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Abstract 

Translocation is a common wildlife management tool though managers often lack follow-

up information regarding overall effectiveness of these efforts. Muskrats (Ondatra zibethicus) 

are native semi-aquatic herbivores with a rich cultural and economic history in North America. 

Muskrats have been positively associated with increased species richness within wetlands and 

can act as drivers of disturbance through intense herbivory at high population densities. 

Currently, muskrats are experiencing long-term and widespread population declines across their 

native range. Translocations may hold potential for muskrats to restore local populations and 

mitigate declines. However, it is unclear how translocating muskrats will affect their survival, 

post-translocation movements, and space use – all critical to effective translocation efforts. I 

live-trapped muskrats (n = 65) during the summers of 2018-2019 in Voyageurs National Park, 

MN, USA and assessed the effects of translocation on weekly survival rates and space use 

patterns. I implanted muskrats with internal VHF transmitters, moved them to treatment 

wetlands, and tracked space use, survival, and cause-specific mortality. On average, individuals 

traveled 2.2 km (0.12-10.11 km) from release sites and established a home range within 8 days 

post-translocation. There was no evidence of homing behavior (i.e., returning to their previous 

home range). Weekly survival rate was low (0.95, SE = 0.001) and my top known-fate survival 

model indicated that beaver lodge use and year of release (likely a function of the difference in 

release techniques between years) had the most influence on post-translocated muskrats. My 

study provides the first empirical assessment of translocation effects on muskrats and establishes 

a methodological technique to assess future efforts to use muskrats as a native biocontrol of T. x 

glauca. 
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Chapter 1 - Introduction 

Muskrats (Ondatra zibethicus) are wetland-obligate rodents native throughout much of 

North America and invasive in Europe, Asia, and South America (Hazard 1982, Anderson et al. 

2006). Similar to beavers (Castor canadensis), muskrat populations are considered ecosystem 

engineers (Bomske and Ahlers In Revision). Because of intense herbivory, hut construction, and 

disturbance of aquatic soils, muskrat populations are positively associated with greater wetland 

vegetation species richness (Nyman et al. 1993, Tyndall 2011). The disturbance muskrats create 

in wetlands can reduce dominant emergent wetland vegetation (e.g., cattails [Typha spp.], 

Phragmites australis), create open water habitat, and enhance diversity of forage for other 

wetland fauna (Tyndall 2011, Bansal et al. 2019). Huts constructed by muskrats also provide 

nesting structures for waterfowl and are positively associated with abundances of aquatic 

invertebrates (Kiviat 1978, de Szalay and Cassidy 2001, Nummi et al. 2006). Muskrats also 

contribute to a rich cultural history in indigenous cultures and provides a valuable resource for 

subsistence communities (Brietzke 2015, Straka et al. 2018, Turner et al. 2018). Muskrats have 

been a vital component of the North American fur industry since the 1800s (Erb and Perry 2003, 

Ahlers et al. 2016), being one of the most accessible and widely trapped furbearing species 

(White et al. 2015). 

Using historic fur-harvest data, Ahlers and Heske (2017) noted widespread declines of 

muskrat populations throughout the United States. Other research has demonstrated similar 

patterns of decline throughout North America (Roberts and Crimmins 2010, White et al. 2015, 

Greggory et al. 2019). Specific causes for these declines are unknown, but reduced water quality, 

loss of wetlands, and diminishing habitat quality through anthropomorphic land change and 

invasive species encroachment are believed to be major drivers (Ahlers and Heske 2017). 
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Changes in water regimes, particularly winter draw-downs, due to damming and implementation 

of water-control structures are also a noted cause of muskrat declines (Hazard 1973, Thurber et 

al. 1991). These findings, along with the realized importance of muskrats to the overall health of 

native wetlands, have fostered a renewed interest in muskrat management. 

Translocation, the act of taking an animal and moving it to a novel area, is a commonly 

used technique in wildlife management and conservation. This technique has been implemented 

to restore and reintroduce native game species (Olson 2007, Paul 2009, Werdel et al. 2019), 

endangered species (Jachowski and Lockhart 2009), and keystone species to restore ecological 

stability (Law et al. 2017). Translocations are also common practice in nuisance wildlife 

management as an alternative to lethal removal (Craven et al. 1998, Lehrer et al. 2016). Various 

methods are used in translocations, much of which are dependent on actual management goals. 

Release methods are likely the most varied aspect of the translocation process ranging from 

‘hard-releases’ wherein an animal is released without additional human aid, to ‘soft-releases’ 

involving intricate acclimation pens to habituate the translocated animals to their new 

environment over a span of several weeks. Generally, animals translocated using soft-releases 

had greater survival rates and were more likely to establish themselves in their new environment 

(Berger-Tal et al. 2019). 

Historically, translocations have been used to expand the range of muskrats and increase 

opportunity for fur harvesters (Storer 1937, O’Neil 1949). Records of these translocations are 

inconsistent and their success is relatively unknown. Our understanding of their successes rely on 

mostly anecdotal accounts and emphasizes the need for in-depth analyses of translocation 

success. Translocation techniques have become more refined, and studies analyzing these 

methods have provided valuable insight regarding keys to successful implementation and the 
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post-translocation ecology of various species (Van Vuren et al. 1997). Post-translocation survival 

is an immediate indicator of success and provides key information regarding the feasibility and 

methods used in the translocation effort (Massei et al. 2010). Behaviors expressed post-

translocation may be analogous to behaviors and decisions expressed during natural dispersal 

events (Van Vuren et al. 1997). Analysis of these behaviors may identify key resources for the 

species and expand our knowledge of the species, leading to more informed management 

decisions and increased translocation success. 

My thesis research focuses on the post-translocation ecology of muskrats in a large 

lacustrine system as a means of exploring the feasibility of translocating muskrats as a large-

scale non-native cattail (Typha x glauca) management technique. Using muskrats equipped with 

surgically implanted very-high-frequency (VHF) transmitters, I investigated post-translocation 

movements by calculating movement distances from release sites, quantifying the duration of 

prospecting periods and subsequent home range establishment, and investigating for potential 

homing behaviors. In addition, I used known-fate models to investigate post-translocation 

survival and determine factors most likely to predict weekly survival of translocated muskrats. 

Empirically assessing post-translocation spatial ecology and survival of muskrats will help 

inform about potentially important local resources for managers interested in restoring muskrat 

populations. To my knowledge this is the first in-depth analyses of translocation efforts 

involving muskrats and one of the most comprehensive ecological studies of muskrat populations 

occurring in a large lacustrine ecosystem. 
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Chapter 2 - Post-translocation spatial ecology and survival of 

muskrats (Ondatra zibethicus) in lacustrine wetlands. 

 Introduction   

Wildlife translocation is an important conservation tool used to alter population 

abundances and distributions or enhance population viability for at-risk species (Berger-Tal et al. 

2019). These efforts include translocations of charismatic species to reintroduce or bolster local 

populations (Olson 2007, Paul 2009, Werdel et al 2019), and restoration of imperiled species 

(Jachowski and Lockhart 2009). Translocations have also served as an alternative to lethal 

removal of individuals to mitigate negative human-wildlife interactions (Germano et al. 2015, 

Lehrer et al. 2016). Additionally, these efforts can restore native landscapes by reestablishing 

ecosystem engineers (i.e., American beaver [Castor canadensis] and Eurasian beaver [Castor 

fiber]; Law et al. 2017). Regardless of management goals, practitioners should rigorously 

evaluate post-translocation metrics (e.g., survival, space use) to assess the effectiveness of their 

efforts (Lehrer et al. 2016, Werdel et al 2018, Berger-Tal et al. 2019). 

Muskrats (Ondatra zibethicus) are small (0.7-1.8 kg; Willner et al. 1980) semiaquatic 

herbivores experiencing long-term and widespread population declines across North America 

(Roberts and Crimmins 2010, Ahlers and Heske 2017, Greggory et al. 2019). Because of their 

cultural significance in North America (Brietzke 2015, Straka et al. 2018; Turner et al. 2018) and 

importance to wetland ecosystems (Bhattacharjee et al. 2007, Bomske and Ahlers In Revision), 

translocation efforts focused on restoring or enhancing muskrat populations are timely and 

warranted. Muskrats are an economically important species (Erb and Perry 2003, Ahlers et al. 

2016), invasive to Europe, Asia, and South America (Hazard 1982, Anderson et al. 2006), and 

considered ecosystem engineers in wetland habitats (Bomske and Ahlers In Revision). Muskrat 
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herbivory is positively associated with wetland vegetation species richness (Nyman et al. 1993, 

Tyndall 2011) and occurrence of open-water habitats (Bansal et al. 2019). Additionally, muskrat 

huts provide nesting structures for birds (Kiviat 1978) and increased abundance of aquatic 

macroinvertebrates (de Szalay and Cassidy 2001, Nummi et al. 2006).  

Historically, muskrats were translocated to muskrat-absent wetlands primarily to provide 

increased opportunities for fur harvest (Storer 1937, O’Neil 1949, Idaho Fish and Game 2015). 

However, these efforts were poorly evaluated, if at all, leaving many questions about the efficacy 

of muskrat translocation. Translocations have the potential to influence muskrat space use and 

survival, which may impact overall management goals, although, available evidence for post-

translocation related effects is contradictory and generally species-specific (Berger-Tal et al. 

2019).  Increased emigration rates and low survival rates were observed in post-translocated 

American beavers (McKinstry and Anderson 2002), while similar emigration patterns, in 

addition to high homing rates, were noted in translocated California ground squirrel 

(Ostospermophilus beecheyi) populations (Van Vuren et al. 1997). In northern river otters 

(Lontra canadensis) it was found that males and larger individuals had greater post-translocation 

survival rates than females and smaller individuals (Day et al. 2013). Lehrer et al. (2016) did not 

find evidence for homing behavior in translocated woodchucks (Marmota monax) and reported 

that translocated woodchucks had similar survival rates as residents. Moreover, Lehrer et al. 

(2016) recommended practitioners use soft-release techniques and also choose release sites with 

relatively low predation risks to enhance translocation success. Increased survival and site 

fidelity of post-translocated prairie dogs (Cynomys parvidens and C. ludovicianus) was observed 

when using soft-release methods (Truett et al. 2001). 
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Muskrats are primarily restricted to aquatic habitats (Ahlers et al. 2010a, 2015), 

highlighting the relative impermeability of upland landscapes to muskrats (Schooley and Branch 

2006, Cooney et al. 2015). With longer translocation distances, muskrat homing behavior may 

diminish because of the limited permeability of upland landscapes (Schooley and Branch 2006, 

Laurence et al. 2013), limited perceptual range (Zollner and Lima 1997, Villasenor et al. 2013), 

and small size. Similar to other translocated species (Calvete and Estrada 2004, Lehrer et al. 

2016), I expect prospecting behaviors (searching for habitat in novel landscapes prior to 

establishing a home range) of muskrats immediately following translocation to be linked to 

reduced survival rates. Muskrats in North America are sympatric with American beavers and will 

often use active or inactive beaver lodges (Leighton 1933, Rosell et al. 2005, Mott et al. 2013, 

Windels 2017). It is plausible that beaver lodges could provide muskrats refugia from predation 

or adverse weather, and use of beaver lodges while prospecting in unfamiliar landscapes may 

confer increased fitness benefits such as increased survival probabilities (Rosell et al. 2005). 

I translocated radiomarked muskrats to lacustrine wetlands to investigate their subsequent 

spatial ecology and survival. This study was concurrently evaluating the long-term feasibility of 

using the same translocated muskrats as a biocontrol of a non-native cattail species (Typha x 

glauca; Brulliard 2018), but that study is beyond the scope of this thesis. Here, I focus on 

identifying how translocation efforts subsequently affect muskrat survival and movements. I 

expected that translocated muskrats would not exhibit homing behavior as translocation 

distances exceeded their perceptual ranges and published movement capabilities. Similarly, I 

expected post-translocation movements to remain within or close to release sites given the 

relative impermeability of surrounding upland landscapes, fetch impacts of open water habitats 

(Larreur et al. 2020), and limited dispersal capabilities of muskrats. Because beaver lodges may 
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provide refugia for muskrats in novel areas, I expected a positive association in weekly survival 

and beaver lodge use. Finally, there is evidence that soft-release techniques may improve 

survival rates of translocated species; therefore, I expected muskrats translocated using soft-

release techniques would have greater weekly survival rates. 

 

 Methods 

 Study Area 

My study occurred in and around Voyageurs National Park (VNP; ~88,220 ha) near 

International Falls, Minnesota, USA and Fort Francis, Ontario, Canada (48°29’ N, -92°49’ W; 

Fig. 2.1). VNP comprises parts of five large lakes, of which Rainy (58,065 ha) and Kabetogama 

(9,726 ha), both located within the Rainy Lake watershed (Fig. 2.1), were the focus of my 

research. Areas outside the park involved in my study included the Black Bay portion of Rainy 

Lake and Rat Root Lake, a tributary of Rainy Lake. Water levels within Rainy and Kabetogama 

Lakes are artificially managed through dams at the Rainy River in International Falls, MN and 

the Kettle Falls and Squirrel Falls dams at the outlet of Namakan Lake. Rainy and Kabetogama 

Lakes are classified as oligotrophic and mesotrophic-eutrophic, respectively (Christensen and 

Maki 2014) and are characterized by scattered islands and a mix of rocky and muddy shorelines. 

Vegetated shorelines consisting of non-native cattails (Typha x glauca), softstem bulrush 

(Schoenoplectus tabernaemontani), wild rice (Zizania palustris), and sedges (Carex spp.) occur 

primarily within areas adjacent to the main lake. Upland areas adjacent to wetlands were 

characterized by shallow soils and bedrock dominated by conifers (white pine [Pinus strobus], 

jack pine [Pinus banksiana], and balsam fir [Abies balsamea]) and northern deciduous trees 

(quaking aspen [Populus tremuloides] and paper birch [Betula papyrifera]). Average annual 
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temperature and precipitation for the area is 3°C (range = 9.3 - -3.3°C) and 242 cm (62 cm of 

rain and 180 cm of snow), respectively. For my study the average temperature in 2018 was 2.1°C 

(range = 19.2 - -17.5°C) and 1.34°C in 2019 (range = 18.9 - -18.9°C). Total precipitation for 

2018 was 218 cm (61 cm rain and 157 cm snow) and 285 cm in 2019 (78 cm of rain and 207 cm 

of snow). 

 

 Captures and Transmitter Implantation 

From 2-6 July, 2018 and 1-7 June, 2019, I captured muskrats in western Black Bay, Rat 

Root Lake, and the Mud Bay, Irwin Bay, and Daley Bay portion of Lake Kabetogama (Fig. 2.1) 

using double- and single-door live traps (Tomahawk® 202, Tomahawk, WI, USA). I attached 

traps to 122 x 61 x 4-cm floating rafts (modified track boards; see Reynolds et al. 2004, 

Schooley et al. 2012, Larreur et al. 2020) tethered to sturdy vegetation or wood laths (120 x 4 x 

1-cm) anchored into substrate or muskrat huts. I baited traps with apple and commercial trapping 

lures, and focused my efforts on or near muskrat huts or feeding platforms. I covered all traps 

with vegetation to make them more natural and provide trapped muskrats cover from adverse 

weather and direct sunlight. Traps were checked every morning and I immediately transported 

captured muskrats (adults ≥700 g) to a surgery suite to implant internal very-high-frequency 

(VHF) transmitters (13 g, ATS model F1215, Advanced Telemetry Systems, Isanti, MN, USA). 

Based on previous literature, I assumed the transmitters would not negatively affect survival and 

were unlikely to be expelled from the muskrats (Davis et al. 1984, Ahlers et al. 2010a, b, Smith 

et al. 2016). 

I transferred captured muskrats to a handling bag and weighed them. An attending 

veterinarian administered sedation (dexmedetomidine [0.025 mg/kg], midazolam [1 mg/kg]) via 
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intramuscular injection. When individuals displayed reduced righting reflex, the veterinarian 

induced surgical anesthesia using isoflurane (1-5%) via face mask. Once anesthetized, I assessed 

sex and conducted a basic health assessment. The veterinarian implanted transmitters following 

Ahlers et al. (2010a, b); muskrats were maintained on oxygen (0.6 L/min) during the entire 

procedure (20-30 min) and heart rate and breathing trends were constantly monitored. Sedation 

was reversed with atipamizole (0.25 mg/kg) and flumazenil (0.05 mg/kg) followed by 

inoculation of muskrats with penicillin (0.1 mL) and meloxicam (1 mg/kg). I marked all 

muskrats with passive integrated transponder tags (Ahlers et al. 2010a) and individual ear-tags. 

Prior to recovery, 1.5 mL blood was collected from individuals’ cranial vena cava using a 25-ga 

needle attached to a 3-mL syringe (Ahlers et al. 2011; Ahlers et al. 2020 In Press) and four 

morphometric tail measurements were recorded (length, base-width, mid-width, and end-width). 

I allowed muskrats ≥2 hrs to recover post-surgery prior to translocating them. All capture and 

handling procedures were approved by the Kansas State University Institutional Animal Care 

and Use Committee (Protocol #4098) and followed guidelines established by the American 

Society of Mammologists (Sikes et al. 2016). 

I selected five lacustrine wetlands from a suite of prospective sites to receive translocated 

muskrats and randomly assigned individuals to their respective wetlands prior to translocation 

(Fig. 2.1). Prospective wetlands were representative of traditional muskrat habitat (shallow to 

deep marsh). Wetlands selected as translocation sites were selected based on size (in hectares) 

and the distance to neighboring translocation sites. Wetlands averaged 1.42 ha (range = 1.09-

1.78ha), were separated by ≥1.3 km (  = 5.7 km, range = 1.3-11.6 km), and supported diverse 

emergent vegetation communities (cattail, bulrush, wild rice, sweet flag [Acorus calamus], and 

giant bur-reed [Sparganium eurycarpum]) and floating vegetation (white water lily [Nymphaea 
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odorata], common bladderwort [Utricularia macrorhiza], and floating-leaf pondweed 

[Potamogeton natans]). Wetlands were not geographically isolated as they were all 

hydrologically connected to Rainy Lake (Fig. 2.1). I did not quantify muskrat abundance in 

wetlands prior to muskrat translocations; however, observations during pre-study assessments 

(e.g., number of muskrat huts, clippings, and scat) indicated low-to-zero muskrat abundances in 

those areas. Average translocation distance (Euclidian) from site of capture for all muskrats (n = 

65) was 18.13 km (range of 4.68-25.46 km). 

In 2018, I translocated muskrats using a hard-release technique where I released an 

individual from their trap onto natural structures within their assigned wetland (e.g., floating 

cattail mat, beaver lodge, shoreline structure). In an effort to reduce possible translocation related 

stress and boost survival of the translocated muskrats, I implemented a novel soft-release 

technique in 2019. This included releasing muskrats directly into temporary shelters to better 

acclimate them to their release site (Fig. 2.2). Shelters were constructed using a 76 x 51 x 44-cm 

(114 liter) plastic tote (with removable lid) affixed to 122 x 61 x 4-cm floating rafts (for detailed 

descriptions of floating rafts, see Reynolds et al. [2004], Schooley et al. [2012], and Larreur et al. 

[2020]). I cut a 15-cm diameter opening in the plastic tote and partially filled structures with 

local vegetation. I released individuals directly into structures and they had the ability to freely 

leave or return through the opening (Fig. 2.2). Two structures were placed in each release 

wetland (~10 m apart) to reduce potential for competition between translocated muskrats, and I 

only released one muskrat per structure at a time. Structures were placed in ~1 m of water and 

spatially positioned within wetlands to reduce exposure to wave action.  
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 Movements and Survival 

I used a boat or aircraft-mounted, four-element fixed Yagi antenna in conjunction with an 

ATS R4000 receiver (Advanced Telemetry Systems, Isanti, MN, USA) to initially search for 

muskrats. Once the general locations of muskrats were identified, I used a single handheld 

telemetry receiver (Communication Specialist R-1000; Communication Specialist Inc. Orange, 

CA, USDA) and three-element folding Yagi to home in on exact locations of muskrats. I 

attempted to find muskrats once every 48 hrs and only during daylight or twilight. Muskrats are 

generally crepuscular and my sampling timeframe likely underestimated the spatial extent of 

actual muskrat home ranges. Once located, I recorded locations of individuals using a handheld 

GPS (Garmin GPSMAP® 64; Garmin Ltd, Olathe, KS, USA), documented mortality status 

(alive or dead), and identified structure use (i.e., beaver lodge/dam, muskrat huts). I attempted to 

locate and physically retrieve all mortalities as soon as they were detected to characterize cause 

of mortality. 

 

 Analyses 

Similar to Woodford et al. (2013), I determined the end of an individual’s prospecting 

period and subsequent establishment of a home range when four consecutive locations occurred 

within the approximate size of an average home range of a muskrat (2.9 ha, Marinelli 1993). I 

used space-use data from individuals tracked consistently throughout the prospecting period to 

calculate average duration of prospecting (n = 28; 2018 = 6 [5 male, 1 female], 2019 = 22 [14 

male, 8 female]). 

Translocated individuals search for new areas to settle immediately after release and 

movements during this prospecting period generally do not reflect normal habitat-use decisions 
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(Vilasenor et al. 2012, Lehrer et al. 2016, Berger-Tal et al. 2019). Thus, I did not include 

locations collected during an individual’s prospecting period in home range size estimations. 

Based off of Ahlers et al. (2010a) I calculated individual home range size for muskrats with ≥20 

locations post-prospecting period (n = 26, 17 males and 9 females). Due to small per capita 

sample sizes of locations in 2018 (  = 12.4 locations, range = 5-19 locations), I only used data 

collected from muskrats in 2019 to estimate home range sizes. I estimated 95% home range sizes 

from kernel density estimates (KDE) using an Epanechnikov kernel and individual reference 

bandwidths with package ‘adehabitatHR’ in R (Calenge 2019). I tested for sex-specific 

differences in home range sizes using a t-test and the duration of prospecting time using a Mann-

Whitney U-test in R base package (Zar 2010, Woodford et al. 2013). I established an a priori 

cutoff for significant effects at α = 0.05. 

I investigated if individual post-translocation movement trajectories oriented back to 

initial capture locations (i.e., homing). Using individuals with ≥5 locations (n = 42, 10 in 2018 

and 32 in 2019) I calculated average post-translocation movement trajectories by plotting the 

travel route of each muskrat using the Point-To-Line tool and then fitting a line to the route using 

the Linear-Directional-Mean tool in ArcMAP (Esri Corporation, Redlands, CA, USA). I plotted 

all muskrat trajectories respective to their capture location (Lehrer 2016), this way 0° would 

represent capture locations as opposed to North. I then ran a V-test of 0° (Oriana version 4.02, 

Kovach Computing Services, Anglesey, Wales, UK) to assess if there was a difference in mean 

movement trajectories and capture locations (i.e., homing) and calculated the r vector to measure 

the concentration of the trajectories around their mean (Landler et al. 2018). 

To assess total distances traveled during prospecting periods, I measured Euclidian 

distance (km) from an individual’s release site to the center of their 95% home range. If a home 
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range was not established for an individual muskrat (either died or was lost during the 

prospecting period), I measured the Euclidean distance from their release site to last known 

location. If a muskrat established a home range, but lacked sufficient locations for home range 

estimation (< 20 locations), I measured the Euclidian distance to the geographic center of the 

post-prospecting period location cluster. Assuming that movement routes of muskrats followed a 

Euclidian trajectory is likely unrealistic (e.g., requiring them to move freely through upland 

landscape), so I also estimated a modified least-cost path using similar methods described above. 

As opposed to using a straight-line distance measurement, I manually measured the most 

parsimonious route (km) using the Linear Measurement Tool in ArcMAP for each muskrat 

assuming individuals would remain in water (Ahlers et al. 2010a). I used Mann-Whitney U-tests 

to investigate potential sex- and year-specific differences in both estimates of post-translocation 

movement distances. 

I used known-fate models with a staggered entry design to estimate weekly post-

translocation survival (Program MARK version 9.0; Cooch and White 2008). I structured models 

using six covariates hypothesized as important for muskrat survival including sex (male or 

female), year (2018 or 2019), tail index (TailID), beaver lodge-use (Lodge) and prospecting 

status (Prosp). Muskrats store fat reserves within their tails, thus tail size may be an indicator of 

overall body condition (Aleuksiuk 1970, Hickman 1979, Smith and Jenkins 1997). I derived a 

muskrat ‘tail index’ by modifying a similar index developed for beavers (Smith and Jenkins 

1997). I first calculated tail size, X, for the i th individual as: 

ὢ  
ὢ

ὒ
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where ὢ  = the mean horizontal width (mm) of the tail derived from three measurements evenly 

spaced along the length (base, middle, and 1cm from the tip); and L = the length (mm) of the tail 

(base to tip). I then derived a tail index, Z , for the i th individual as: 

ὤ
ὢ ὢ

Ὓ
 

where ὢ = mean tail size for all muskrats (n = 65); and S = standard deviation of ὢ. 

Beaver lodges can be important structures for muskrats as they provide refugia from 

predation and adverse weather conditions (Mott et al. 2013). I developed a time-varying 

covariate that represented an individual’s use of a beaver lodge at least once during a given week 

(Lodge; 1 = ≥1 location recorded in a beaver lodge during a given week, 0 = no locations 

recorded in a beaver lodge during a given week). I determined a muskrat to be located in a 

beaver lodge by homing in to the exact location of the beaver lodge. I developed an additional 

time-varying covariate representing if an individual was exhibiting prospecting behavior (i.e., 

movements prior to establishing a home range) during a given week (Prosp; 1 = muskrat located 

during prospecting period, 0 = muskrat located after establishing a home range). 

Because a single marked muskrat was relocated in both 2018 and 2019, my detection 

history spanned 69 weeks (2 July 2018- 24 October 2019). I only monitored muskrats from July 

– November 2018 and June – October 2019; therefore, weekly survival estimates only reflect 

survival during that period. I created a suite of models (n = 11) to estimate weekly survival of 65 

muskrats (48 males [2018 = 18, 2019 = 30] and 17 females [2018 = 5, 2019 = 12]. To prevent 

over-parameterization of models while preserving overall model parsimony, I restricted the 

maximum number of parameters per model to ≤4 (Burnham and Anderson 2002). Models 

included single effects (Year; Lodge; Prosp; Sex; TailID), additive effects (Lodge + Year; Lodge 

+ Prosp + Year; Prosp + Year; Lodge + Prosp), potential interaction between beaver lodge use 
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and prospecting behavior (Lodge + Prosp + Lodge*Prosp), and a null model. I used a logit-link 

function to express weekly survival probability as a continuous function of selected covariates. I 

assessed support for models using Akaike’s Information Criterion corrected for small sample 

sizes (AICc) and based all inferences on model rankings. I considered models with ΔAICc of ≤ 

2.00 as competitive (Burnham and Anderson 2002). 

 

 Results 

I marked and translocated 65 adult muskrats (2018 = 23, 2019 = 42), of which 48 were 

male (2018 = 18, 2019 = 30) and 17 were female (2018 = 5, 2019 = 12). I relocated post-

translocated muskrats with VHF telemetry 1,451 times, yielding ~22 locations per individual 

(range = 1-48). I tracked each muskrat an average of 73 days (2018 = July 2 - November 5; 2019 

June 1 - October 24) and 17 known individuals retained active transmitters by the end of the field 

seasons (2018 = 3, 2019 = 14). The average duration of prospecting period was 8.4 days (range = 

2-32 days). There was no difference in duration of prospecting period between males (  = 9.3 

days, range = 2-32 days) and females (  = 6.4 days, range = 1-12 days; U = 62, p = 0.34) or 

years (2018 = 8.5, range = 2-17 days; 2019 = 8.4, range = 2-32 days; U = 69.5, p = 0.72). I did 

not observe evidence of long-term use (>24 hrs) of soft-release structures by muskrats. 

Muskrats did not exhibit post-translocation homing behavior (Fig 2.3, r vector = 0.18, p = 

0.09); although, only ~15% of muskrats (n = 10) remained within their assigned release wetlands 

after translocation. Mean post-translocation Euclidean and least-cost path movement distance 

was 2.17 km (range = 0.12-10.11 km) and 2.69 km (range = 0.12-11.32 km), respectively. Post-

translocation movement distances between males (Euclidean = 2.31 km, range = 0.12-10.11 km; 

least-cost path = 2.85 km, range = 0.12-11.32 km) and females (Euclidean = 1.74 km, range = 
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0.57-3.57 km; least-cost path = 2.16 km, range = 0.71-4.57 km), were not significantly different 

(U = 154, p = 0.87 and U = 156.5, p = 0.93, respectively). Post-translocation movement distances 

for pooled sexes differed between years for both Euclidean (2018 = 1.14 km, range = 0.12-3.63 

km; 2019 = 2.50 km, range = 0.34-10.11 km; U = 86, p = 0.02; Fig. 2.4A) and least-cost path 

metrics (2018 = 1.42 km, range = 0.12-5.36 km; 2019 = 3.09, range = 0.36-11.32; U = 84, p = 

0.03; Fig. 2.4B). 

For muskrats with sufficient data to model post-translocation home range area (n = 26) 

the mean number of locations per muskrat was 37.4 (range = 23-47). Average 95% home range 

area was 2.52 ha (range = 0.05-9.67 ha). There was no statistical difference between male (  = 

2.53 ha, range = 0.06-9.67 ha) and female (  = 2.50 ha, range = 0.05-6.79 ha, t[18.1] = -0.03, p 

= 0.98) post-translocation home range sizes. 

I recorded 23 mortalities (2018 = 11, 2019 = 12) and I attributed four to predation 

(American mink [Neovison vison, n = 3] and bald eagles [Haliaeetus leucocephalus, n = 1]) and 

four unknown (no obvious signs of predation, trauma, or disease). For the remaining 15 

mortalities, I only recovered transmitters with little or no obvious signs of predation preventing 

characterization of cause of mortality. I was unable to relocate 9 individuals post-translocation 

(2018 = 4, 2019 = 5). My top ranked and most-supported model (Lodge + Year; Table 2.1), 

indicated muskrats using beaver lodges had greater weekly survival rates (0.99, SE = 0.01) than 

those that did not (0.95, SE = 0.01; β = 2.04, SE = 1.03, ƩωLodge= 0.92; Fig. 2.5A). Additionally, 

muskrats had greater weekly survival rates in 2019 (0.97, SE = 0.01) than in 2018 (0.88, SE = 

0.03) (β = 1.43, SE = 0.44, ƩωYear= 0.97, Fig 2.5B). Overall weekly survival rates based on my 

top-ranked model were 0.95 (SE = 0.001). My second-ranked model included the covariate 
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‘Prosp’ (Lodge + Year + Prosp; Table 2.1). However, inclusion of ‘Prosp’ did little to improve 

model fit (ΔDeviance between models = 0.24; Table 2.1) suggesting this effect was spurious. 

 

 Discussion 

My results demonstrate that translocated muskrats are capable of moving relatively long 

distances in hydrologically connected lacustrine ecosystems. Although translocation is not 

biologically similar to dispersal, it is plausible that individual movement decisions during post-

translocation prospecting periods may be similar to movement decisions during dispersal. 

Errington (1940, 1963) reported long-distance movements (5-30 km) by muskrats between 

isolated wetland complexes in agroecosystems. Laurence et al. (2013) found genetic connectivity 

of muskrat populations in a boreal ecosystem was influenced by landscape composition 

including negative associations with open landscapes and forests. While I did detect muskrats 

traveling through interior wetlands hydrologically connected to the main lake, I did not observe 

radiomarked muskrats colonizing hydrologically isolated interior wetlands likely due to the 

impermeability of surrounding upland landscapes (mostly conifer and deciduous forest 

landcover). I did observe translocated muskrats swimming across deep-lake habitats (>5 m 

depth) exposed to greater levels of wind and wave action (i.e., fetch) to establish home ranges in 

areas away from their release sites. Recent evidence, however, has suggested that site 

colonization by muskrats is negatively influenced by greater amounts of fetch present in 

lacustrine wetlands (Larreur et al. 2020). Similar to the methods described in Laurence et al. 

(2013), I recommend future research utilize molecular tools to empirically assess the relative 

permeability of fetch-impacted waterscapes and identify geographic barriers to the connectivity 

of muskrat populations in boreal ecosystems.  
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Although translocated muskrats did not orient movements towards their original capture 

sites, most did not remain in their respective release wetland. Although the 95% confidence 

intervals for the v-test did include 0º (the scaled trajectory towards capture location), Zar (2010) 

cautioned uniformly distributed trajectories may produce unreliable confidence estimates, as I 

observed in my dataset. Additionally, muskrats moved longer distances than I anticipated given 

their size and surrounding landscapes. Significantly larger movement distances in 2019 could 

reflect the larger sample size in that year or more likely a function of an increased abundance of 

muskrats near the release sites created by translocations in 2018. 

Past studies have used widely different estimation techniques to characterize muskrat 

home ranges (e.g., Errington 1939, Sather 1958, MacArthur 1978, 1980, Ahlers et al. 2010a) 

making direct comparisons to my results difficult. However, my estimated home range size of 

post-translocated muskrats was similar to those of resident muskrats when estimated using 

minimum convex polygons (Marinelli 1993), though, with the caveat that I am comparing the 

results of two different methods of home range estimation. In addition, my results were also 

similar to the home ranges of three resident muskrats within my study area whose home ranges 

were estimated using the same methods. Due to the method of collecting locations during 

daylight hours the estimates for home ranges may be underestimated since this would be when 

muskrats are least active. Muskrats established home ranges ~8 days after translocation though 

this estimate is likely overestimated as I relocated individuals every ~48 hrs. Relatively low 

abundances of muskrats within and around release wetlands (and in VNP) likely resulted in 

increased available habitat, possibly reducing the time required to establish home ranges. I 

observed translocated muskrats constructing huts and improving existing structures (abandoned 

or dilapidated beaver lodges) soon after establishing home ranges. These observations 
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underscore plasticity in muskrats’ ability to adapt to novel environments or may be a function of 

available good-quality habitat within their newly established home ranges. Due to the limited 

battery life of the transmitters and seasonal weather constraints in the study area, I was unable to 

assess long-term muskrat home range dynamics and structure use. I recommend future research 

develop methods for remotely tracking the long-term spatial ecology of translocated muskrats in 

boreal ecosystems. 

Survival rates of post-translocated muskrats were similar to other studies of resident 

muskrat populations (Clark 1987, Clark and Kroeker 1993, Kanda and Fuller 2004, Ahlers et al. 

2010b, Ganoe et al. 2019). Weekly muskrat survival was greater in 2019, providing evidence that 

using soft-release techniques (only used in 2019) enhanced post-translocation survival 

probabilities. All trapping, handling, and marking techniques were consistent with no appreciable 

differences in environmental or climatic conditions between years. Soft-release techniques can 

improve species’ survival and enhance acclimation of individuals to novel areas (Tezlaff et al. 

2019). Additionally, the use of soft-release structures are common for species that use burrows 

(Jachowski and Lockhart 2014) or cavities (Woodford et al. 2013). Soft-release structures mimic 

natural dwellings and, in some cases, serve as long-term surrogates in the absence of natural 

dwellings (McComb and Noble 1981, Truett et al. 2001), thereby increasing establishment 

success in novel environments. Subsequent muskrat translocation efforts will likely benefit from 

incorporating similar soft-release techniques into management plans. 

As expected, translocated muskrats that used available beaver lodges had greater weekly 

survival rates. Moving through unfamiliar landscapes is inherently risky due to predation risk, 

competition with conspecifics, and lack of shelter or refugia (Waser 1985, Yoder et al. 2004, 

Berger-Tal et al. 2019). Muskrats rely on huts and burrows for shelter (Errington 1963, Hazard 
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1982), but shorelines in VNP consisted of granite bedrock or shallow soils preventing the 

construction of burrows. Moreover, established muskrat huts are likely unavailable to 

translocated muskrats unless vacated by resident muskrats. Lack of shelter would likely force 

muskrats to rest in exposed areas or continuously travel until a shelter is located or constructed, 

exposing them to increased risk of predation. Beavers are ubiquitous throughout VNP hosting the 

highest reported beaver densities in the United States (Johnston and Windels 2015) creating an 

abundance of lodges throughout the study area. Beaver lodges likely serve as temporary refugia 

for muskrats during their prospecting periods and may provide stepping-stone resources during 

dispersal. Additionally, active lodges (those currently occupied by beavers) may provide 

predator deterrence. Although muskrat use of beaver lodges is well documented (Leighton 1933, 

Rosell et al. 2005, Mott et al. 2013), this is the first study to reveal the fitness benefits provided 

to muskrats using these structures. My results enhance the evidence that beavers can enhance 

biodiversity and provide critical ecosystem benefits for wetland flora and fauna (e.g., Nummi 

and Holopainen 2014, Pollock et al 2014, Law et al. 2016, 2017, Windels 2017). 

The long-term and widespread decline of muskrat populations necessitates active 

management efforts, such as translocations, to restore and bolster populations across their native 

geographic range. My research suggests that survival and spatial ecology of translocated 

muskrats are similar to resident muskrat populations. However, assuming that translocated 

muskrats will remain in discrete target wetlands in hydrologically connected systems may be 

unrealistic. For muskrat translocation efforts to be successful in lacustrine systems, biologists 

should designate larger geographic areas as targets for population restoration efforts rather than 

discrete, hydrologically connected wetlands. In addition, I recommend using soft-release 

techniques to translocate muskrat populations into areas with established beaver populations to 



23 

improve post-translocation muskrat survival and increase the likelihood of population 

persistence. Future research regarding the feasibility of muskrat translocations should focus on 

geographically isolated wetland complexes in other parts of their native range (i.e., prairie 

potholes, Nebraska sandhill wetlands, coastal plains ponds; Tiner 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

Table 2.1 Known-fate model selection results describing survival of translocated muskrats 

(Ondatra zibethicus; n = 65) in lacustrine wetlands in Voyageurs National Park, MN, during 

summers 2018 and 2019. Models were ranked by differences in Akaike’s Information Criterion 

corrected for small sample sizes (ΔAICc). w = model weight, K = number of parameters within 

the model, deviance = -2log ([loge likelihood of the model)-(loge likelihood of the saturated 

model)]. Explanatory variables include Lodge (time-varying covariate indicating if a muskrat 

was located in a beaver (Castor canadensis) lodge during a given week), Year (2018 or 2019), 

and Prosp (time-varying covariate indicating that an individual was prospecting during a given 

week). I only present models with ΔAICc ≤ 2.00 along with the null model for comparison. 

Model ΔAICc w K Deviance 

Lodge + Year 0.00 0.63 3 178.41 

Lodge + Year + Prosp 1.79 0.26 4 178.17 

Null 16.66 0.00 1 199.10 
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Figure 2.1 Spatial distribution of muskrat (Ondatra zibethicus) live-trapping areas and 

translocation sites (black circles; n = 5) for muskrats in Voyageurs National Park near 

International Falls, MN, during summers of 2018 and 2019. Trapping areas (represented by the 

cross-lined polygons) include the Mud Bay, Irwin Bay, and Daley Bay portion of Lake 

Kabetogama, the western end of the Black Bay portion of Rainy Lake, and Rat Root Lake, a 

tributary of Rainy Lake. 
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Figure 2.2 Soft-release shelter used to release translocated muskrats (Ondatra zibethicus) into 

wetland habitats in Voyageurs National Park near International Falls, MN, during summer 2019. 

Shelters were constructed using a 114-l plastic tote with a secured detachable lid (A) with a 15-

cm hole cut on the side (B) so muskrats could move freely in and out of the shelter. Shelters were 

affixed to 122 x 61 x 4-cm floating rafts (C) and tethered to emergent vegetation (D). I partially 

filled shelters with local vegetation prior to releasing a muskrat inside. Note recently translocated 

muskrat on a soft-release shelter feeding on invasive cattail (Typha x glauca). 

 

 

 

 

 

 

 

 

 



27 

 

Figure 2.3 Post-translocation movement distances (m) and trajectories (0 - 360º) for 

radiomarked muskrats (Ondatra zibethicus, n = 42) scaled to their individual capture locations 

(0°). Muskrats were live-trapped and translocated into lacustrine wetlands in Voyageurs National 

Park near International Falls, MN, during summers of 2018 and 2019.The center of the figure 

represents individual release locations, grey circles represent individual travel distances (m) and 

trajectory (º), bold lines represent the mean trajectory for all individuals along with the 95% 

confidence interval. 
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Figure 2.4 Annual differences in median post-translocation Euclidean (A) and least-cost path 

(B) distances moved by radiomarked muskrats (Ondatra zibethicus, n =42). Muskrats were live-

trapped and translocated into lacustrine wetlands in Voyageurs National Park near International 

Falls, MN, during summers of 2018 and 2019. Bold lines represent median values, boxes 

represent the interquartile range, whiskers represent minimum and maximum values exclusive of 

outliers, and circles represent outliers. 
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Figure 2.5 Weekly muskrat (Ondatra zibethicus, n = 65) survival probabilities (and 95% 

confidence intervals) derived from my top-ranked known-fate model. Muskrats were 

radiomarked and translocated into lacustrine wetlands in Voyageurs National Park near 

International Falls, MN, during summers of 2018 and 2019. Translocated muskrats that used 

beaver (Castor canadensis) lodges had greater weekly survival probabilities (A). Translocated 

muskrats also had greater weekly survival probabilities in 2019 (B), likely a result of using a 

soft-release method for translocation that year. 
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Chapter 3 - Conclusion 

Muskrat (Ondatra zibethicus) populations are declining throughout North America 

(Roberts and Crimmins 2010, Ahlers and Heske 2017, Greggory et al. 2019) with little evidence 

indicating why. Considered an ecosystem engineer (Bomske and Ahlers In Revision), muskrats 

populations can reduce wetland vegetative coverage and promote wetland species richness 

(Nyman et al. 1993).  Structures created by muskrats provide habitat for aquatic invertebrates (de 

Szalay and Cassidy 2001, Nummi et al. 2006) and are often utilized as avian nest foundations 

(Kiviat 1978). Reductions in wetland habitat quality and access to one of the most widely 

trapped furbearers in North America (White et al. 2015) has sparked interest in active 

management of this ecologically and economically important furbearer. Historically, muskrat 

translocation efforts were implemented to expand the range of muskrats throughout North 

America with the explicit intention of providing increased opportunity for trappers (Storer 1937, 

O’Neil 1949). The success of these efforts, similar to other species’ translocation efforts, is 

largely unknown. Contemporary translocation research emphasizes the need for scientifically 

rigorous studies to investigate the success and viability of translocation efforts, though 

information is still lacking for muskrats populations.  

Invasive hybrid cattails (Typha x glauca) are a common invader in wetlands throughout 

the United States (Bansal et al. 2019). These cattails aggressively outcompete native vegetation 

through rapid rhizomal reproduction and formation of dense floating mats extending into open 

water habitats, effectively reducing the amount of available habitat to wetland flora and fauna 

(Bansal et al. 2019). My research was part of a larger study to investigate possible methods of 

control and reduction of T. x glauca (Brulliard 2018). Though the full scope that study was 

beyond the scope of my thesis research, an investigation into the feasibility of using translocated 
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muskrats as a method of vegetation management was warranted to fully understand the realism 

of the ultimate management goals. 

Using two years of survival and telemetry data from 65 translocated muskrats, I 

quantified post-translocation survival and spatial ecology of muskrats within a lacustrine 

ecosystem in Voyageurs National Park (VNP), Minnesota, USA. During the summers of 2018-

2019, I collected 1,451 telemetry locations from post-translocated muskrats to quantify average 

prospecting period, distances traveled after release, subsequent home range sizes, and potential 

homing behaviors. I also quantified weekly survival of post-translocated muskrats and related 

these rates to intrinsic and biological covariates. I detected 23 mortalities, three of these from 

mink (Neovison vison) and one from a bald eagle (Haliaeetus leucocephalus). My results suggest 

that muskrats are capable of traveling greater distances than hypothesized (relative to their body 

size). Additionally, I detected no homing behaviors and found the average prospecting period 

comparable to similar species (Van Vuren 1997) and average home range size similar to those of 

resident muskrats (Marinelli 1993, Ahlers et al. 2010). Individuals that used beaver lodges and 

those released using soft-release structures had greater weekly survival rates than those that did 

not. Although previous research documented commensalism between muskrats and beavers 

(Leighton 1993, Rosell et al. 2005, Mott et al. 2013), mine was the first study to uncover the 

potential benefits to muskrats provided by beavers. 

My research provided evidence that translocation of muskrats is a viable population 

recovery technique, although muskrats largely did not remain in the targeted wetlands. This 

evidence corroborates anecdotal accounts from historical translocation efforts (Storer 1937, 

O’Neil 1949, Idaho Game and Fish 2015) and provides a basis for modern efforts. Growing 

evidence supports muskrats as a vital component of healthy wetland ecosystems (Bomske and 
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Ahlers In Revision) and increased muskrat abundances can decrease cover of more aggressive 

vegetation within wetlands (e.g., Typha spp; Tyndall 2011, Bansal et al. 2019). Using telemetry 

data and known-fate analyses I uncovered landscape variables and translocation techniques that 

improve the weekly survival probability and success of translocated muskrats. Integration of 

these variables into management plans targeted towards muskrat recovery could help increase the 

potential for a successful effort. Future research focused on similar efforts in hydrologically 

isolated wetlands would provide additional needed information regarding the feasibility of 

muskrat translocations and the effects surrounding habitats may have. 
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