ***, **, *, and + Ŭ = 0.001, 0.01, 0.05, 0.1 level of significances respectively. Trends were 

computed by Kendall-tau and Senôs slope estimator. For stations names and locations refer to 

Figure 2.1.   

A few individual stations differ from the national pattern and seven of 25 stations had 

declining trends in some of their monthly Tmax values (Figure 2.4). Such downward trends do 

not suggest absences of HW events, but a rather lower probability of events. Differences in the 
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heatmap patterns (Figure 2.4) of Tmax and Tmin thresholds (at monthly and seasonal scales) 

indicate that using a single atmospheric factor (e.g., Tmax) would omit important aspects of the 

climatology of HWs. A time-sensitive approach (monthly and decadal) has been established to 

be more suitable for low-probability climate events and their long-term change (e.g., Robeson, 

2002a, 2002b, 2004; Robeson and Doty, 2005). Many terrestrial ecosystem processes are 

affected by short-term variations of hot temperatures (Suseela et al., 2012).  

Several studies have reported reductions in heat-related mortality risk as populations 

adapted/acclimatized over time due to increased use of air conditioning, warning systems, 

improved health-care, and improved public awareness (e.g., Davis et al., 2003a; Davis et al, 

2003b; Carson et al., 2006; Kysely and Plavcova, 2012). From 1990 to 2010, summer electricity 

consumption in Saudi Arabia increased by 35% as a result of the use of air conditioning 

(Alrashed and Asif, 2012). Air conditioning usage in the country consumes 60% of summer 

electricity (Alrashed and Asif, 2012). Kysely and Plavcova (2012) showed that a populationôs 

vulnerability to heat is influenced relatively little by climate change when other factors, such as 

socioeconomic developments, advance substantially. However, the populationôs ability to 

acclimatize to heat could be affected by temperature variability, even when populations of hot-

cities become more adapted to high temperatures (Braga et al., 2001). Higher year-to-year 

variability in the temperature of warm months increases heat-related mortalities, due to sudden 

changes in temperature (e.g., Braga et al., 2001; Medina-Ramón and Schwartz, 2007). Thus, a 

monthly and decadal time-dependent approach can help to account not only for interdecadal 

variations and changes in extreme temperatures, but also for possible changes in population 

vulnerability to heat.    
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2.3.1.2 Evaluation of the heat wave definition 

Frequency of count data on HWs detected using both a constant and a changeable 

threshold determined on monthly and seasonal bases are presented in Figure 2.4. Clearly 

different statistics were obtained as constant thresholds tended to detect more (fewer) events in 

the later (earlier) years.  Higher frequencies of events in 1987 and 1989 are evident when a 

decade-sensitive approach is used.  Due to the upward trend in the upper limit of Tmax and Tmin 

and thus in hot/warm days and nights in later years (e.g., Almazroui et al., 2014; Athar, 2014; 

Donat et al., 2014), a constant threshold is likely to be reached/exceeded more often in the later 

years; this choice influences the relative number of HWs and the rate/slope of change in HW 

events over time. A decade-sensitive determination of threshold percentile values resulted in a 

higher total number of events. This is due to the more equal representation of HWs across years, 

by taking into the account the warming trend and year-to-year variabilities (Figure 2.5).  

Figure 2.5 provides the time series of the 90th percentile of Tmax estimated on monthly 

and warm season bases at Al-Jouf. It is clear that the rate of warming and year-to-year 

variabilities were not the same across months. While the 90th percentile is increasing, the 

inconsistent temporal patterns among months impact detecting HWs as warm days and nights 

were found to be less detected in months with a low rate of warming along with those that had no 

significant warming trends. The full warm seasonôs change was found to be more driven by the 

warmest months, which is consistent with Robesonôs (2004) argument. Using a seasonal basis to 

determine the threshold would emphasize HWs in the warm months and vice versa since all 

months are not represented equally. For example, from late 80s to early 90s, the 90th percentile 

of the warm season, had a decreasing trend for July and August, which was not the case for the 

other months. Using a seasonal basis did not detect early and late warm season events (i.e., May 
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and September) as the threshold was derived from mid-season (i.e., warmer months). Use of the 

full warm season to establish a threshold would also affect the HW duration and intensity aspects 

as the warming trends are more pronounced in the later years. HW duration was found to 

decrease, generally, when the threshold was estimated using warm season data. 

 

Figure 2.5. Monthly and warm season 90th percentile of Tmax thresholds at Al-Jouf (11) station 

determined on an annual basis. ***, **, and * Ŭ = 0.01, 0.05, 0.10 level of significances respectively. 

Trends computed by Kendall-tau and Senôs slope estimator. 

A constant 30-year threshold percentile approach detected 11 HWs during 2010 whereas 

the decade-sensitive approach detected six HWs (Figure 2.6A and C). Seven different HW 

events were found to have daily Tmeans less than 1 SD of the respective 2010 monthly Tmean, 

suggesting unreasonable over detection when using 30-years to define the relevant threshold. 

Using 30 years and the full warm season to determine the threshold, results in a period, 1989-

1994, when no events are detected (Figure 2.6B). This period had lower values for the 90th 
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percentile statistics of both Tmin (not shown) and Tmax during the warm season months of July 

and August (Figure 2.5). From a meteorological perspective, such an observation does not 

necessarily suggest absences of HWs. In fact, the events identified by using a decade-sensitive 

percentile for this period (Figure 2.6D) were found to have Tmax values above 1.50 SD of the 

1985-2014 warm season mean Tmax. 

 

Figure 2.6. Annual count of heat waves per year at Al-Jouf (11) station using different time-

windows to estimate percentile, A and B constant (30-years) and C and D decade-sensitive 

thresholds estimated on monthly (A and C) and warm season (B and D) bases. 

2.3.1.3 Evaluation of duration metrics 

Using a duration metric that is similar in design to ETCCDI, WSDI2, the annual count of 

HWs days of events that are two days or longer, and HWLD, the duration of the longest HW 

each year, showed relatively similar overall patterns across Saudi Arabia with greater differences 

in their magnitudes and substantially different details for a few years (Figure 2.7). Both 

indicators were calculated using the HW definition established in this manuscript. WSDI2 and 
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HWLD showed similar temporal patterns during years with a small range of HW durations that 

have low frequency and exact patterns were found during years with one HW. For instance, at 

Rafha (17) (Figure 2.7) from 1985 to 1988 both indices followed each other in their temporal 

pattern due to small range of durations that also had low frequencies. The data had an identical 

pattern from 2002 to 2006 as these years each had one event. During years with a wide range of 

HW durations or small range with high frequencies (i.e., a duration occurs several times in a 

given year), the curves deviated and sometimes showed inverse patterns. At Rafha (17) and Al-

Baha (3) stations, different patterns between the two indices were found in 1998 and 2011 due to 

the greater number of events in these two years. 

 

Figure 2.7. Duration of  the longest event or HWLD (green solid line), number of heat wave events 

(blue long-dash line), and the annual count of days or WSDI2 (red dashed line) at four stations, 

representing different temporal patterns, elevation, and climate types. 

It is also clear from Figure 2.7 that years with a similar WSDI2, did not have a similar 

range of durations nor similar magnitudes of duration. At Tabuk (9), WSDI2 had a value of 12 

days in 1987, 2006 and 2013 whereas the longest durations for these years were 7, 5 and 4 days 
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respectively. WSDI2 did not significantly distinguish among the magnitudes of different 

durations, as WSDI2 does not directly consider individual event length. At Tabuk (9), WSDI2 

had values of 8 and 11 days in 2003 and 2001 whereas the longest duration was 8 days in 2003 

and only 3 days in 2001. A similar issue can be seen across all four stations in Figure 2.7. Such a 

difference in metric values will highly impact the rates and magnitudes of trends, negatively in 

the case where there is a positive trend in duration over time. This analysis raises similar 

concerns about another ETCCDI, the cold spell duration indicator (CSDI), the annual count of 

days with consecutive days when Tmin <10th percentile.  

Clearly, findings on the number, intensity, and duration of HWs will change depending 

on the threshold selected for an extreme event. Use of a time-sensitive metric (monthly rather 

than seasonal or annual) is helpful in examining the multiple types of HWs that occur during the 

extended five month period of ósummerô in Saudi Arabia. And, as regional temperatures continue 

to warm, the use of decadal rather than the period of record data for threshold determination will 

provide findings that better represent the changing warm season climate. 

2.3.2 Heat wave behavior 

2.3.2.1 Frequency  

Classifying the 25 stations into groups based on the dominant month(s) of HW 

occurrence resulted in eight categories (Figure 2.8A). HWs during May were found to be more 

frequent at 9 stations (36%) followed by September and July (each 20%) (Figure 2.8A). Stations 

with more frequent events during May were those located at higher elevation (Abha (1), Khamis 

Mushait (2), Al-Baha (3), and Taif (4)) and in coastal areas (Dhahran (22), and Jeddah (23)), 

except Makkah (19) and Al-Ahsa (20). May-event-stations were characterized by a low number 

of annual HWs, except station Al-Baha (3) (Figure 2.8B). Most of May-event stations were 
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dominated by short-lived events (i.e., 2-days) and half of these stations recorded their maximum 

durations during May. Mayôs events tended extended over into June for a few days, yet not to the 

extent that they were recorded as June events. The tendency for May HWs to extend into the next 

month was more frequent than events from other months. HWs occurring during the months of 

June through September showed a more random geographical distribution as there was not a 

common elevation, longitude or latitude pattern (Figure 2.8A). Some stations showed unique 

monthly frequency maxima (e.g., Bisha (6), Turaif (8), and Wejh (21)) and Gizan (25) had nearly 

equal frequency across all months. 

 

Figure 2.8. Classification of stations by the dominant month(s) of heat waves (A) and proportional 

symbols for annual frequency (B). Land cover data was obtained and modified after Broxton et al. 

(2014). Refer to Figure 2.1 for the elevation legend for (A) and for stations names. 

Stations along the northern borders of Saudi Arabia had the highest HW frequency 

(Figure 2.8B) with events more often occurring in mid-to-late summer. Coastal and higher 

elevation stations had low event frequency, except two stations (Wejh (21) and Yenbo (24)) on 

the north-west coast. These latter stations and internal stations (Hail (7), Gassim (12), and 

Riyadh-New (14)) showed moderate HW frequency (Figure 2.8B). Such a spatial pattern may 

indicate that HWs in the north part of Saudi Arabia are induced by a similar and relatively 
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frequent synoptic weather pattern. Local factors may play a more important role in interacting 

with regional weather patterns for the other stations. Stations at a higher elevation (excluding Al-

Baha (3)), those with a more dense vegetation cover (Abha (1), Khamis Mushait (2), Taif (4), 

and Bisha (6)), and those with more moist air present (coastal stations (Dhahran (22), Jeddah 

(23), and Gizan (25)), tend to have a low frequency of HWs (Figure 2.8B). 

2.3.2.2 Duration 

To map the 25 stations based on HW duration, three-categories were selected (Figure 2.9) 

due to the low frequency (<6%) of long-lived events (Ó6-days) at 56% of stations. Long-lived 

HWs (Ó6-days) constituted 9-16% at only 7 stations. The vast majority of stations had more of 

their events as short-lived or 2-4 day events (>85%). Events of this duration are missed by the 

ETCCD heat wave duration metric (WSDI). Specific locations where short events dominate were 

those stations clustered on the coast or at high elevation (Figure 2.9). Three other stations (Hail 

(7), Riyadh-New (14), and Al-Ahsa (20)) also had more than 90% of their events fall in the 2-4-

day category. These stations were found to have a higher frequency with more events occurring 

at the boundary of the warm season (i.e., May and September). Perhaps, local factors (e.g., 

vegetation, topography or a sea breeze) help control the duration of events in these areas. 

Almazroui et al., (2015) showed that often extreme high temperature events (warm days and 

nights) did not result from just a single weather circulation type within a subclimate type. 



38 

 

Figure 2.9. Number (upper) and percentage (bottom) of HWs based on three duration categories: 2-

4-days, 5-7-days, and Ó8-days. For stations names refer to Figure 2.1. 

Relatively long and long-lived events (5-7-days and Ó8-days) constituted a noteworthy 

number of events at stations in the north and at one station in the higher elevation area, Taif (4). 

Commonly, stations with frequent short-lived events (90%) tended to have a low frequency of 

long-lived events (e.g., Najran (5), Wejh (21), and Gizan (25)). Stations in northern Saudi Arabia 

tended to have infrequent short-lived events and notable and frequent long-lived events. A 

persistent atmospheric circulation pattern(s) could be responsible for these longer events at the 

northern stations.  

2.3.2.3 Intensity 

HW intensity, the Tmean of the warmest day during an event, showed no major patterns 

among months in relation to the length of events. HWs during July and August had higher 

intensities at a few stations, but consistent monthly patterns were not found across all stations. 

Although longer events were expected to have the higher intensities, shorter events (i.e., 2 and 3-
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days) were often found to be the most intense (Figure 2.10). It should be noted that this 

comparison across stations is in terms of an absolute value since the intensity value (i.e., Tmean 

of the hottest day) depends on day-to-day temperature anomalies. 

 

Figure 2.10. Two-dimensional (top) and three-dimensional (bottom) scatterplots of day of peak 

(highest Tmean), duration (in day) and intensity (standardized Tmean with zero mean and unit 

standard deviation at station level) at all the 25 stations. Coastal, Highland, and other categories 

include stations (IDs): 21:25, 1:6, and 7:19, respectively. Refer to Figure 2.1 for stations names and 

locations. 

The intensity of a HW, was found to peak autonomously in relation to duration as highest 

temperatures were sometimes in the middle of the string of days; for other events, the peak 

occurred either after or before the middle of the event. However, short-lived HWs (2 to 4-day) 

tended to record maximum intensity a day before event end, whereas, maximum intensity was 
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observed a few days before event end of long-lived HWs (>5-day) (Figure 2.10). For events of 2-

days duration, this aspect had a more random spatial distribution, suggesting differences in local 

and micro-climate factors. It also suggests that local and micro-climate factors could be more 

important than the effects of atmospheric circulation on the association between HW intensity 

and their duration. 

2.3.3 Trend analyses 

By design the decade-to-decade, long-term warming or cooling (i.e., shift in the mean 

climate) was relatively removed for this analysis of HWs in Saudi Arabia. Subsequent analysis 

for the remaining trend in the HW data for the 30-year period from 1985-2014 could be related 

to changes or variation in the upper-tail characteristics (i.e., variance and skewness). Figure 2.11 

displays different temporal trend patterns across stations for the three HW characteristics. It is 

worth noting that the values of frequency and duration in Figure 2.11 are as percentages, so that 

a one-unit change per year corresponds to change in frequency or duration of one percent. Only 

Makkah (19), had significant upward trends in all the studied aspects (frequency, duration and 

intensity), suggesting that the station had experienced not only more frequent HWs put also 

longer and more intense events. At Makkah City, the Hajj (pilgrimage) takes place, raising a 

serious concern about coming years when the Hajj will be during the warm season.  

Taif (4), Gassim (12), and Bisha (6) had significant upward trends in frequency, but an 

insignificant trend in duration (HWLD). Only one station had an insignificant decrease in 

intensity (Al-Jouf (11)), whereas 24% and 36% of the stations had decreases in HW frequency 

and duration, respectively. For HW intensity, an upward trend was found at 60% of stations, 

36% of which had significant intensification trends. The geographical patterns of both frequency 

and intensity aspects (Figure 2.11) showed that coastal and high elevation stations had rising 
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trends in event frequency, with lower intensity trends. 

 

Figure 2.11. Temporal annual trends in frequency (left-top), intensity (right-top), and 

duration/HWLD (bottom) aspects. ***, **, *, and + Ŭ = 0.001, 0.01, 0.05, 0.10 level of significances 

respectively. For stations names refer to Figure 2.1. 

These findings suggest that local factors impact the regional effects of heat extremes. The 

patterns identified, and the time-sensitive criterion (i.e., decadal time-window), suggest that the 

trends in the intensity of HWs in Saudi Arabia are related to regional warming and local factors 

may play important roles in moderating or enhancing the regional trends. Although several 

stations had low trend magnitudes (either upward or downward), it is important to remember the 

time-sensitive criterion. Temporal trend analysis was not applied at the monthly level due to high 

(i.e., excess) number of zeros (no event observations). However, linking results from Figures 

2.8A and 2.11 suggests that stations which tended to have frequent events during the early warm 

season (May) are those that recorded the greatest increase in frequency over time and had a 
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lower intensity trend. These stations were characterized by frequent short-lived HWs (Figure 

2.9), where they experienced largely decreasing or small increasing trends in event duration (i.e., 

the HWLD indicator (Figure 2.11)), except Al-Baha (3)). Stations with frequent late warm 

season HWs (September) (e.g., Najran (5), Sharurah (10), Riyadh-New (14), Rafha (17), and Al-

Qaysumah (18)) had low upward trends in intensity and different patterns in their HWLD (Figure 

2.11). This could be due to differences in event duration and annual frequency aspects (Figures 

2.8B and 2.9), which may be the result of differences in both regional and local factors. 

2.4 Summary and Conclusions 

The frequency, intensity, and duration aspects of HW events in Saudi Arabia were 

explored using data from 25 stations for 1985-2014. Data quality received careful attention and a 

regionally relevant HW definition was developed to account for any possible warming, cooling, 

and year-to-year variability. The importance and effect of different time bases for determining a 

HW threshold was examined and the importance of selecting an appropriate threshold and 

indices for different HWs aspects were addressed. Results reveal the need for careful 

consideration of HW indicators. HWs in the study area behave spatially and temporally 

differently at the station level, although common patterns were found with some grouping of 

stations, with local factors proposed to play an important role. 

The geographic behavior of HWs was studied using traditional statistical classification 

methods (e.g., equal interval) to map different aspects of HWs. Less subjective methods (e.g., 

clustering analysis) could be used to provide further insights. Cluster analysis would help to 

better understand the spatial and temporal characteristics of HWs across a region. Understanding 

the spatial differences would not only help to recognize the geographic pattern(s) of change, but 

would also help in speculation about some of the possible factors that may have an important 
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influence on changes in extreme temperature and HWs such as topography, local water bodies, 

urbanization and surface cover/vegetation. This local knowledge also would provide insights into 

how spatial factors (e.g., topography and continentality) could relate to or influence the 

atmospheric circulation at different scales (e.g., micro- and meso-scales) that induce extreme 

temperatures (Kenawy et al., 2013). 

Analyses of HWs were performed at the station level to unravel the intricacies of place-

to-place differences and to provide detailed information. The study area contains several 

subclimate types (Almazroui et al., 2015) and it was thought that stations might show common 

patterns within these subclimate zones. However, the behavior of HWs within and among 

different subclimate zones was not clear, although some coherent spatial patterns were indicated 

with some of the results. The effects and roles of local factors and atmospheric circulation were 

discussed from a theoretical point of view and some suggestions were made. However, the 

interplay of regional and local factors is not clear, as some stations showed individual behavior 

(e.g., Bisha (6) and Turaif (8)) and local microclimate studies within Saudi Arabia are rare.  

Percentiles were estimated using a decadal time-window, given the length of the 

available data record (30-years) and to balance between long and short climate variability. With 

the availability of longer and high-quality data, different time-windows could be used with 

different estimation techniques (e.g., moving window). The stability and effects of different 

methods in defining percentiles is an important aspect not only to model extreme temperature 

events, but also to better understand changes in climate variability. This methodological 

assessment was beyond the scope of this work and further studies are needed. Davis et al. 

(2003b) showed that heat-health outcomes in many of U.S. cities have experienced decadal 

variabilities and changes (decreases) and, thus, acclimatization processes and population 
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vulnerability may vary through time and space. Modeling and counting for acclimatization as a 

factor for HWs involves a substantial level of uncertainty and different methods has been 

developed (Sheridan et al., 2012). Accordingly, it is difficult to detect the time when populations 

get adapted/acclimatized (behaviorally and physiologically) to a changing climate. This 

uncertainty emerges from the non-linear relationship between adaptation and heat-related effects 

on other factors such as socio-economic conditions and demographic variables. It has been 

suggested that non-stationary models are more suitable for evaluating the outcome of adaptation 

to a changing climate (Gosling et al., 2009).  

Although several stations showed no significant temporal changes in some of their HW 

characteristics (Figure 2.11), it does not imply that climate change is not taking place at these 

stations. In fact, significant changes were detected in the upper-tail percentiles at most of the 

studied stations (Figure 2.4). Consequently, results should be viewed comprehensively 

considering that our HW definition lessens (by detrending) any possible effects related to an 

overall warming or cooling trend. As we have discussed, climate change is usually accompanied 

by changes in the temperature trend and its distribution characteristics. Thus, any response would 

require fundamental changes/adaptation at different scales (locally, nationally, and globally) 

given the complexity and sensitivity of the changing climate. One of the main implications of 

this work is the importance of considering acclimatization in addressing the outcomes of climate 

change as several studies have showed the importance of these factors with respect to HWs (refer 

to Sheridan et al. (2012), Gosling et al. (2009), and Davis et al. (2003b) for additional reviews). 

 

 

 



45 

Chapter 3 - Trends and spatial pattern recognition of warm season 

hot temperatures in Saudi Arabia 

Abstract 

Temporal trends and spatial patterns of six warm season (May-September) hot 

temperature indicators (WSHTIs) were developed and explored for Saudi Arabia. The indicators 

focus on the frequency and intensity of hot days and nights, and heat waves. Systematic upward 

trends in maximum and minimum temperatures were found at most of the stations, suggesting 

on-going change in the climatology of the upper-tail of the frequency distribution. Taking into 

the account the observed effects of climate change on the countryôs climate, hot temperature 

events were defined using a monthly and decadal, time-sensitive approach. Indicators of event 

frequency are count data; thus, different Poisson models were used for temporal analysis. 

Further, a novel method of time-series clustering, was introduced to recognize spatio-

temporal patterns of WSHTIs. Different patterns were observed over time and space not only 

across stations but also among WSHTIs. The overall results suggest that not only local and 

regional factors, such as elevation, latitude, and distance from a large body of water, but also 

large-scale factors such as atmospheric circulation patterns are likely responsible for the 

observed temporal and spatial patterns. 
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3.1 Introduction  

Understanding the character of change in extreme hot temperature events is of critical 

importance for citizens of the Middle East (Pal and Eltahir 2015). An upward trend is the 

dominant pattern for thermal aspects of the climate and this warming has been accompanied by a 

positive shift for both minimum (Tmin) and maximum (Tmax) temperatures for the Arabian 

Peninsula, particularly, Saudi Arabia (Zhang et al., 2005; AlSarmi and Washington, 2011, 2013; 

Almazroui et al., 2012a, 2012b; Almazroui et al., 2013; Almazroui et al., 2014; Rehman and Al-

Hadhrami, 2012; Athar, 2014; Donat et al., 2014; Islam et al., 2015). Studies of the area 

document that current hot temperature events (i.e., hot days, hot nights, and heat waves (HWs)) 

reached maximum frequencies during the last few decades, suggesting that such events may 

continue to become more common within the suite of local climate conditions. Almazroui et al. 

(2014) identified changes in the mean and variance in the distribution of air temperature over 

Saudi Arabia, which corresponded with decreases in the number of cold events and increases in 

the number of warm events. Almazroui et al. (2012b) also found that the warming/upward slope 

of the mean temperature trend is steeper for the summer season. Hansen and Sato (2016) 

reported a positive shift of 2.4 standard deviations in the distribution of summer temperature 

anomalies in the Mediterranean and the Middle East region compared to an increase of 0.87°C in 

winter. This shift has resulted in a larger annual variability and a more extended summer season. 

By the end of the century, the extreme warm temperature events of today are projected to 

become the norm and new rare extremely hot events will emerge in several places in the Arabian 

Gulf States (Pal and Eltahir, 2015). 

Similar to the reported overall global warming trend with steeper rates since the 1990s 

(Bajat et al., 2015), the signal of warming of hot temperature events in the region started 
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gradually in the 1970s and a steeper upward trend was evident by the 1990s (Zhang et al., 2005). 

Several studies have shown that temperatures have risen across Saudi Arabia, largely during the 

latter part of the 20th and early part of the 21st centuries (AlSarmi and Washington, 2011, 2013; 

Almazroui et al., 2012a, b; Almazroui et al., 2014; Rehman and Al-Hadhrami 2012; Athar, 2014; 

Islam et al., 2015). From currently available literature, the overall findings are that the region has 

experienced substantial warming in mean annual temperature, annual mean Tmax and Tmin, and 

annual highest Tmax and Tmin for the last few decades. 

Almazroui et al. (2014) compared trend slopes in several climatic extreme indices 

between two subperiods, 1981ï1995 and 1996ï2010, at the national level for Saudi Arabia and 

found that the latter period had greater upward slopes in the extremes and that the changes were 

accompanied by positive shifts in the frequency distributions of both Tmax and Tmin. During the 

latter period the rate of change in the frequency of warm days doubled whereas the frequency of 

warm nights increased more than ten times. Islam et al. (2015) used similar subperiods and 

detected significant changes in the frequency distributions of the average air temperature 

anomalies, where summer had the greatest positive shift. From these findings, it is plausible to 

suggest that there has been a change in the overall suite of climate conditions for Saudi Arabia 

and that what used to constitute a rare hot temperature event is now more common and will 

become increasingly frequent in the future. 

Most of the existing literature about extreme temperature events and their trends for 

Saudi Arabia is based on a single set of climate indices, i.e., those developed by the Expert Team 

on Climate Change Detection and Indices (ETCCDI). In addition to the identified limitations of 

the ETCCDI indices (see Perkins and Alexander, 2013), results found using the indices could be 

affected by the observed changes in the mean and variance of the air temperature distribution 
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and, unfortunately, little attention has been paid to this potential issue. Event duration has been 

the dominant metric used for a good deal of the prior work examining HWs in Saudi Arabia and, 

as such, the intensity aspect of hot days and hot nights needs to receive more attention. 

Previous studies document that the frequency of warm temperature events has increased, 

and that warming trends exist for Tmax and Tmin. However, it is highly possible that the upward 

trends in the frequency of warm temperature events are more due to the increases in the 

incidence of the exceedance using a constant threshold (static/fixed value), above which 

extremes are identified, for the period of record. An important implication of warming is the 

impact on evolving climatic conditions and related extreme temperatures (Perkins and 

Alexander, 2013; Alghamdi and Harrington, 2018). As the climate warms, its temperature 

frequency distribution shifts positively and thus new rare warm conditions emerge. Alghamdi 

and Harrington (2018) document a rationale and the value of using a time-sensitive approach to 

examine warm season extreme heat events for Saudi Arabia.  

A warming climate is accompanied by large interannual variability (Hansen and Sato, 

2016) and a decadal time-window can better reflect the influence of multi-year variations. The 

rate of warming or cooling could be different among years and months due to effects of external 

climate forcing such as ENSO or multi-year droughts. For instance, it has been shown that the 

long-term temporal trends of both hot days and HWs in the United States were affected by the 

multi-year droughts of 1930s and 1950s (Easterling et al., 2000). It is important to recognize that 

shifts in the distribution of mean temperature do not need to be that large to result in a substantial 

change in the probability of upper-tail events due to the nonlinear relationship between the mean 

and the extreme temperatures (Mearns et al., 1984; Katz and Brown, 1992). As an example, the 

2003 European HW was very far off from the normal climate distribution (Schär et al., 2004). 
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For changes in climate extremes to be better understood, knowledge of the change in the 

mean climate needs to be supplemented by important changes in the variability and shape of the 

frequency distribution since the relationship between changes in mean climate and those of 

climate extremes are not always scaled (Seneviratne et al., 2012). In fact, the overall impacts of 

shifts in the average climate are less than those of the increasing climate extremes (Whan et al., 

2015) and it has been established that short-term variations in extreme weather conditions can 

rapidly impact terrestrial ecosystem processes (Suseela et al., 2012). Heat-related mortalities, for 

instance, have been shown to increase with higher variability in warm season temperatures due 

to sudden changes in temperature (e.g., Braga et al., 2001; Medina-Ramón and Schwartz, 2007).  

Dominance of extreme events/values during warmer months and the related impact on 

selecting extreme value thresholds (e.g., the 90th percentiles) for climatic analysis needs to 

receive more attention. By estimating percentiles over annual or seasonal time scales, warmer 

(cooler) months will dominate the estimation of the upper-tail (lower-tail) percentiles (Robeson, 

2004). Consequently, hot events that occur early or late in the warm season months are less 

likely to be examined whereas warmer month events would dominate the analysis (Coelho et al., 

2008). A time-sensitive approach defining threshold values on a monthly basis would enable 

documentation of the early and late season extreme heat events. Realistic estimates of changes in 

hot temperature events will help future planning efforts such as in managing changing demands 

for electricity and water resources in an arid environment.  

Previous studies of Saudi Arabia have focused on temporal change using common 

climatic indices, with less attention given to the geography of extreme temperature events (i.e., 

spatial patterns). These efforts have not addressed in detail the effects of local and regional 

factors (e.g., urbanization and other land cover shifts or a coastal location), and the effects of 
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warming on the frequency of climatic extreme events. Identifying the spatial patterns of the 

temporal behavior of hot temperature events will help recognize the varying geographic patterns 

and influences of the local climate and will also help in the speculation and formulation of 

hypotheses about possible factors that have important control on the changes such as topography, 

distance from water bodies, and vegetation/land cover. Further identifying places/regions of 

similar warm/hot temperature behavior is beneficial for practical purposes including developing 

heat-warning systems and other policy-oriented planning.  

Building on the previous research, the objectives of this study are to (1) detect temporal 

changes in the frequency and intensity in six warm season hot temperature indicators (WSHTIs) 

using a time-sensitive approach to account for the ongoing regional warming trend and (2) 

recognize the spatiotemporal character of warm season hot thermal events with an emphasis on 

event behavior through time and space using a time-series clustering approach.  

3.2 Research Design and Methods 

3.2.1 Study area and data  

Saudi Arabia lies between the Red Sea and Arabian Gulf on the Arabian Peninsula 

(Figure 3.1). Using the Köppen climate classification, the study area has two main climate types. 

A large part of the study area is subtropical desert (BWh), which is characterized by hot and arid 

conditions. The southwestern mountain areas are subtropical steppe (BSh), which is 

characterized by hot and semi-arid climate conditions. Accordingly, most of the landscape is 

barren except for portions of the southwestern mountains. The latter area is characterized by high 

elevation with complex topography, moderate temperatures, a bit more precipitation and 

vegetation cover (Figure 3.1). Topography and the geographical location with respect to the 

Hadley circulation are the primary climate controls. Sinking air associated with the poleward 
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margin of the Hadley circulation is the dominant mechanism for limiting precipitation in the 

area.  

 

Figure 3.1. A map showing the study area and weather stations along with their names and IDs. 

Source: adapted from King Abdulaziz City for Science and Technology (KACST) and the GAMEP. 

* station was not included in this study. 

Warm season hot temperature events were analyzed, for the period 1985-2014 for 25 

meteorological stations using daily Tmax and Tmin data provided by the Saudi General 

Authority for Meteorology and Environmental Protection (GAMEP). The selected weather 

stations provide suitable spatial and temporal coverage, a homogeneous time series (AlSarmi and 

Washington, 2013; Almazroui et al., 2014), and a reasonable long-term dataset for spatial and 

temporal analyses. This study is focused on the behaviors of warm season hot temperature events 
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through space and time; thus the period of investigation begins in 1985, as six weather stations 

began recording in 1985.  

Although a few stations in Saudi Arabia began recording observations earlier, direct 

temporal comparisons would be less efficient and some of these stations have issues in their 

metadata including missing data, and a limited time span prior to 1985 covered by some of their 

records. The study area is covered by 27 stations with more than 30 years of data, however, two 

were excluded in this study as those records have relatively large periods of missing data, 2011-

2013 for Riyadh Old and 1985-1990 for Wadi-Aldawasser (Figure 3.1). Quality control (QC) 

procedures developed by Alghamdi and Harrington (2018) were applied to maximize the 

accuracy of the data used in the analysis. Application of the QC procedures improved the overall 

data quality by 3-5%, on average, at the station level (refer to Alghamdi and Harrington (2018) 

for details on the used QC procedures). 

3.2.2 WSHTIs for subtropical arid climates under changing climate effects 

Although Alghamdi and Harrington (2018) documents the rationale and the value of 

using a time-sensitive approach to examine warm season extreme heat events, some relevant 

information will be discussed briefly in this section to guide the process of WSHTIs 

development and to emphasize some important aspects. Given the nature of climate seasonality 

in study area (i.e., long warm season (Ali, 1994; Alkolibi, 1995) and the pronounced magnitudes 

and effects of early hot temperature events on heat-related morbidity and mortality (Hajat et al., 

2002; Nasrallah et al., 2004), the warm season was defined for this study as May through 

September. The count statistics are limited by the number of days from May 1st to September 

30th (154 days). Six WSHTIs (warm season hot temperatures indicators) were developed and 

explored (Table 3.1). To detect changes in these indicators of rare hot temperature events and to 
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account for different warming or cooling trends and variabilities among years and months 

(Figure 3.2), percentile thresholds were estimated using a time-sensitive, decadal (and on a 

month-by-month basis) approach (Robeson, 2004; Alghamdi and Harrington, 2018). 

Table 3.1. The definition of warm season hot temperature indicators (WSHTIs). Percentile values 

were estimated using a decadal time-window on a month-by-month basis. Tmean, Tmax, and Tmin 

are mean, maximum, and minimum temperatures respectively. 

Indicators Name Definition  Units 

HD Hot days 
Annual count of days when daily Tmax Ó monthly 90th 

percentile of Tmax 
Days 

HDI Hot day intensity 

For selected days that exceed the 90th percentile, the 

average difference between the daily Tmax and monthly 

90th percentile of Tmax 

↔C 

HN Hot nights 
Annual count of nights when daily Tmin Ó monthly 90th 

percentile of Tmin 
Nights 

HNI 
Hot night 

intensity 

For selected days that exceed the 90th percentile, the 

average difference between the daily Tmin and monthly 

90th percentile of Tmin 

↔C 

HWE 
Heat wave 

events 

Annual count of events with two or more consecutive 

days with a daily Tmax and Tmin Ó monthly 90th 

percentile of the Tmax and 85th percentile of Tmin 

Events 

HWEI  
Heat wave event 

intensity 

For heat wave days, average of difference between the 

hottest day Tmean and monthly 88th percentile of 

Tmean 

↔C 

 

The choice of a time-sensitive analysis minimizes the role of the hottest months in 

determining the relevant threshold values for both May and September. This time-sensitive 

approach (monthly and decadal) has been established to be more suitable for low-probability 

climate events that are impacted by a changing climate (e.g., Robeson, 2002a, 2002b, 2004; 

Robeson and Doty, 2005; Alghamdi and Harrington, 2018). The R8 method was used to estimate 

percentile thresholds as it delivers unbiased estimates and requires no distribution assumptions 

(Hyndman and Fan, 1996). 
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Figure 3.2. Distributions of the probability density function of daily temperatures at Gizan (25) for 

three decades using summer months (June-August) Tmean, Tmax, and Tmin (upper) and for 30-

years summer season months Tmean, Tmax and Tmin (bottom). Gizan was selected as it 

exemplifies different temporal and shape changes found for many of the stations. 

To allow direct comparison among the 25 stations through time and space, a relative 

indicators approach (i.e., use of the percentile technique for the data from each station) was 

applied for the WSHTIs. For the first 4 WSHTIs (hot days and nights and their intensity indices), 

the 90th percentile was used as the threshold. The 90th percentile was selected as it is commonly 

used for defining hot days and nights and it has been shown to optimize the balance of extreme 

versus other temperature events (Perkins and Alexander, 2013). However, for HW indices (HWE 

and HWEI) the percentile thresholds were reduced, since Tmin was built into both indicators. 

During periods with hot days, lower nighttime temperatures become necessary to allow for a 

period of relief by reducing the cumulative heat stress impact on organisms. Given the nature of 
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radiational cooling in an arid climate and the tendency of Tmin to drop considerably (Oke et al., 

1998) and the limited nighttime summer stress relief within such an arid climate type; the 85th 

percentile (i.e., warm nights) was selected as the Tmin threshold for defining a HW event. For 

HW event intensity (HWEI), the 88th percentile of mean temperature (Tmean) was used to 

incorporate both Tmax and Tmin into the calculation. Since both Tmax and Tmin are used to 

define a HW, intensity of a HW was assessed by the Tmean of the hottest day, the peak of the 

HW (e.g., Perkins and Alexander, 2013; Alghamdi and Harrington, 2018). The 88th percent 

threshold could be critical for several sectors such as agricultural practices and energy 

generation. 

3.2.3 Temporal trends analysis 

Common statistical approaches for trend detection of climatic extreme indices are: rank-

based tests for significance testing (e.g., MannïKendall and Spearman Rank Correlation) and 

slope-based tests for estimating the rate of changes (e.g., Least Squares Linear Regression and 

Senôs Slope estimator). Indicators of intensity aspects (i.e., HDI, HNI and HWEI) are 

temperature values that can be rank ordered and thus the Mann-Kendall and Senôs Slope methods 

were used, since they require no distribution related assumptions. However, the frequency of 

climatic extreme event indicators are count data (i.e., HD, HN and HWE) and thus event-count 

time series techniques are most suitable (Ryden, 2016; Alghamdi and Harrington, 2018). 

In modeling event-count data, the occurrences of events are rare and commonly assumed 

to result from a Poisson process or density (Cameron and Trivedi, 1998; Chatterjee and 

Simonoff, 2013). Frequency of extreme climate events are count variables that can only have 

non-negative values (e.g., Alghamdi and Harrington, 2018); accordingly, use of a linear 

regression model is not appropriate as negative estimated mean responses are not possible 
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(Chatterjee and Simonoff, 2013). Further, the Poisson regression method relies on two critical 

assumptions that are fundamentally inline with the nature of extreme temperature events. The 

method assumes that the occurrences of events are independent and random. Unlike a linear 

regression model, a count regression model provides slope coefficients of the mean relative 

change (not the absolute change) in the expected response/occurrence associated with a unit 

change in the predictor variable.   

By definition, extreme climate events are rare and thus variability in their counts is highly 

expected, which usually results in overdispersion (i.e., variance is greater than the mean) and 

with zero-inflation (an excess number of zeros or óno eventô observations). The Poisson 

regression model assumes that the mean and variance are equivalent (i.e., equidispersion) and 

uses a maximum-likelihood technique to estimate the Poisson mean parameter. Several 

techniques have been developed to correct for overdispersion, with the common approach being 

a Negative Binomial Estimator (Brandt et al., 2000), which also allows the presence of an excess 

number of zeros to be addressed by using a Zero-Inflated Negative binomial model (Chatterjee 

and Simonoff, 2013; Brandt et al., 2000). Table 3.2 presents the statistical frameworks used in 

this study to estimate temporal trends in HD, HN and HWE indicators. To select and compare 

models, the Vuongôs test (Vuong, 1989) was applied. For theory, mathematical terms and 

implementation, refer to Chatterjee and Simonoff (2013). 

Table 3.2. Used framework for trend analysis of WD, WN, and HWE indicators. Modified after 

Yang et al. (2015). 

Over-dispersion Zero-inflation  Model 

No No Poisson regression 

Yes No Negative Binomial regression 

No Yes Zero-inflated Poisson regression 

Yes Yes Zero-inflation negative binomial regression 
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3.2.4 Spatial and temporal pattern recognition 

The aim of this research component is to provide insight into how hot temperature events 

at the 25 stations behave through time and space. In other words, were there similarities among 

the time series for the stations? And if so, what were the spatial patterns? Previous studies have 

commonly used traditional statistical classification methods (e.g., equal interval and standard 

deviation) to map the temporal behaviors of climatic extreme events. These methods are one-

value classification means; that is, stations with similar temporal statistics (e.g., average 

frequency or intensity) are grouped together. However, stations within groups do not necessarily 

behave similarly in time (i.e., across the 30 individual years).  

Given the subjectivity in the use of such methods and the observed complexity of the HW 

events (e.g., Alghamdi and Harrington, 2018), less subjective and more advanced pattern 

recognition techniques are required. To explore the similarity and to detect common patterns in 

time, a time-series clustering (TSC) approach was applied. TSC aims to extract useful 

information to help recognize patterns and formulate hypotheses. Different TSC methods are 

available and a choice is based on the goal of the analysis. In clustering climate data, the 

hierarchical average-linkage (HAL) approach is commonly suggested when the goal is to 

recognize homogenous regions/stations (Robeson, 2004; Robeson and Doty, 2005). The method 

is among those commonly used in TSC particularly for short and small time-series datasets 

(Aghabozorgi et al., 2015). A primary goal of the spatial analysis in this study is to identify 

stations with similar time-series (homogeneous temporal behaviors) and thus, the HAL method 

was applied as it maximizes cluster homogeneity by minimizing (maximizing) within-cluster 

(between-cluster) variance (Unal et al., 2003).  
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One of the critical steps in TSC is the selection of similarity/dissimilarity measures. 

Different measurements are available and the choice is based on the objective of the analysis 

(Aghabozorgi et al., 2015; Liao, 2005). When the objective is to identify regions/stations with 

similar temporal patterns in time or shape, Euclidean distance or dynamic time warping (DTW) 

methods are recommended (Aghabozorgi et al., 2015). This approach, which conforms to the 

work (i.e., station level) in this study, is usually referred to as shape-based clustering that 

operates on the local patterns (Aghabozorgi et al., 2015). The Euclidean distance method is more 

suitable in TSC compared to DTW, particularly with short or moderate-length time-series with 

equal length and when the similarity in time is more important (i.e., the occurrence of events) 

(Wang et al. 2006; Aghabozorgi et al., 2015). Refer to Aghabozorgi et al. (2015) and Liao (2005) 

for further review and references on TSC and statistical distance measures.  

To find reasonable grouping solutions and an appropriate number of clusters, three 

widely used and recommended cluster validity indices were used: Silhouette width, Dunn, and 

CalinskiïHarabasz (CH) (Lord et al., 2017). For theory and mathematical terms, refer to Lord et 

al. (2017). Higher values are the goal in all the validity indices. Thus, they can help find a 

suitable solution that provides higher separation between clusters and more similarity within 

clusters. To evaluate the results from determining these indices and for further evaluation, the 

averages distances between and within clusters indices were used as well. Use of complementary 

validation methods is a highly recommended practice in finding reasonable grouping solutions 

(Handl et al., 2005). Cluster analysis was run for each of the hot temperature indicator time-

series. 
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3.3 Results and Discussions  

3.3.1 Evaluation of trends in the upper-limits of Tmax and Tmin 

Temporal patterns of the 90th percentile of Tmax and Tmin determined on a yearly basis 

were explored. Trends in these percentile values were selected for evaluation due to possible 

unscaled relationship between changes in mean climate and the climate extremes and because 

hot temperatures and upper-tail variations in Tmax and Tmin are closely coupled (Seneviratne et 

al., 2012). Generally, warming trends were detected in thresholds for both Tmax and Tmin 

across the warm season months with a few surprising exceptions (Figure 3.3). Positive trends in 

annual Tmax and Tmin percentile values were found at most of the stations, with more 

pronounced increases for Tmin. These increases in the threshold for a hot temperature event 

suggest a change in the shape of the probability distribution and that a change in the climatology 

of the upper-tail conditions has occurred (i.e., rare warm events are getting hotter, and new 

norms are emerging). The positive trends at most stations support the methodological decision to 

use a decadal rather than period of record time window for determining extreme event 

thresholds. Thus, using the entire 30-year period to estimate the 90th percentile would violate the 

role of rarity and would result in miss detecting some possible rare events, particularly for short 

high-impact events. This could be a critical issue for stations with inconsistent monthly slopes. 

As is expected with station level data, a few individual stations differ from the regional 

pattern and six of 25 stations had decreasing trends in some of their monthly Tmin values with 

more pronounced declines during either early or late warm season months. Gizan (25), on the 

Red Sea coast, had relatively constant negative trends for Tmax. This suggests the possible 

importance of local microclimatic conditions on changes in extreme events. Although some 

stations had either no sign of change or very small changes in the 90th percentile for their Tmaxs 
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and Tmins during different months, time-sensitive thresholds are still advantageous to account 

for possible variabilities; given the reported changes in the means and variances (e.g., Almazroui 

et al., 2014; Islam et al., 2015; Alghamdi and Harrington, 2018). 

 

Figure 3.3. Heatmaps of decadal-based temporal trends in Tmin (left) and Tmax (right) 90th 

percentile values (ºC/yr-1) at monthly and warm season (x-axis) time scale for each station (y-axis). 

***, **, *, and + Ŭ = 0.001, 0.01, 0.05, 0.1 level of significances respectively. Trends were computed 

by Kendall-tau and Senôs slope estimator. For stations names and locations refer to Figure 3.1.   

It is also clear from Figure 3.3 that the magnitudes of slopes were different among warm 

season months. Months were not only under different trend magnitudes but also have different 

slope directions (i.e., positive or negative). Thus, use of a seasonal time scale (rather than 

monthly) will hide differences evident in individual monthly data. At Guriat (16), for example, if 
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the 90th percentile were estimated on a warm seasonal basis, hot events during months with 

upward trends would be over detected and less detected during months with downward trends. 

Downward trends largely suggest lower probability and intensity of hot temperature events but 

do not indicate an absence of extreme events. 

From Figure 3.3 it is also clear that using a single atmospheric factor (e.g., just Tmax) 

would omit important aspects of the climatology of HWs, given the differences in the heatmap 

patterns for Tmax and Tmin. At a monthly scale, 59.2% of trends in Tmin were higher than those 

of Tmax, whereas 35.2% of Tmax trends were higher than those of Tmin. This suggests that any 

possible changes in the nature of a HWE at 59.2% of the studied stations are expected to be 

accompanied by more hazardous nighttime weather conditions (i.e., fewer periods of stress 

relief). At the 0.001 level of significance, 16 stations had significant positive trends in their Tmin 

90th percentile, whereas only 9 stations had significant positive trends in Tmax 90th percentile. 

From these observations, it can be concluded that the impact of climate change on hot weather 

events was more pronounced at night for more of the stations in Saudi Arabia.  

At the monthly scale, significant warming trends at the 0.001 level of significance were 

more frequent during September in the Tmax 90th percentile and during June for the Tmin 90th 

percentile. At the station level, Najran (5) had the highest significance level of an upward trend 

for Tmax 90th percentile in all months and for the entire warm season followed by Gassim (12). 

For the Tmin 90th percentile, Abha (1) and Gizan (25), which are both in the southwest part of 

the Kingdom but at very different elevations, had the highest significance level of upward trends 

across all months and for the entire warm season. Data analysis for Al-Jouf (11) in the north also 

suggests a strong upward signal for Tmin, especially in June and July. These examples indicate 
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the importance of using both Tmax and Tim in studying HWs and the important role of local 

complexity. 

3.3.2 Temporal trends in WSHTIs  

In contrast to the analysis done for Section 3.3.1, results presented herein used a decadal 

time window. Yearly totals of hot days and hot nights averaged more than 15 days per year and 

ranged considerably across the 30 years and among the 25 stations (see Table 3.4 in section 

3.3.3). The frequency of HW events was also quite variable in time and space. Warm/hot 

temperature events largely result from physical processes at either regional (i.e., atmospheric 

circulation) or local levels (e.g., urban heat island). Accordingly, an event might be reported by 

adjacent stations depending on the spatial coverage of the event and the distance between 

stations. Distinguishing among events that occur at multiple stations and physical processes is 

beyond the scope of this statistical analysis which was performed at the station level.  

Hot days (HDs) and hot nights (HNs) had statistically significant increasing trends only 

at two stations (Najran (5) and Gassim (12)) and one station (Jeddah (23)), respectively (Table 

3.3).  For both HD and HN, a majority of stations in Saudi Arabia have an upward trend. 

Analysis of Hot Day Intensity (HDI) produced a significantly rising trend at one station (Taif 

(4)) and a significant downward trend at Sharurah (10). Hot Night Intensity (HNI) had only a 

significant negative trend at Turaif (8). For the Heat Wave Event (HWE) indicator, four stations 

had a significant upward trend (Taif (4), Gassim (12), Guriat (16) and Makkah (19)), while only 

two stations had significant upward trends for Heat Wave Event Intensity (HWEI) (Sharurah 

(10) and Makkah (19)). It is worth mentioning that the slope coefficients of HD, HN and HWE 

are to be interpreted as one unit of change in the predictor variable (i.e., years) corresponds to 

mean relative change of one % in the expected response variable (i.e., HD, HN and HWE). 
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Table 3.3. Decadal-based temporal trends in annual warm season hot temperature indicators 

(WSHTIs). ***, **,  * , and + Ŭ = 0.001, 0.01, 0.05, 0.1 level of significance respectively. 

ID  HD (% Days) HDI (ºC) HN (%Nights) HNI (ºC) HWE (%Event) HWEI  (ºC) 

1 10.60 0.03 10.59 -0.04 7.93 0.00 

2 7.38 0.06 9.59 0.01 17.44 0.00 

3 1.65 -0.01 9.98 0.06 21.40 0.08 

4 18.40 0.08* 11.35 0.00 45.95* 0.00 

5 24.66+ -0.03 3.66 -0.09 28.37 0.00 

6 7.62 0.00 4.85 -0.07 23.83 0.00 

7 3.15 -0.03 -1.65 0.04 -11.08 0.00 

8 5.47 0.02 9.25 -0.21* 16.53 0.21 

9 9.74 0.01 2.01 -0.08 14.26 0.24 

10 6.63 -0.06+ 2.72 -0.09 20.69 0.21* 

11 -6.72 0.09 1.51 -0.13 -3.38 -0.18 

12 30.18* -0.07 7.32 -0.04 30.62* 0.02 

13 6.97 0.04 -3.41 0.07 -4.58 0.00 

14 -0.06 -0.03 0.34 -0.01 -0.59 0.00 

15 -3.36 -0.04 -2.39 0.12 7.55 0.28 

16 -3.64 0.07 0.85 -0.02 25.51+ 0.32 

17 -7.62 0.05 -3.26 0.10 0.50 0.23 

18 5.52 -0.07 -4.08 0.03 3.31 -0.26 

19 2.58 0.06 9.56 0.00 59.80** 0.85***  

20 6.19 0.05 -0.20 0.01 20.35 0.00 

21 4.20 0.19 2.93 0.01 -2.98 -0.09 

22 3.05 -0.10 -0.15 -0.09 -47.34 0.00 

23 3.68 0.01 8.03+ 0.04 17.44 0.00+ 

24 9.48 0.02 5.47 0.03 14.53 0.00 

25 -0.42 0.00 4.70 -0.04 8.95 0.00 

 

Different slope patterns (i.e., both upward and downward) were found for all the 

indicators and few stations had statistically significant trends. In both HD and HWE indicators, 

24% of stations had a negative slope value and 28% of the stations had a negative slope for the 

HN indicator. For their corresponding intensity indicators, 36%, 12% and 48% of stations had 

negative slopes, respectively. However, it is important to emphasize that the lack of significant 

slope values does not mean there are no changes/trends. Instead the analysis indicates the 

absence of enough evidence to conclude statistically significant changes/trends, since 
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significance statistics do not provide real quantitative confidence about the certainty of patterns 

(Ambaum, 2010).  

Use of a decadal window to determine thresholds for temporal trends has an impact on 

data interpretation. Upward and downward trends identified here suggest that there were factors 

other than what a changing average climate might have contributed to the observed changes. In a 

relatively similar arid environment, Balling et al. (1990) showed that the warming trend in 

summer mean temperatures in Phoenix, Arizona, USA, had contributed more to an increased 

frequency of moderate Tmax events than of extreme Tmax events.  In Phoenix, a considerable 

increase in the incidence of hot night events was observed. Differences could be due to urban 

growth impacts or to differences in the nature of changes in the shapes of the Tmax and Tmin 

probability distributions (Robeson, 2002b). Other factors could also have an influence. 

Urbanization has been reported not to provide a substantial contribution to the recent temperature 

warming in Saudi Arabia (Almazroui et al., 2013). Other potential contributing factors were 

reported to include changes in precipitation patterns, atmospheric circulation, or dew point 

temperature (AlSarmi and Washington, 2011, 2013). However, these factors have both spatial 

and seasonal differences, highlighting the importance of interpretation at the local scale.  

There were no clear and consistent geographic patterns among HWs indicators (HWE 

and HWEI) and HD or HN indicators, suggesting that local factors might play more important 

roles than large-scale factors. Except for station 21, the HWE indicator frequently had a negative 

slope whereas there was only one negative slope for either HD or HN (Table 3.3). This could 

indicate that HWs at these stations are controlled more by the indicator with a negative slope. At 

52% of stations, HD, HN, and HWI had similar slope directions, suggesting the possibility that 

hot days and nights had equal contributions to the frequency of HWEs at these stations. Although 
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Arar (15) and Rafha (17) had downward slopes in HD and HN indicators, the related HWE 

indicator showed an upward slope. This curious finding could suggest that the physical processes 

that induced a majority of the detected hot days and nights events were different from those that 

induced the detected HWs. Most of the negative slopes in both HD and HN indicators were at 

stations located in the northern part of the country suggesting hot events in this region are 

controlled by different physical processes or there has been a change in their controlling 

processes. 

3.3.3 Spatial pattern recognition of WSHTIs  

To find the suitable spatial grouping solution for each WSHTI, validity indices were 

carefully examined. Figure 3.4 shows the validity indices for the HD indicator (hot days). The 

Silhouette index suggested a 2-clusters solution as it had the highest value. However, the Dunn 

and CH indices did not support that solution. Dunn index results suggested either 6, 7, 8, 9 or 10 

clusters. The 6-cluster solution was supported by the other indices. For instance, a closer look at 

the Dunn and CH indices shows that there are no substantial improvements between the 6 and 13 

cluster solutions. When the number of clusters increased after 6, each new cluster had only one 

station until 12 clusters, where the additional new two clusters (12 and 13) had two stations in 

each, as shown in the cluster dendrogram Figure 3.4 This indicates a very low improvement in 

between and within cluster distances (i.e., separation and homogeneity) after 6 clusters. 

Such a characteristic of clustering indexes was present for all the other WSHTIs, and it 

was more pronounced in the intensity indicators. This could be due to the distance measure used 

and/or the classifier, or the climatology of the study area and the selected stations. In a quick 

exploration, the Kendall correlation was used as a measure of similarity/dissimilarity and a 

similar case was still present for the intensity indicators. Thus, a 6 cluster solution was selected 
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for the HD indicator because it optimizes between generalization and individual station details. A 

similar procedure was followed to find suitable solutions for the other WSHTIs. 

 

Figure 3.4. Validity indices for the HD indicator (left) and cluster dendrogram (right) along with 

stations IDs. 

The spatiotemporal patterns of WSHTIs over the 30-year period using a time-sensitive 

approach are displayed in Figure 3.5. The general spatial patterns are different between the 

frequency and intensity of each indicator, which may suggest that the leading factors for each 

WSHTI are different. Except for a few stations, the northern part of Saudi Arabia showed similar 

HD and HN spatial behavior. The large areal coverage of cluster 4 in both indicators suggests 

that the frequency of hot days and nights were more related to large-scale factors (i.e., synoptic 
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atmospheric circulation patterns). Al-Ahsa (20), Wejh (21), Dhahran (22) and Yenbo (24) 

behaved differently in their HD and HN indicators, highlighting the possible effects of a nearby 

water body, which may have differing impacts during the day and night. Differences could be 

due to changes in wind pattern or the effects of other local factors (e.g., urban heat island). The 

corresponding intensity indicators (HDI and HNI) showed different spatial patterns. Thus, local 

factors could be more important in determining the event intensities. The effects and type of 

local factors may differ from daytime to nighttime, as in the case of Wejh (21) and Dhahran (22). 

 

Figure 3.5. Maps showing the clustering of stations of WSHTIs. For stations names refer to Figure 

3.1. 

Stations in the southwestern part of Saudi Arabia showed relatively irregular cluster 

patterns for HN and HD (Figure 3.5). However, their corresponding intensity indicators, HDI 

and HNI, tended to cluster together. This region has higher elevations with complex mountain 

topography and more dense vegetation cover with higher relative humidity, and it is highly likely 

that these factors have different roles for each WSHTI aspect (frequency v. intensity). Although 
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stations in this region and several stations from the central part of the Kingdom were classified 

into similar HDI clusters, the cluster dendrograms showed these stations were not exactly similar 

in their temporal behaviors, suggesting differences in local factors. Similarly, HWE and HWEI 

indicators produced different spatial patterns. A large portion of stations in the HWE analysis 

was classified into cluster 1 and they are coastal and high elevated stations. This could indicate 

that relatively moist air is a major factor. 

Although Al-Baha (3) and Taif (4) are at higher elevation, they were classified into a 

different cluster (cluster 2) with two internal stations (Sharurah (10) and Al-Jouf (11)), where 

other microclimate factors could be more important. These two highland stations had higher 

annual means and standard deviations compared to the other stations at high elevations. 

Interestingly, the HWEI indicator showed relatively similar spatial clustering patterns to those of 

the HDI indicator. Such a similarity could suggest that HW intensities patterns were related to 

the pattern of hot days. Throughout all the 6 indicators, few stations were classified 

independently, where they were found to have distinct patterns of either frequency or intensity 

compared to their neighboring stations. This is in support of the technique employed for 

spatiotemporal analysis.  

To summarize the overall spatiotemporal patterns of all the 6 WSHTIs, one can use a 

dimensionality reduction technique (e.g., principal component analysis). However, two possible 

methods were proposed for simple and straight forward analyses (i.e., interpretations). Since the 

hierarchical average-linkage (HAL) method uses Euclidian distance to calculate 

similarity/dissimilarity among objects (i.e., time-series of stations) for each indicator, the 

resultant measurements could be used to epitomize all WSHTIsô classifications. The first 

possible method is to average the calculated Euclidian distances among stations of all 6 
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indicators and use that average as the similarity/dissimilarity input to the clustering algorithm 

(i.e., HAL). This measurement could be understood as the mean indicators' distances (MID), 

where station cluster membership is determined directly based on their overall memberships 

according to their individual distances for each WSHTI. The second possible method is to 

standardize and average WSHTIs for each station and use that average statistic to calculate the 

overall Euclidian distance among stations. Then the resulting distance is used as an input to the 

clustering algorithm, which can be understood as the distance of mean standardized indicators 

(DMSI). Here, the overall Euclidian distance is derived from the average stationsô time series. In 

both methods, all indicators are standardized, zero mean and unit variance, and are weighted 

equally in the cluster analysis. 

Using similar validation indices and procedures as in Figure 3.4, 6 and 8-clusters 

solutions were selected for DMSI and MID, respectively (Figure 3.6). Arar (15), Makkah (19), 

Dhahran (22), Jeddah (23), and Gizan (25) were classified differently by the two distance 

methods. To evaluate and measure the cluster goodness/degree of fit of both classifications, the 

cophenetic correlation coefficient (Sokal and Rohlf, 1962) was calculated for each hierarchical 

classification tree. The MID classification had a higher coefficient value of 0.74 compared with 

the DMSI classification method (0.68). Further, the correlations between each clusterôs stations 

and their corresponding cluster averages were calculated for each WSHTI and each distance 

method (Figure 3.7). The MID solution tended to have higher median values and a lower range 

of correlations. Therefore, the MID solution (Figure 3.6B) was selected to summarize and 

describe the overall spatiotemporal patterns of WSHTs in the study area. 

Overall clustering of the spatiotemporal behaviors of all WSHTIs (Figure 3.6B) 

suggested three large clusters/regions (1, 2 and 3) that showed coherent geographical patterns 
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(Table 3.4). In linking the results in Figure 3.6B with Table 3.4, Table 3.5 summarizes the main 

characteristics of WSHTI per cluster. Cluster 1 includes stations that are located in highland 

areas (southwest) and had higher HD frequency and variability and fewer intense events. Stations 

within clusters 2 and 3 are in dryer lands and were characterized by high HWE frequencies and 

higher intensities. Stations in Cluster 4 had low HW and HD frequency and variability, 

respectively. Clusters 5-8 are single-station clusters, and they are located along the Red Sea, 

highlighting the importance of local factors, such as more moisture and a sea breeze. However, 

WSHTIs showed differences among these clusters suggesting variation in the effects of local 

factors. 

 

Figure 3.6. Clustering stations using Distance of Mean Standardized Indicators (DMSI), A and 

Mean Indicatorsô Distances (MID), B. Land cover data was obtained and modified after Broxton et 

al. (2014). For stations names refer to Figure 3.1. 

It is clear that the clusters not only differ from one to another but also from indicator to 

indicator. Inverse time and space patterns between event frequency and their intensity were 

common for cluster 1 (Table 3.4). The effects of high elevation and vegetation cover could 

explain these patterns for cluster 1 (Figures 3.1 and 3.6). Another notable and common statistical 

pattern was that clusters with higher annual hot temperature event intensity tended to have higher 
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annual variabilities. Frequency aspects showed a relatively similar pattern but, were inconsistent. 

Stations within clusters did not experience similar temporal trends within and among WSHTIs 

(Table 3.3). This could be explained by the nature of the similarity/dissimilarity measure used for 

clustering, i.e., Euclidean distance. This cluster measure is based on similarity in time, i.e., 

occurrences, not in shape, i.e., change (Aghabozorgi et al., 2015). 

 

Figure 3.7. Boxplots of Pearson correlations between each clusterôs stations and cluster average for 

each WSHTI and each distance method. DMSI: Distance of Mean of Standardized Indicators, 

MID: Mean Indicators' Distances. 
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Table 3.4. Heatmaps of descriptive statistics based on annual totals for the 30-year period 1985-

2014. 

Cluster 
Station 

 ID 

Average Standard deviation 
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1 

1 16.8 16.6 1.1 0.36 0.69 0.80 9.12 7.92 0.99 0.18 0.18 0.74 

2 17.07 16.97 1.13 0.34 0.65 0.49 15.4 7.72 1.59 0.17 0.26 0.67 

3 20.13 18.77 2.03 0.35 0.48 0.88 12.86 8.97 1.71 0.16 0.22 0.70 

4 18.73 17.97 1.43 0.39 0.62 0.94 9.97 9.2 1.57 0.18 0.20 1.34 

5 19.2 18.13 0.93 0.33 1.02 0.55 11.48 8.31 1.11 0.17 0.27 0.73 

6 17.33 16.97 1.2 0.35 0.82 0.65 12.71 9.6 1.4 0.21 0.29 0.71 

10 22.37 18.93 1.43 0.28 0.68 0.53 14.06 13.24 1.7 0.15 0.38 0.61 

2 

7 17.1 16.1 1.1 0.61 1.26 1.51 10.09 6.71 0.88 0.27 0.23 1.18 

12 20.17 17.6 1.97 0.56 1.03 1.23 11.08 11.5 1.77 0.27 0.36 0.85 

13 18.43 17.23 2.13 0.47 0.84 1.25 10.52 6.64 1.87 0.19 0.23 0.78 

14 17.27 16.13 1.53 0.63 1.02 1.39 9.94 8.22 1.85 0.25 0.33 0.99 

15 16.33 16.23 2.13 0.87 1.05 1.69 10.6 8.34 1.87 0.43 0.41 1.28 

17 16.2 15.9 2.23 0.89 1.22 1.70 6.91 9.53 1.61 0.37 0.31 1.06 

18 16.83 16.5 2.63 0.73 1.01 1.56 7.48 8.57 1.61 0.39 0.32 0.77 

3 

8 17.7 18.17 2.77 0.94 1.06 2.04 8.94 9.32 1.74 0.37 0.48 0.99 

9 18.3 17.37 2.33 0.81 0.82 1.83 7.8 9.61 1.6 0.29 0.39 0.80 

11 17.03 17.1 2.3 0.83 0.97 1.69 11.18 8.45 2.14 0.33 0.38 1.12 

16 16.3 16.47 2.17 1.20 1.28 2.65 9.06 8.11 1.72 0.45 0.48 1.42 

4 

19 16.83 18.07 1.03 0.87 0.72 1.20 8.63 8.73 1.25 0.29 0.23 1.16 

20 15.97 16.57 1.07 0.68 0.68 1.01 8.3 7.32 1.31 0.32 0.27 1.39 

22 16.3 16 0.53 0.96 0.79 0.73 7.11 8.44 0.86 0.35 0.25 1.00 

5 21 16.5 17.33 1.57 1.98 0.73 2.04 7.42 8.07 1.19 0.83 0.30 1.40 

6 23 19.5 22.13 0.63 1.33 0.60 0.79 8.15 9.62 0.93 0.71 0.25 1.18 

7 24 16.43 17.73 1.73 1.27 0.89 2.46 7.11 7.98 1.44 0.46 0.26 1.54 

8 25 17 19.4 0.6 0.53 0.38 0.39 10.13 9.45 0.81 0.21 0.17 0.48 

 

 

 

     

Low  Moderate  High 
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Table 3.5. Summary of WSHTs main characteristics of clustering. -, *, and +: low, moderate, and 

high year-to-year variability, respectively, SID: station ID. 

Cluster Name Land type 

WSHTs main frequency characteristics 

Low Moderate High 

1 South Highland 
HDI-, HNI*, and 

HWEI- 

HN*, and 

HWE* 
HD+ 

2 North-East 

Interior 

HN- 
HD*, HDI*, and 

"HD*"  

HNI+, HWE+, 

HWEI* 

3 North --- HD- and HN* 

HWE+, HDI+, 

HNI*, and 

HWEI+ 

4 Mixed  

Highland (SID 19) 

Interior (SID 20), 

and Coastal (SID 

22) 

HD-, HN-, 

HWE-, HNI- and 

HWEI+ 

HDI*  --- 

5 North-West 

Coastal 

HD-, and HNI*  HN-, and HWE- 
HDI+, and 

HWEI+ 

6 West 
HWE-, HNI-, 

and HWEI+ 
--- 

HD-, HN+, and 

HDI+ 

7 West-North HD- 
HN-, HWE*, 

and HNI*  

HDI+ and 

HWEI+ 

8 South-West 

HWE-, HDI-, 

HNI-, and 

HWEI- 

HD* HN+ 

 

3.4 Summary and Conclusions  

Decent temporal trends and spatial patterns in six hot temperature indicators in Saudi 

Arabia were explored for the warm seasons (May through September) of 1985-2014. The 

indicators studied focused on the frequency and intensity of hot days, hot nights and HWs. The 

definitions of these events were developed for use with a monthly and decadal time-sensitive 

approach to accommodate different individual station trends (i.e., warming or cooling) and 

variability. Trends in Tmax and Tmin percentiles were analyzed on a monthly time scale to 

examine the effects and importance of different time bases for determining the occurrences of 

hot temperature events. Further a novel method for time-series clustering was introduced to the 
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field of warm/hot temperature event analysis to detect and recognize spatiotemporal patterns of 

hot temperature events.  

Different patterns were observed over time and space not only across stations, but also 

among indicators. Overall, the results suggest that synoptic-scale factors such as atmospheric 

circulation patterns and local and regional factors, such as elevation, latitude, and distance from a 

large body of water are likely responsible for the temporal and spatial patterns. Decadal and 

monthly time-sensitive approaches were used to capture any possible general changes or 

variations in the Tmax and Tmin probability distributions, however there is a need to use 

additional measurements (e.g., variance, kurtosis and skewness) to understand and account for 

the differences in the statistical characteristics of the extreme temperature climatology of Saudi 

Arabia, particularly for the upper probability events (i.e., high extremes).  

As climate warming in the region is accompanied by high year-to-year temperature 

variability (e.g., Hansen and Sato, 2016) and changes occur in precipitation, atmospheric 

circulation, and dew point patterns (AlSarmi and Washington, 2011, 2013), the statistics of the 

upper probability events are highly expected to have notable variabilities if not changes. Extreme 

temperate events are more sensitive to year-to-year variability, since small changes in the 

distribution of mean temperatures could result in substantial changes in the statistical distribution 

of upper and lower-tails and their corresponding extremes (Mearns et al., 1984; Katz and Brown, 

1992; Schär et al., 2004). This would also raise a challenging question as to whether or not 

mega-extreme events (e.g., the 2003 European or the 2010 western Russia HWs) should be 

included in defining the mean climates, from which thresholds of extremes are determined.  

Given the nature of our climate system (sensitivity and nonlinearity) and as climate is 

projected to continue to warm with more hot temperature events (e.g., Pal and Eltahir, 2015; 
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Mora et al., 2017), one of the implications of this work is to establish baselines and appropriate 

methods for future efforts. This study shows the importance of using definitions that adjust for 

changes/variabilities in climate conditions. Adaptation, vulnerability, and future climate 

conditions are important for society and among a growing number of research interests. For these 

studies to help prepare us for future challenges with climate warming, changes in the features of 

climate conditions and possible effects of extraordinary climate or weather events (e.g., drought 

or major HWsð European 2003 HW) should be comprehensively considered and understood. 

Hot weather response measures, for instance, have been implemented in several cities and have 

resulted in notable reductions in heat-related health outcomes (e.g., Fouillet et al., 2008; Ebi et 

al., 2004). Mitigation of heat hazard effects relies on the implementation of effective warning 

systems and emergency responses plans (Bao et al., 2015), and requires a good understanding 

and detailed analyses not only of the adaptation dimension (i.e., the ability to cope with), but also 

with the hazard exposure dimension (i.e., hot temperature events).  
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Chapter 4 ï A preliminary assessment on synoptic climatology and 

sea surface temperatures teleconnections for warm season heat 

waves in Saudi Arabia 

Abstract 

 Little information is available about the synoptic patterns and physical factors 

contributing to the formation and intensity of heat waves (HWs) in Saudi Arabia. The research 

objectives were to identify the synoptic situations that are related to HW occurrence, to match 

different HW aspects (frequency and intensity) to different circulation types, and to examine the 

possible links/associations between HW days and the sea surface temperature (SST) anomalies 

of closely associated water bodies (i.e., Mediterranean Sea, Black Sea, Caspian Sea, Arabian 

Gulf, Arabian Sea, and Red Sea).  

Using reanalysis data (1985-2014) three weather/circulation types were detected using 

Wardôs cluster method. Together, weather Types 1 and 3 induced 57.5% of   HW days and 

connected with negative anomalies in sea level pressure with lower heights and warmer 

temperatures at the 850 hPa level. Intensification of Indian Summer Monsoon Trough and 

Arabian heat lows were key atmospheric features related to weather Types 1 and 3. Weather 

Type 2 induced 42.5% HW days and it was related to positive anomalies at all heights. 

Anomalies of SSTs of the Red Sea, Arabian Gulf, Caspian Sea, Black Sea, and Mediterranean 

Sea were positive for both weather Types 1 and 3. SSTs anomalies seem to be a more important 

factor for HW day intensity. HWs in Saudi Arabia tend to occur during regional warming due to 

atmospheric circulation conditions and SST teleconnections. 
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4.1 Introduction  

The climate of Saudi Arabia is warming, and extreme temperature events are becoming 

more frequent (e.g., Almazroui et al., 2014; Athar, 2014; Donat et al., 2014; Raggad, 2017a; 

Alghamdi and Harrington, 2018), as observed by the significant upward trend in the frequency of 

extreme temperature events in the last few decades (e.g., AlSarmi and Washington 2011, 2013; 

Almazroui et al., 2012a, 2012b; 2014; Rehman and Al-Hadhrami, 2012; Athar, 2014; Donat et 

al, 2014; Islam et al., 2015). Climate modeling studies suggest that the frequency, intensity, and 

duration of heat waves (HWs) are expected to increase as the global and local climate continues 

to warm (e.g., Lelieveld et al., 2012; Sharif, 2015; Pal and Eltahir, 2016; Almazroui et al., 2016). 

Changes in precipitation patterns, atmospheric circulation, dew point temperature, the Southern 

Oscillation (ENSO), the North Atlantic Oscillation (NAO), continentality and aridity conditions 

are some of possible contributing factors for the warming climate in the region (AlSarmi and 

Washington, 2011, 2013; Donat et al., 2014; Almazroui et al., 2014; Kenawy et al., 2016). 

However, available information is very scarce on the possible effects and the underlying 

mechanisms by which these factors contribute to the recent climate changes and extreme 

temperatures for Saudi Arabia. 

It has been established in the literature that anomalies in atmospheric circulation, soil 

moisture and temperature, and sea surface temperatures (SSTs) are among the major factors 

linked to extreme HWs with respect to their formation and intensity (e.g., Black et al., 2004; 

Fischer et al., 2007a, 2007b; Feudale and Shukla, 2011; Perkins, 2015). High pressure synoptic 

systems have been reported to be the atmospheric circulation feature most closely associated 

with summer HWs at the global scale (Fischer et al., 2007b; Perkins, 2015). However, this may 

not be the case for summer HWs in Saudi Arabia, with its subtropical arid climate where thermal 
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lows are reported to be the predominant factor controlling the summer atmospheric circulation 

across the Arabian Peninsula (Bitan and Saaroni, 1992; Zivet al., 2004; Almazroui, 2006). 

Almazroui et al. (2015) showed that cyclonic weather types were the leading circulation 

conditions inducing hot days and warm nights on the annual timescale. Nevertheless, available 

detailed information about the synoptic patterns and physical factors contributing to the 

formation and intensity of HWs in Saudi Arabia is very scarce. 

Atmospheric circulation alone has been suggested to not fully explain the formation and 

intensity of HWs as in the case of the 2003 European HW (e.g., Ferranti and Viterbo, 2006; 

Fischer et al., 2007a, 2007b; García-Herrera et al., 2010; Feudale and Shukla 2011). Positive 

feedbacks between land surface temperature and the atmospheric circulation were suggested to 

amplify the 2003 European HW through land surface-atmosphere interaction or coupling, low 

soil moisture (due to a precipitation deficit during the previous seasons, i.e., winter and spring) 

and a warm SSTs anomaly (e.g., in the North Atlantic and the Mediterranean) (Ferranti and 

Viterbo, 2006; Fischer et al., 2007a, 2007b; García-Herrera et al., 2010; Feudale and Shukla 

2011). Surface temperatures are affected by low soil moisture as dryness decreases the latent 

heat flux and increases the sensible heat flux (Fischer et al., 2007b; García-Herrera et al., 2010).  

The exact contributions of SSTs (global v. local patterns) to HW events (including their 

occurrence and intensity) are not entirely agreed upon due to the complexity of ocean-

atmosphere coupling and related teleconnections (Fischer et al., 2007b; García-Herrera et al., 

2010). However, the general contributions of SSTs to HWs could be summarized as: the warm 

SST anomaly heats the lower boundary layer of the atmosphere which limits the sea surface from 

cooling and the leading circulation condition is intensified (Feudale and Shukla, 2007; García-

Herrera et al., 2010). For the 2003 European HW, global SSTs anomalies helped to set up the 
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ideal atmospheric circulation while local SSTs contributed more to local HW response (e.g., 

Feudale and Shukla, 2007; Fennessy and Kinter, 2011; Feudale and Shukla, 2011).  

The research objectives of this study were to identify the general synoptic situations that 

cause warm season HW occurrence in Saudi Arabia, to match different HW aspects (frequency 

and intensity) to different circulation types, and to examine some possible links/associations 

between HWs and the SST anomalies of nearby large bodies of water (i.e., Mediterranean Sea, 

Black Sea, Caspian Sea, Arabian Gulf, Arabian Sea, and Red Sea).  

4.2 Research Design and Methods 

4.2.1 Study area and data 

During the summer season Saudi Arabia is affected by different air masses and pressure 

systems (Takahashi and Arakawa, 1981; Alkolibi, 1995; Almazroui, 2006). While the 

southwestern region is under the influence of maritime Tropical air masses (mT) that migrate 

northward from the western Indian Ocean, the rest of the country is controlled by a continental 

Tropical air Mass (cT) that originates over the central Asia or the African Sahara and thus brings 

hot and dry air. The elevation of Saudi Arabia is generally low in the east and gradually increases 

toward the more mountainous southwest region (Figure 4.1).  

Daily maximum and minimum air temperature data recorded at 25 weather stations 

across Saudi Arabia (Figure 4.1) over a 30-year period (1985ï2014) were used to identify HWs. 

Data sets were obtained from the records of the Saudi General Authority for Meteorology and 

Environmental Protection (GAMEP). Data from 25 weather stations over 30-year period were 

selected as they allowed for a relatively long homogeneous time series with fewer gaps of 

missing records. Following the procedures described in Alghamdi and Harrington (2018), data 
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quality was assessed and improved by 3-5% at the station level. 

 

Figure 4.1. A map showing the study domain (upper-right) and the topography of Saudi Arabia 

along with the used weather stations. Source: adapted from King Abdulaziz City for Science and 

Technology and GAMEP. 

For synoptic analysis, daily values of mean sea level pressure (MSLP), geopotential 

heights at 500-hPa, 850-hPa, and 850-hPa temperatures (T-850) were obtained from the records 

of the ERA-Interim reanalysis (Dee et al., 2011), at a grid resolution of 0.125°×0.125° latitude-

longitude. The ERA-Interim dataset has been used for synoptic circulation analysis over the 

Middle East and it has been reported to be reliable (e.g., Vries et al., 2013; Almazroui et al., 

2015; Zolina et al., 2017). The area of synoptic circulation analysis encompasses the region 

10°Nï40°N by 10°Eï75°E (Figure 4.1), as it provides excellent synoptic resolution to account 

for essential circulation systems related to Mediterranean, Sudan, and the Indian Summer 

Monsoon thermal lows. From the ERA-Interim reanalysis dataset, daily means of SSTs values 
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were also obtained for the nearby water bodies including the Red Sea, Arabian Sea, Arabian 

Gulf, Caspian Sea, Black Sea, and Mediterranean Sea. 

4.2.2 Heat Wave definition  

Due to the diversity of impacts, HWs are of interest to diverse stakeholders, including 

health researchers, agricultural producers, energy providers, climatologists, and meteorologists 

(Smith et al., 2013). There is no single perfect standard method or definition for a HW that works 

for all applications (e.g., Perkins and Alexander, 2013; Smith et al., 2013). As discussed in 

Alghamdi and Harrington (2018) a HW was defined as a period of at least two consecutive days 

with a daily maximum temperature equal or higher than the 90th percentile of the monthly 

maximum and with a daily minimum temperature equal or higher than the 85th percentile of the 

monthly minimum for the decade in question (1985-1994, 1995-2004, and 2005-2014). 

A decadal rather than period of record time window was used to determine the monthly 

percentile thresholds to account for the regional warming trend. A monthly and decadal time-

dependent approach allows hot temperature events to have a better chance of being detected 

throughout the warm season since different decades could experience different patterns of 

changes. Raggad (2017a) suggested that non-stationary models are more suitable for analyzing 

extreme temperatures in the country. Alghamdi and Harrington (2018) demonstrated the value of 

using a time-sensitive approach (monthly and decadal time-windows) in studying extreme 

thermal events in Saudi Arabia due to the on-going change in the climatology of the upper-tail of 

the frequency distribution of maximum and minimum temperatures. To explore how station level 

HW intensity is responding to different weather types and SST anomalies, the intensities of HW 

days were assessed by their temperature departures from their warm season mean temperature 

climatology.   
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4.2.3 Synoptic analysis 

A total of 1338 HW days were detected at the 25 stations for the warm seasons from the 

30-year period (1985-2014). To eliminate events that could be induced by local factors (e.g., 

urban heat island) rather than regional factors (i.e., atmospheric circulation), the synoptic 

analysis was restricted to days where a HW was recorded at a minimum of 2 stations. The 

criterion of 2 stations reduced the number of days to 746 (Figure 4.2). A larger criterion (3 or 4 

stations) could be used, but due to having just 25 stations and to maximize the sample size 

(across months and years), the 2 station criterion was selected (Figure 4.2). For example, the 4-

station criterion resulted in a sum of 322 HW days where two years had no HW days (1993 and 

1997) and five years had less than two HW days (1986, 1992, 2004, 2009, and 2014). Also, 

using the threshold of two stations (as compared with 3 stations) captured most of the HW days 

that constitute the onset or the ending days of long events. Two groups of stations (IDs: 1, 2, and 

4 and 19 and 23) are somewhat questionable for use of the 2-station criterion as they have the 

shortest Euclidean distances among the 25 stations. However, most of their HW days (using the 

2-station criterion) were found to be either the onset or ending day (or with a gap of one day) 

associated with long events. 

Synoptic climatology analysis involves two general methods: circulation-to-environment 

(C-to-E) and environment-to-circulation (E-to-C) (Yarnal, 1993). The main difference between 

these methods is the dependency on the outcome (i.e., the resulting weather events such as 

flooding, sand storm, and HWs). In the C-to-E approach, the atmospheric flows are classified, 

using upper air measurements, into circulation patterns then an environmental phenomenon (i.e., 

outcome) is analyzed whereas in E-to-C, days of an outcome of atmospheric circulation are 

specified first then the atmospheric observations of these days are classified (Lee and Sheridan, 
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2015). Each approach has its advantages and disadvantages, and the selection is based on the 

aims of the investigation (Beck and Philipp, 2010; Lee and Sheridan, 2015; Philipp et al., 2016). 

For example, while the C-to-E approach provides readily available information that can be used 

for further studies, since all the atmospheric flows are classified, the E-to-C approach is more 

efficient in studying extreme weather events as it provides greater insights and understanding 

about the atmospheric circulation patterns that produce an extreme event occurrence for a 

specific area (Lee and Sheridan, 2015). 

 

Figure 4.2. Annual (A) and monthly (B) heat wave days frequency using different minimum 

criterion.  

Using an E-to-C approach, the synoptic analysis was applied in two stages including 

general synoptic assessment and clustering analyses. General synoptic analysis involved 

developing composites and anomalies maps for all the 746 HW days to examine the overall 

synoptic climatology. Since HWs could result from different daily atmospheric circulation types 

(Tomczyk and Bednorz, 2016), and to explore if different HW characteristics (i.e., frequency, 
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intensity, and spatial coverage) are related to different atmospheric circulation situations, 

clustering analysis was applied to the environmental data for the 746 days identified. Wardôs 

(1963) minimum variance classification method was used as it one of the most commonly 

employed techniques not only in classifying atmospheric circulation patterns (e.g., Tomczyk and 

Bednorz, 2016; Tomczyk and Sulikowska, 2017), but also in hierarchical agglomerative 

clustering as a statistically-based technique (Vrac et al., 2007). The classification was based on 

the gridded pattern of daily MSLP data (10°Nï40°N, 10°Eï75°E) of the selected HW days, 

using Euclidean distance as a measure of similarity/dissimilarity among data objects. Prior 

normalization of the daily MSLP data was done as per Estebanôs et al. (2005) recommendation.   

4.2.4 Circulation types, Heat Wave days frequency, intensity, and SSTs 

To explore if different circulation types would provide some insight into the frequency 

and intensity characteristics of the 746 HW days at the station level, correlation analysis 

(Pearson product-moment) was applied. The analysis was carried out on the anomaly of the 

frequency and intensity of each of the identified circulation types and the anomalies of frequency 

and intensity of HW days for each station. The intensity of each of the circulation types was 

defined as the mean intensity of its HW day temperature departures from their warm season 

(May-September) mean temperature climatology (1985-2014). Similarly, the intensity of a HW 

day was measured by its mean temperature departure from the warm season mean temperature 

climatology at station level. Correlation analyses were applied at the annual timescale. 

To explore possible links between the selected HW days and the SSTs anomaly patterns 

of the selected water bodies, observational and correlation analysis approaches were used to help 

establish a baseline for future detailed studies. Correlation analysis (Pearson product-moment) 

was applied on the warm season anomaly of frequency and intensity of each of the identified 
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circulation type HW days and the warm season anomaly of corresponding SSTs. All the analyses 

were applied on the SST anomalies of HW days, since including previous observations (i.e., few 

days or weeks) of the onset of the HW might not provide essential differences (Boschat et al., 

2016).  

4.3 Results 

4.3.1 Circulation conditions 

4.3.1.1 General synoptic conditions  

During the warm season, Saudi Arabia is influenced by a low-pressure system (Figure 

4.3A), the Indian Summer Monsoon Trough (ISMT) or Persian Trough (Almazroui, 2006; 

Lelieveld et. al, 2016). This trough is a thermal low or heat low that can be distinguished clearly 

at the 850 hPa level (Bitan and Saaroni 1992) (Figure 4.3C). Temperatures at 850 hPa have 

higher values centered over the western parts of Saudi Arabia (Figure 4.3C). At a higher level 

(500 hPa), a subtropical ridge system dominates the area (Figure 4.3A) extending from Africa to 

the Arabian Gulf.  The overall pattern confirms the findings of Blake et al. (1983), where the 

heat low over Saudi Arabia exists as a well-mixed layer within the lower levels of the 

atmosphere (<~850 hPa). Dry convection and radiation in the near-surface mixed layer combined 

with the upper level subsidence motions (>~700 hPa) to provide for the necessary conditions for 

the heat low to operate during the warm season (Mohalfi et al., 1998).  

During HW days, the overall composite pressure and thermal patterns did not change 

substantially, but the composite patterns showed features of intensification and spreading to 

cover more territory (Figure 4.3B, D, E, and F). Associated with a HW day, most of the Arabian 

Peninsula is under lower surface pressure than the warm season average, with greater negative 

anomalies centered over Red Sea and west-central Saudi Arabia. The 850-hPa composite showed 



86 

a similar pattern of negative height anomalies with greatest departures over southwestern Saudi 

Arabia. At the 500 hPa level, a pattern with two areas of higher heights on the subtropical ridge 

was found, one over northwestern Africa and a closed high centered over northwest part of Saudi 

Arabia. Thermal anomalies were positive at both the 500 hPa and the 850 hPa levels (Figure 

4.3F). 

 

Figure 4.3. Composite maps for MSLP- hPa (A shaded), geopotential height at 500- hPa (A 

contour), geopotential height at 850- hPa (C shaded) and T-850 (C contour) during warm season. 

Heat wave days (746 days) composite maps for MSLP- hPa (B shaded), geopotential height at 500- 

hPa (B contour), geopotential height at 850- hPa (D shaded), T-850 (D contour) and their anomalies 

(E for MSLP, shaded, and 500- hPa, contour, and F for 850- hPa, shaded, and T-850, contour). 

Anomalies are departures from 1985ï2014 climatology. 
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4.3.1.2 Clustering 

The initial synoptic analysis was based on composite maps of 746 HW days, where 

individual events could be induced by slightly different atmospheric circulation patterns. 

Therefore, the Wardôs clustering method was applied on the MSLP data for the 746 HW days. 

Using average distances between and within clusters indices, 3, 4, and 6-cluster solutions were 

suggested. Using the minimum number of clusters criteria (Carvalho et al., 2010), the three-

cluster solution (Figures 4.4, 4.6, and 4.7) was selected. Three clusters provided a reasonable 

balance between minimizing the distances within clusters and maximizing the distances between 

clusters. In fact, the composite maps of 4, and 6-cluster solutions showed no substantial synoptic 

differences from those identified by 3-cluster solution. 

 

Figure 4.4. Weather Type 1 composites for MSLP (A shaded and contours for anomaly); 

geopotential height at 500-hPa (B shaded and contours for anomaly); geopotential height at 850- 

hPa (C shaded, contour for anomaly; and T-850 (D shaded and contour for anomaly). Anomalies 

are departures from 1985ï2014 climatology. 

For circulation Type 1 (Figure 4.4), 301 HWs days (40.3%) were classified into this 

cluster and it was more frequent during the mid-warm season (Figure 4.5). During HWs related 
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to this synoptic weather type (1), most of the Arabian Peninsula was under lower surface 

pressure (<999 hPa) than usual for the warm season, with an anomaly of -2 hPa situated over the 

Arabian Gulf and eastern parts of the Arabian Peninsula. Air mass subsidence helps create the 

features at the 500-hPa level, where a closed area of higher heights is centered over the west-

north part of the Peninsula. Greatest height anomalies were to the north (Figure 4.4B). The 

subtropical ridge over the Mediterranean intensified (by an anomaly of about 10 m) at the 850-

hPa (Figure 4.4C), with a negative height anomaly at 850-hPa of over 10 m in the ISMT region 

extending from Iran to most of Saudi Arabia. The negative anomaly for 850-hPa heights was 

accompanied by higher temperatures centered over Saudi Arabia with a warming anomaly 

pattern (Figure 4.4D) extending northward to Eastern Europe. 

 

Figure 4.5. Monthly frequency of detected weather types during warm season months. Percentages 

inside bars are per weather type, that is 9.4%, 70.3%, and 20.3% of type 3 occurred in June, July, 

and August. 

Circulation Type 2 (Figure 4.6) was comprised of 317 HW days (42.5) and it was most 

frequent during May (48.6% of Type 2 patterns) and September (38.2%) (Figure 4.5). Type 2 has 

a positive MSLP anomaly extending into Saudi Arabia from the north and east. The 500-height 

anomaly pattern showed a positive anomaly penetrating into the Arabian Peninsula from the east 

whereas negative heights were centered over the north-east and north-west (<10 m). A ridge with 
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higher heights can be clearly seen over the Arabian Gulf (Figure 4.6B). Unlike the pattern for 

Type 1, the subtropical ridge at 500-hight over North Africa has shifted south. At the 850-hPa 

height level, most of the study domain was under positive anomalies (unlike Types 1 and 3) 

centered over Iran and Arabian Gulf. Thus, the ISMT is weaker at the lower level (850 hPa) and 

temperatures anomalies were not very pronounced (Figure 4.6D). 

 

Figure 4.6. As in Figure 4.4 but for weather Type 2. 

Circulation Type 3 (128 HW days or 17.2%) was more frequent during July (70.3% of 

type 3 events) and August (20.3%) (Figure 4.5). Type 3 has relatively similar anomaly patterns 

as Type 1, but with a greater magnitude of the anomalies (Figure 4.7A). The negative anomalies 

in MSLP (<-4 hPa) have shifted north-east compared with Type 1. The heights at the mid-

tropospheric levels (500 hPa) increased over north (by 10 m) as the African subtropical ridge 

shifts slightly to the north and the Arabian subtropical ridge is reduced in size. In the lower levels 

(850 hPa), all the study domain was under lower heights and the ISMT was more active (Figure 

4.7C). As a result, temperature at the 850-hPa height level had the warmest anomalies among all 

the three types (Figure 4.7D). 
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Figure 4.7. As in Figure 4.4 but for weather Type 3. 

4.3.2 Heat Wave days frequency, intensity and circulation types 

This section explores the question as to whether different circulation types provide some 

insights at the station level into the characteristics (frequency and intensity) of the 746 HW days. 

Correlation coefficients ranged from -0.22 to 0.67 (Figure 4.8). For HW frequency, circulation 

Types 1 and 3 had more significant positive correlations with HW days at most locations except 

a few stations on the west coast (Figure 4.8A and C). Circulation Type 2 was associated with 

lower statistical associations and only 5 stations had significant correlations (Figure 4.8B). For 

HW intensity, circulation Types 1 and 2 had fewer significant positive associations, compared to 

circulation Type 3 (Figure 4.8D-F).  

Correlation coefficients and the variability in their spatial distributions suggest that the 

synoptic circulation patterns do not fully explain the patterns of the frequency and intensity of 

HW days in Saudi Arabia. This is in agreement with other previous studies which have reported 

that atmospheric circulation does not usually explain all HW characteristics (Ferranti and 

Viterbo, 2006; Fischer et al., 2007a, 2007b; García-Herrera et al., 2010; Feudale and Shukla, 
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2011). Low correlation coefficients here suggest that atmospheric circulation establishes the 

required conditions for a HW to form but additional factors, such as soil moisture, atmospheric 

humidity, antecedent land surface temperature, or the urban heat island effect, would play 

important roles for HW frequency and intensity. Although Type 3 had a lower frequency 

compared to Types 1 and 2, (since it composed of 128 HW days), most of stations showed more 

significant associations with this anomaly pattern. In examining the spatial aspect of these 

associations, it was found that HW days related to weather Type 2 tended to result in greater 

spatial coverage (11-16 stations). Medium spatial coverage (6-10 stations) was more related to 

Types 1 and 3, respectively. 

 

Figure 4.8. Correlation coefficients between anomalies of heat wave days frequency (A-C) and 

intensity (D-F) and anomalies of circulation Type 1 (A and D), 2 (B and E), and 3 (C and F). Refer 

to Figure 4.1 for station names. ** and * are statistically significant at the 95% and 90% levels, 

respectively. 
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4.3.3 Analysis of SST Teleconnections 

For HW events classed in circulation Types 1 and 3, all seas showed positive surface 

temperature anomalies, except for the Arabian Sea (Figure 4.9). Among the water bodies 

analyzed, the Caspian Sea, Black Sea and northern Arabian Gulf had the highest SST warming 

anomalies with Types 1 and 3. These SST anomaly patterns corresponded to the general spatial 

features of 850 hPa temperature anomalies in both Types 1 and 3 (Figures 4.4C and 4.7C), 

suggesting interaction and some teleconnection with regional warming during HW days. On the 

other hand, HW days of circulation Type 2 were accompanying by warm anomalies only in the 

Arabian Sea (0.5-1.1ºC) and negative anomalies in the other nearby seas (-0.1 to -1.5ºC). The 

highest SSTs warm anomaly (3-5ºC) was found for HW days of Type 3 over the Caspian Sea and 

the Black Sea. 

 

Figure 4.9. SSTs anomalies composites of all heat wave days (upper-left), and circulation Types: 1 

(upper-right), 2 (bottom-left), and 3 (bottom-right). Anomalies are departures from 1985ï2014 

climatology. 
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These patterns suggest some possible links between HW events in Saudi Arabia and 

nearby SST anomalies. For further exploration, correlation analysis was applied on the warm 

season anomaly of frequency and intensity for each of the three HW circulation types and the 

SSTs anomalies. Correlation coefficient values ranged from -0.14 to 0.42 for event frequency 

and from -0.46 to 0.62 for intensity (Table 4.1). The frequency anomaly of HW days of weather 

Type 1 was linked to the sea surface temperature anomaly of the Black Sea (33%) and the 

Caspian Sea (42%) whereas the links for Type 3 were only with SSTs anomalies of the Black 

Sea (39%). Although the frequency anomaly of Type 2 HW events had negative correlation 

coefficients with all SSTs anomalies, except for the Arabian Sea and Red Sea, (as results in 

Figure 4.9 suggested), no statistically significant correlation was found. 

Table 4.1. Correlation coefficients between anomalies of local SSTs and different heat wave days 

characteristics for three detected weather types.  ** and * are statistically significant at the 95% 

and 90% levels, respectively. 

 

 

 

 

For intensity, correlation analysis suggested that the intensity aspect of HW days 

responded more to SSTs compared with frequency. The intensity anomaly of HW days in Types 

1 and 3 displayed significant associations with all SSTs anomalies except for those for the 

Arabian Sea and the Caspian Sea for events in Type 3. Interestingly, the intensity of HW days 

for type 2 showed significant positive correlations with sea surface temperature in the Black Sea, 

Caspian Sea, and Red Sea. 

 

Frequency Intensity 

Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 

Arabian Gulf  0.30 -0.10 0.30 0.51** 0.26 0.45** 

Arabian Sea -0.08 0.23 0.28 -0.46** -0.01 0.00 

Black Sea 0.33* -0.11 0.39* 0.58** 0.34* 0.51** 

Caspian Sea 0.42** -0.08 0.36 0.62** 0.33* 0.29 

Mediterranean Sea 0.19 -0.14 0.27 0.44** 0.21 0.47** 

Red Sea 0.25 0.09 0.28 0.54** 0.30* 0.38* 
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4.4 Discussion  

Cluster analysis suggested that HW days at two or more stations in Saudi Arabia could be 

summarized with three circulation/weather types (Figures 4.4, 4.6, and 4.7). Types 1 and 3 are 

similar in their general synoptic conditions and patterns (Figures 4.4 and 4.7), where Type 3 

represents an intensification of Type 1. In all the three types, there were two primary surface 

pressure systems presented: low pressure over the east and high pressure over the northwest. The 

low pressure system is a thermal low that spreads west from India to near the central area of 

Saudi Arabia establishing a surface trough of lower pressure (i.e., the ISMT). During Type 3 the 

ISMT intensifies and the region experiences a negative 850-hPa height anomaly (-30 m) centered 

over the southwest area of the Arabian Peninsula. At 850 hPa, the high temperature anomaly 

documents the strength of the thermal low. Type 2, a synoptic pattern more frequent at the 

beginning and end of the warm season exhibited a different pattern where the ISMT disappears 

as the southwest subtropical high (Azores) extends to the southeast, as shown by higher heights 

at the 850 hPa pressure level (Figure 4.6C).   

In both synoptic Types 1 and 3, two troughs of lower heights were observed at the 850 

hPa level, one over the Arabian Gulf (i.e., ISMT) and one over the Al-Rub Al-Khali Desert 

(Empty Quarter). The latter is known as a substantial energy source contributing to some major 

climate characteristics of surrounding areas; it is commonly referred to as the Arabian heat low 

(Blake et al., 1983; Smith 1986a, 1986b; Mohalfi et al., 1998). Smith (1986a) reported that as the 

Arabian heat low intensifies, more moisture is transported into its area, which reduces sensible 

heat transport in the boundary layer. An increase in specific humidity associated with the 

Arabian heat low was observed in this study for HW days of Types 1 and 3 (Figure 4.10). Yet, as 

distance increases from the center of this heat low, sensible heat exchange increases (Smith 
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1986a). Such a feature and process can help explain the lower temperatures within the heat low 

over the Empty Quarter and the presence of higher temperatures northwest of the heat low for 

HW days of Types 1 and 3 (Figure 4.10). 

 

Figure 4.10. Specific humidity anomaly composites of circulation Type 1 (A), 2 (B), and 3 (C) and 

wind speed anomaly and mean direction composites of circulation Type 1 (D), 2 (E), and 3 (F). 

Anomalies are departures from 1985ï2014 climatology. 

It is clear from Figure 4.10 (D-F) that surface wind speeds did not deviate much from the 

mean during HW days over Saudi Arabia, particularly for Types 1 and 3. The areas of both heat 

lows experienced a slight reduction in the wind speed anomaly during HW days of Types 1 and 3 

and a positive anomaly during HW days of Type 2. It was reported that the surface wind 

becomes almost calm when the Arabian heat low reaches its daily maximum intensity (Smith 
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1986a). In fact, Mohalfi et al. (1998) disclosed that slow northerly winds reduce air mixing, 

allowing the Arabian heat low to intensify.  

Based on the findings of Smith (1986a, 1986b) and Mohalfi et al. (1998), the change in 

both wind speed and humidity could be factors explaining the nonappearance of the thermal low 

and the circulation conditions of Type 2. During HW days of Type 2 wind speeds were higher 

than the warm season average over most of the Al-Rub Al-Khali Desert. For synoptic Type 2, the 

region experiences average humidity levels (Figure 4.10). At the same time, the ISMT recedes 

with a shift to the north and most the Arabian Peninsula was under a higher 500 hPa height 

anomaly (Figure 4.6). The subtropical ridge at 850 hPa intensifies and moves to the southwest 

towards the Peninsula, transporting dry and warm air.  

The 850 hPa temperature anomaly showed a similar spatial pattern in Types 1 and 3 and a 

different pattern for type 2 (Figure 4.4, 4.6, and 4.7).  In Type 1 and 3, positive anomalies were 

over the eastern Mediterranean and the northern Arabian Peninsula and values decreased 

southward. Type 2 produced the opposite pattern, with northern areas exhibiting negative 

anomalies. These patterns can be explained by the large-scale circulation patterns related to 

Indian Summer Monsoon (ISM). While Type 2 was more frequent during the transitional periods 

of the ISM season (May and September), Types 1 and 3 were most frequent during periods of 

strong ISMs (Figure 4.5). It has been shown that when the ISM intensifies (strong-phase) the 

ascending motions over Mid-Asia (80-100ºE) increase and result in greater descending motions 

over east-Asia and the eastern Mediterranean down to mid-tropospheric levels; this subsidence 

produces an increase in adiabatic warming (Ziv et al., 2004). In fact, Rodwell and Hoskins 

(1996, 2001) showed that the adiabatic subsidence in the North African and eastern 

Mediterranean regions are related to the ISM as it induces a Rossby wave like response.  
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  This east-west oriented atmospheric teleconnection pattern could help explain the 

warming SSTs anomalies of Mediterranean Sea, Black Sea, and Caspian Sea during HW days of 

circulation Types 1 and 3, and the cooling anomaly during HW days of circulation Type 2. While 

the Arabian Sea showed cooler SSTs anomalies during HW days of Types 1 and 3, it had warm 

SSTs anomalies during HW days of Type 2 (Figure 4.9). During strong ISM years, the Arabian 

Sea usually experiences higher wind speeds and cooler SSTs compared to years with a weak 

monsoon, due to strong upwelling along the Somalia coast (Murtugudde et al., 2007). 

Southwesterly winds enhance the coastal upwelling and the spread of cooler water over the 

Arabian Sea (Vinayachandran, 2004). As shown in Figure 4.10, the Arabian Sea had higher wind 

speed anomalies in Types 1 and 3 and a negative wind speed anomaly for Type 2.   

4.5 Summary and Conclusions 

Atmospheric circulation patterns and conditions related to HWs at two or more stations in 

Saudi Arabia were analyzed using reanalysis data (1985-2014). Cluster analysis methods were 

used to distinguish among different circulation/weather conditions associated with different HWs 

and three distinct types were found. The presence of Indian Summer Monsoon Trough (ISMT) 

was related to two weather types (Types 1 and 3) and its absence was connected to one weather 

type (Type 2). HW days induced by atmospheric conditions for Types 1 and 3 caused higher 

temperatures on average, where the less frequent but strong Type 3 was related to a strong ISMT 

and accompanied by an intensification of the Arabian heat low. Further, SSTs anomalies during 

the different weather types were mapped and analyzed. HW weather Types 1 and 3 showed 

warm SSTs over all of the selected water bodies except the Arabian Sea, whereas weather Type 

2 showed warm surface temperature only over the Arabian Sea. Generally, the intensity of a HW 

day showed a stronger correlation with SSTs anomalies.  
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The overall results show the importance of a few points for forecasting and analyzing 

HWs in Saudi Arabia. The ISMT and the Arabian heat low are responsible for 57.5% of the 

detected HW days over 1985-2014. The importance of both systems to the climatology of Saudi 

Arabia have been stated in the literature and there is a need for more information about their 

influences and connections to extreme temperature events in Saudi Arabia. This study provides 

some of the first preliminary explorations of synoptic patterns for HWs and should initiate 

further research. It seems that HWs in Saudi Arabia tend to occur during regional warming as 

suggested by SSTs values particularly over areas to the north. This may be due to increasing 

subsidence over the region linked by teleconnection with the ascending motions over Mid-Asia 

during ISMs (Ziv et al., 2004). Thus, further analysis is needed to address the aspects of the 

results that suggest that both the ISM and SSTs of nearby water bodies might help in forecasting 

and predicting HWs in Saudi Araba. 

It is important, however, to emphasize that the magnitudes of distinctions among the 

frequency and intensity of HW days and related atmospheric circulation types and SSTs were not 

that large. In most cases, small fractions of the total variance were explained. This finding 

suggests the importance of other local factors such as soil moisture, humidity, land surface 

temperature, and urban heat islands. More work on local microclimatic conditions at weather 

stations is needed. Correlation analyses were based on small samples (each variable was 

represented by one annual mean value), where the selected variables did not have a uniform 

spatial distribution. Thus, the results of this work should be viewed as a preliminary assessment 

and future research should consider using a larger sample (e.g., reanalysis temperature data) and 

more advanced analysis methods (e.g., data modeling). Such efforts would not only provide 
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insights into how the selected variables (HW days frequency and intensity, atmospheric 

circulations, and SSTs) are related, but also into feedbacks and underlying mechanisms.   
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Chapter 5 - Summary and Conclusions 

This dissertation aimed to advance our understanding of the climatology of heat waves 

(HWs) in Saudi Arabia using data for 1985 to 2014. Analyses addressed the frequency, intensity, 

and duration characteristics of warm season extreme temperature events. Several issues 

associated with commonly used indices and methods are addressed and new definitions and 

methods help advance specific assessment practices. A new locally relevant and time-sensitive 

definition to detect HWs is examined. A HW event is defined as a period of two or more 

consecutive days (i.e., at least 48 hours) with a daily maximum and a minimum temperature 

exceeding the 90th and 85th percentiles of the maximum and minimum, respectively. Threshold 

percentiles were calculated on a monthly basis and adjusted for each decade of analysis. In 

addition, HW temporal changes, spatiotemporal, and atmospheric patterns were assessed. 

Chapter 2, Time-sensitive analysis of a warming climate on heat waves in Saudi Arabia: 

Temporal patterns and trends, establishes the importance and impact of changes/variabilities in 

the mean climate for determining a HW threshold. Further, the importance of selecting indices 

for different HWs aspects and trend analysis techniques are addressed. Different and noteworthy 

results were revealed regarding the temporal behaviors of different characteristics of HWs in 

Saudi Arabia (i.e., frequency, intensity, and duration). Although different geographical and 

temporal behaviors were found at the station level, the overall results suggested that regional and 

local factors, such as elevation, latitude, and distance from a large body of water, may play 

important roles.  

Chapter 3, Trends and spatial pattern recognition of warm season hot temperatures in 

Saudi Arabia, took a further step by using time-series clustering analysis to recognize 

spatiotemporal patterns and related frequency and intensity of HWs and an additional four hot 
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temperature indices (frequency and intensity of hot days and nights). First, the chapter 

reemphasized the importance of the on-going change in the climatology of the upper-tail of the 

frequency distribution of the temperature regime. Then, the spatiotemporal characters of six 

warm season hot temperature indices were analyzed with an emphasis on event behavior through 

time and space. A time-series clustering approach was used. A method was proposed to 

summarize the overall geographical behavior of warm season hot thermal events and eight 

clusters were suggested. Local and regional factors, such as elevation, latitude, and distance from 

a large body of water, helped explain some the clusters of HW locations. The analyses also 

revealed the importance of large-scale factors such as the atmospheric circulation. 

Chapter 4, Circulation conditions and sea surface temperatures observations of warm 

season heat waves in Saudi Arabia: A preliminary assessment, explores how synoptic circulation 

patterns and sea surface temperature (SST) anomalies are related to frequency and intensity of 

HW days. Cluster analysis was used to identify and distinguish among different atmospheric 

circulation types that induce HWs. Three weather types were identified. Two of which (Types 1 

and 3) were related to 57.5% of the occurrences of HW days and were connected with negative 

anomalies in sea level pressure and in the height of the 850 hPa level. Synoptic Type 2 was 

responsible for 42.5% of occurrences of HW days and was related to positive anomalies at all 

atmospheric heights. The Indian Summer Monsoon Trough and the Arabian Heat Low were key 

surface pressure features related to HWs days. Anomalies of surface temperatures of the Red 

Sea, Arabian Sea, Arabian Gulf, Caspian Sea, Black Sea, and Mediterranean Sea displayed 

different anomaly patterns and associations during different weather types. SST anomalies seem 

to be a more important factor for the intensity of HW days. However, the effects of synoptic 

conditions and SST anomalies produced some spatial variabilities and did not explain large 
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fractions of variances in individual station conditions, suggesting the importance of both large-

scale and microclimate factors. 

A main conclusion that can be derived from this dissertation about HWs in Saudi Arabia 

using a time-sensitive definition is that HWs could not be completely explained by one factor. 

Results from chapters 2-4 showed that local-, meso-, and regional or synoptic scales factors all 

have important impacts on the behavior of HWs in time and space. This highlights a local 

complexity aspect of HWs and a need to examine conditions at the station level. Thus, the main 

suggestion this dissertation makes is that HWs in Saudi Arabi are not to be understood fully by 

one atmospheric variable (e.g., maximum temperature) nor by one spatial factor (e.g., vegetation 

cover). Forecasting and prediction of HW should be carried out considering such complexity. In 

fact, through the literature review it was noted that microclimate studies of HWs are mostly 

focused on impacts and little work has been done on the local physical meteorological aspects.  

This dissertation provided a detailed investigation of HWs across Saudi Arabia, and 

several themes have emerged, as the results in each chapter have highlighted. A main theme is 

the need to consider on-going changes or variabilities in the ñnormalò climate and 

acclimatization. A decadal time-window was used to account for these two factors. Although, a 

different length time window could be used depending on the length of the period of record 

and/or the rate of climatic warming. In order to determine the most appropriate window, detailed 

statistical analysis for the nature of changes/variabilities in a temperature regime is required. 

Raggad (2017a, 2017b) recently addressed some aspects of such an analysis and showed the 

importance of non-stationary models in analyzing extreme temperatures for the country. 

However, information about changes in the temperature distribution and its shape parameters 

(e.g., variance and skewness) and how extreme temperature events would respond to such 
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changes/variabilities is not available as of yet for the study area. Availability of such information 

would help document climate change as an important factor and more suitable ways to examine 

extreme temperature events could be determined. With such consideration, planning and 

management efforts could be more effective with respect to an emergency and enable an 

improved response related to impacts of extreme events under a changing climate.  

The time-sensitive approach developed for this research does not imply climate change is 

not taking place. As shown in Figures 2.4 and 3.3, the climate of Saudi Arabia is warming with 

considerable multi-decade variations in the shape parameters of Tmin and Tmax distribution 

(i.e., variance and skewness, Appendix B- Figures 1-4). The time-sensitive approach 

acknowledges the on-going change in the climatology of the upper-tail of the frequency 

distribution of Tmin and Tmax by accounting for emerging new rare warm conditions. It also 

accounts for changes/variabilities in the populationôs ability to acclimatize to heat over time. The 

approach establishes a novel baseline for understanding past and future change. By accounting 

for changes and variabilities, more realistic estimates of hot temperature events will help future 

planning and adaptation efforts such as in managing the changing demands for electricity and 

water resources, development of heat-warning systems, and other policy-oriented planning in an 

arid environment.  
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Appendix A ï Examples of different measurements and indices for 

extreme temperatures and heat waves  

 

Table A.1. List of commonly used extreme temperature indices of ETCCDI. Modified after Athar 

at al. (2013). 

 

 

 

Index ID Index name Index definition Unit  

FD0 Frost days 
Annual (January 1ïDecember 31) count when TN (daily 

minimum temperature)<0ºC 
Day 

SU25 Summer days 
Annual count when TX (daily maximum 

temperature)>25ºC 
Day 

SU35 Summer days Annual count when TX>35ºC Day 

ID0 Ice days Annual count when TX<0ºC Day 

TR20 Tropical nights Annual count when TN>20ºC Day 

TR25 Tropical nights Annual count when TN>25ºC Day 

TXx Max TX Annual maximum value of TX ºC 

TNx Max TN Annual maximum value of TN ºC 

TXn Min TX Annual minimum value of TX ºC 

TNn Min TN Annual minimum value of TN ºC 

TXmean Mean TX Annual mean value of TX ºC 

TNmean Mean TN Annual mean value of TN ºC 

DTR Diurnal temperature range Monthly mean difference between TX and TN ºC 

TX10p Cool days Percentage of days when TX<10th percentile % 

TX90p Warm days Percentage of days when TX>90th percentile % 

TN10p Cool nights Percentage of days when TN<10th percentile % 

TN90p Warm nights Percentage of days when TN>90th percentile % 

WSDI 
Warm spell duration 

indicator 

Annual count of days with at least 6 consecutive days 

when TX>90th percentile 
Day 

CSDI 
Cold spell duration 

indicator 

Annual count of days with at least 6 consecutive days 

when TN<10th percentile 
Day 
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Table A.2. Definitions of heat wave indices (HI). b Apparent temperature is a function of air 

temperature, humidity, wind speed, and solar radiation. C The HI is a function of air temperature 

and humidity,  parameterized to take account of other environmental factors. Modified after Kent 

et al. (2014). 

 

 

 

 

 

 

 

HI  Definition  

HI01 Mean daily temperature > 95th percentile for Ó 2 consecutive days 

HI02 Mean daily temperature > 90th percentile for Ó 2 consecutive days 

HI03 Mean daily temperature > 98th percentile for Ó 2 consecutive days 

HI04 Mean daily temperature > 99th percentile for Ó 2 consecutive days 

HI05 Minimum daily temperature > 95th percentile for Ó 2 consecutive days 

HI06 Maximum daily temperature > 95th percentile for Ó 2 consecutive days 

HI07 Maximum daily temperature Ó 81st percentile every day, Ó 97.5th percentile for 

Ó 3 nonconsecutive days, and consecutive day average Ó 97.5th percentile 

HI08 Maximum daily apparent temperatureb > 85th percentile for Ó 1 day 

HI09 Maximum daily apparent temperatureb > 90th percentile for Ó 1 day 

HI10 Maximum daily apparent temperatureb > 95th percentile for Ó 1 day 

HI11 Maximum daily temperature > 35ÁC (95ÁF) for Ó 1 day 

HI12 Minimum daily temperature > 26.7°C (80.1°F) or maximum daily temperature > 40.6°C (105.1°F) for 

Ó 2 consecutive days 

HI13 Maximum daily heat indexc > 80ÁF for Ó 1 day 

HI14 Maximum daily heat indexc > 90ÁF for Ó 1 day 

HI15 Maximum daily heat indexc > 105ÁF for Ó 1 day 

HI16 Maximum daily heat indexc > 130ÁF for Ó 1 day 
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Table A.3. Definitions of heat wave indices (HI). Modified after Smith et al. (2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HI  Temperature metric Threshold  Duration  Type 

HI01 Mean daily temperature  >95th percentile 2+ consecutive days   Relative 

HI02 Mean daily temperature  >90th percentile 2+ consecutive days Relative 

HI03 Mean daily temperature  >98th percentile 2+ consecutive days Relative 

HI04 Mean daily temperature  >99th percentile 2+ consecutive days Relative 

HI05 Minimum daily temperature  >95th percentile 2+ consecutive days Relative 

HI06 Maximum daily temperature  >95th percentile 2+ consecutive days Relative 

HI07 Maximum daily temperature  

 

T1: >81st percentile 

T2: >97.5th percentile 

Every day, >T1; 

3+ consecutive days, >T2; 

Mean Tmax>T1 for whole 

time period 

Relative 

HI08 Maximum daily apparent 

temperature  

>85th percentile 1 day Relative 

HI09 Maximum daily apparent 

temperature  

>90th percentile 1 day Relative 

HI10 Maximum daily apparent 

temperature  

>95th percentile 1 day Relative 

HI11 Maximum daily temperature  >35°C 1 day Relative 

HI12 Minimum & maximum 

daily temperature  

Tmin>26.7°C  

Tmax>40.6°C 

Ó1 threshold for 2+ 

consecutive days 

Absolute 

HI13 Maximum daily heat index  >80°F 1 day Absolute 

HI14 Maximum daily heat index  >90°F 1 day Absolute 

HI15 Maximum daily heat index  >105°F 1 day Absolute 
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Appendix B ï Statistical characteristics of maximum and minimum 

temperatures    

 

 

Figure B.1. Multi -decadal variation in Tmax skewness at warm-season-monthly time scale. 
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Figure B.2. Multi -decadal variation in Tmax variance at warm-season-monthly time scale. 
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Figure B.3. Multi -decadal variation in Tmin skewness at warm-season-monthly time scale. 
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Figure B.4. Multi -decadal variation in Tmin variance at warm-season-monthly time scale. 
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