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On the basis of recently developed Fourier continuation (FC) methods and associated efficient par-

allelization techniques, this text introduces numerical algorithms that, due to very low dispersive

errors, can accurately and efficiently solve the types of nonlinear partial differential equation (PDE)

models of nonlinear acoustics in hundred-wavelength domains as arise in the simulation of focused

medical ultrasound. As demonstrated in the examples presented in this text, the FC approach can be

used to produce solutions to nonlinear acoustics PDEs models with significantly reduced discretiza-

tion requirements over those associated with finite-difference, finite-element and finite-volume

methods, especially in cases involving waves that travel distances that are orders of magnitude lon-

ger than their respective wavelengths. In these examples, the FC methodology is shown to lead to

improvements in computing times by factors of hundreds and even thousands over those required

by the standard approaches. A variety of one-and two-dimensional examples presented in this text

demonstrate the power and capabilities of the proposed methodology, including an example con-

taining a number of scattering centers and nonlinear multiple-scattering events.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4742722]
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I. INTRODUCTION

It is by now well understood that standard, low-order

finite-difference (FD), finite-element (FEM), or finite-volume

(FV) numerical methods are not well-suited for large-scale

acoustic simulations wherein the distance traveled by the

highest-frequency waves during the evolution of the solution is

orders of magnitude larger than the corresponding wavelength.

Specifically, low-order methods are known to exhibit large dis-

persive errors1–5 that cause significant phase errors when

acoustic waves are propagated over large distances. These dis-

persive errors are frequency-dependent, with the smallest errors

typically arising in the low-frequency wave modes, and, thus,

the associated phase errors are exacerbated in nonlinear appli-

cations for which the nonlinearity can generate numerous high-

frequency harmonics. In practice, this means that low-order

methods are contraindicated for use in problems involving the

long-distance propagation of acoustic waves.

As shown in Ref. 4, for numerical solutions to

advection-dominated PDE problems there is typically an

error relation of the form

E � const� ðDxÞpkpþ1T; (1)

where E is the error in the kth Fourier mode of the numerical

solution at time T, Dx is the spatial discretization step-size,

and p is the order of accuracy with which the spatial deriva-

tives are approximated. This relation, which is based on peri-

odic Fourier analysis, provides a very accurate prediction of

the accuracy with which a numerical method will propagate

waves in the interior of the computational domain. Thus, it is

a particularly useful tool in analyzing solvers for acoustic

problems involving long-distance sound wave propagation.

Relation (1) is instrumental in understanding the behavior of

a numerical scheme as it is “scaled up” to increasingly larger

problems, since it suggests how the spatial discretization

should be adjusted with the other parameters in order to

retain a given level of accuracy:

D x � k�ðpþ1Þ=pT�1=p: (2)

Assuming two numerical methods have the same order of

computational complexity (e.g., both scale linearly with the

number of discretization points), relation (2) shows that the

higher-order method will always outperform the lower-order

method for sufficiently large k or T.
a)Author to whom correspondence should be addressed. Electronic mail:

obruno@caltech.edu
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Of course, whether a high-or low-order method is prefer-

able for a particular problem depends on the constants of

proportionality in relation (1) and in the computational com-

plexity relation as well as on the frequencies and time scales

involved. As a concrete example, the present contribution

concerns problems arising in the simulation of high intensity

focused ultrasound (HIFU), which employs sharply focused,

high-frequency (�1 MHz) transducers to create rapid and

extreme temperature rises at a focal point many fundamental

wavelengths away from the transducer. The relatively large

propagation distances (on the order of a hundred times the

fundamental wavelength) and significant nonlinear effects

present in HIFU PDE models suggests that such problems

could be more efficiently treated by high-order than low-

order methods. Indeed, it is demonstrated in what follows that

high-order methods are not only preferable for HIFU-type

problems, but are likely crucial for their solution. Although

FD simulations of HIFU fields with domains on the order of

100 wavelengths have been reported in the literature,6–8 nu-

merical accuracies have only been estimated for much smaller

problems, on the order of ten fundamental wavelengths or

less (Ref. 7, Sec. IV A), or for cases in which significant non-

linear steepening does not occur (Ref. 8, Sec. V C).

The computational difficulties involved in treating full-

wave ultrasound models for HIFU and other medical con-

texts have historically been a driving force toward the devel-

opment of simplified (and more computationally tractable)

nonlinear acoustics models (see, e.g., Refs. 9–16). However,

as computing technology has become increasingly powerful,

there has been a renewed interest in solving full-wave mod-

els (e.g., Navier-Stokes or Westervelt equations).7,17–24 One

reason for developing improved computational methodolo-

gies, therefore, is to enable the use of less restrictive HIFU

models in practice. Moreover, the development of advanced

computational algorithms is useful in the field of HIFU sim-

ulation as a whole. Regardless of the model chosen, replac-

ing a low-order numerical scheme by a high-order one can

yield significant resolution improvements and enable accu-

rate solutions of the model equations for larger-scale prob-

lems than is currently possible. This point is illustrated in the

one-dimensional examples presented in Sec. IV.

Because accurate HIFU simulation requires the faithful

advection of acoustic waves across large areas of the

domain’s interior [which gives rise to large values of k in

Eqs. (1) and (2)], the analysis presented at the beginning of

this section indicates that use of a numerical method that

exhibits high-order accuracy in the interior can be greatly ad-

vantageous. In the present work, the recently developed Fou-

rier continuation (FC) algorithm and associated efficient

parallelization techniques25–27—which offer essentially

spectral ðp� 1Þ accuracy over the bulk of the domain’s in-

terior—are used to produce accurate numerical solutions of

the full nonlinear acoustic equations for problems in which

such direct simulation was previously impractical or impos-

sible. The method, which can yield accurate solutions using

significantly coarser spatial discretization than needed by

previous approaches, can lead to improvements in comput-

ing times by factors of hundreds or even thousands over

those required by other methodologies—thus significantly

increasing the feasibility of the direct solution of HIFU

problems.

Although the bulk of the present paper focuses on faith-

ful long-distance nonlinear advection, some brief discussions

of potential modifications for treating other difficulties found

in HIFU models are also included in Sec. VIII. While

the treatment of all aspects of modern HIFU models by

FC-based methods has not yet been fully developed, this pa-

per is intended to present a compelling argument that the FC

methodology can be used as a powerful tool in the develop-

ment of large-scale, full-domain simulation of HIFU wave

propagation.

II. FOURIER CONTINUATION FUNDAMENTALS:
FC(GRAM) ALGORITHM

As is apparent in Sec. III below, the key distinguishing

characteristic of the FC solver is the method of spatial differ-

entiation, which is based on a certain FC(Gram) approach. The

FC(Gram) algorithm, which was introduced in Refs. 25–27

(cf. Refs. 28–30) enables high-order/spectral convergence of

Fourier expansions of non-periodic functions—thus resolving

the well known Gibbs ringing phenomenon and associated

slow convergence of Fourier series of functions whose peri-

odic extension are discontinuous. In particular, the FC-based

Navier-Stokes solver introduced in Ref. 27 (a) enables efficient

(linear scaling) parallel implementations for general domains,

(b) exhibits dispersion relations of spectral character and very

high orders of convergence, (c) like all FC methods, does not

suffer from the Gibbs phenomenon, and, importantly (d) does

not suffer from the severe CFL restrictions arising from

polynomial-based spectral methods; see Ref. 27 for details.

The Fourier continuation algorithm proceeds as follows.

Given point values fj ¼ f ðxjÞ of a function f: ½0; 1� ! R at N
points xj ¼ j=ðN � 1Þ 2 ½0; 1�, j ¼ 0; 1;…;N � 1, the FC

algorithm produces, following the prescriptions below, a

trigonometric polynomial f c (a Fourier continuation of f) of

periodicity interval ½0; b� ðb > 1Þ,

f cðxÞ ¼
XW

k¼�W

ak expð2pikx=bÞ

such that fcðxjÞ ¼ fj for j ¼ 0; 1; 2;…;N � 1;

(3)

which approximates f in the interval [0, 1]. The bandwidth W
and period b are parameters of the FC method, which are

defined below. Note that for b¼ 1, Eq. (3) reduces to a dis-

crete Fourier transform of the data which would generally

suffer from the Gibbs ringing effect near the points x¼ 0 and

x¼ 1. The selection b> 1, in contrast, allows the trigonomet-

ric polynomial to smoothly transition from the values of fj

near j ¼ N � 1 back to the values of fj near j¼ 0 without

generating Gibbs ringing.

A primary component of the construction of the FC rep-

resentation (3) is a discrete periodic extension of the given

function values into a longer interval. This discrete extension

is obtained by appending to the original N function values an

additional C > 0 function values that provide a smooth tran-

sition from fN�1 back to f0 in the interval [1, b], where
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b ¼ ðN þ CÞ=ðN � 1Þ, as illustrated in Fig. 1. Once this dis-

crete periodic extension is produced, an application of the

FFT algorithm in the interval [0, b] yields the coefficients ak

of the Fourier continuation f c shown in Eq. (3). The resulting

approximation has bandwidth W ¼ bðN þ CÞ=2c.
To evaluate the necessary discrete periodic extension, the

FC(Gram) algorithm first produces a polynomial interpolation

(using a small number d of function values) near each one of

the endpoints of the interval [0, 1]—where d is a small integer

independent of N. As demonstrated in Fig. 1, this gives rise to

a high-order representation of the function in the matching
intervals [1 � d, 1] and ½b; bþ d� ½d ¼ ðd� 1Þ=ðN � 1Þ�,
respectively. The method for evaluating the discrete periodic

extension is based on a representation of these two polyno-

mials in a particular orthogonal polynomials basis (the Gram

polynomials), for each element of which the algorithm pos-

sesses a precomputed smooth function which blends the basis

polynomial to the zero function over the distance b – 1.27 Lin-

ear combinations of these “blending to zero” functions pro-

vide smooth transitions-to-zero from the left-most and right-

most function values in the extension interval [1, b], as shown

in Fig. 1. The sum of these two functions provides a smooth

transition between the right-most function values to the

left-most function values as shown in the figure. The values

of this transition function at the points N=ðN � 1Þ,
ðN þ 1Þ=ðN � 1Þ, …, ðN þ C� 1Þ=ðN � 1Þ provide the nec-

essary C additional point values; as mentioned above, the con-

tinuation function fc can then be obtained through an

application of the FFT algorithm in the interval [0, b].

Once a continuous continuation function f c has been

obtained from the given point values fj by means of the FC

process, see Eq. (3), numerical derivatives of the original

function f can be obtained with high-order/spectral accuracy

by term-by-term differentiation of the Fourier series for f c:

@f

@x
ðxÞ � @f c

@x
ðxÞ ¼

XW
k¼�W

ð2pik=bÞak expð2pikx=bÞ

for x 2 ½0; 1�: (4)

The pseudocode of the function diff (Algorithm 1 below)

outlines the overall FC procedure for numerical evaluation

of derivatives of a given vector v. This algorithm involves

an application of the FC method followed by an application

of (4); clearly, derivatives of higher order can be produced

similarly. The filtering step, labeled filter in Algorithm 1,

provides a high-order spectral filter which is sometimes

needed for stability of PDE solvers based on the function

diff; should this filter not be used, energy arising from

numerical errors may tend to accumulate and grow rapidly

in the highest frequency modes. The effect of this filter is

to multiply the kth Fourier coefficient of its argument by

the quantity

exp
�
� að2k=NÞ2p

�
; (5)

where a, N, and p are suitably selected parameters. A

detailed discussion of the properties of this filter and corre-

sponding parameter selection is presented in Ref. 27; for the

simulations presented in this paper, the filter parameters

a¼ 16 ln 10 and p¼ 50 (which were found to give a robust

solver while retaining excellent dispersion properties and

high accuracies) have been used.

Algorithm 1: The function diff, which computes one-

dimensional derivatives of a vector of function values.

given the function values v

==apply the periodic extension (Fig. 1)

vc extendðvÞ
==complete the FC construction ð3Þ

vc  fftðvcÞ
==apply the spectral filter ð5Þ
v̂c  filterðv̂cÞ
==repeated applications of ð4Þ
ðv̂0c; v̂00c;…Þ  fft diffðv̂cÞ
==evaluate in configuration space

ðvc; v
0
c; v
00

c;…Þ  ifftðv̂c; v̂
0
c; v̂
00

c;…Þ
==restrict to original interval

ðv; v0; v00;…Þ  restrict ðv0c; v00c;…Þ
return the filtered v and its derivatives.

Derivatives in multiple spatial dimensions on a struc-

tured mesh are implemented through successive line-by-line

applications of the algorithm diff in each coordinate direc-

tion. Algorithm 2 outlines the procedure diff_2d for

approximating the gradient of a scalar quantity / on a two-

dimensional rectangular grid. The algorithm is straightfor-

ward: it simply sweeps through horizontal and vertical lines,

applying the one-dimensional differentiation algorithm to

each line. The generalization to higher dimensions and

higher-order derivatives can be accomplished by suitable

generalizations of Algorithms 1 and 2.

Algorithm 2: The function diff_2d, which computes

the gradient of a two-dimensional scalar function on a rec-

tangular grid.

FIG. 1. An illustration of the main elements of the FC method: after produc-

ing a translated copy of the given values of f on the interval [b, 1þ b], the

algorithm proceeds to (1) obtain a smooth function that blends the original

function on the interval [0, 1] to zero in the interval [1, b], and, similarly, to

obtain a smooth function that blends the original (translated) function on the

interval [b, 1þ b] to zero in the interval [1, b]; and to (2) add these two

blending functions to obtain a smooth continuation. The original function

values are represented by solid circles and the additional continuation values

are represented by open circles. The thick curves denote the polynomial

approximations in the matching intervals. The thin gray lines show the

blending functions that are summed to produce the continuation values. The

Fourier continuation f c then results by a direct application of the FFT

algorithm.
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given the array of function values /
for all rows r of the grid do

v row r of /

==note that v is filtered in this step

ðv; v0Þ  diffðvÞ

row r of / v

row r of /x  v0

end for

for all columns c of the grid do

v column c of /

==note that v is filtered in this step

ðv; v0Þ  diffðvÞ

column c of / v

column c of /y  v0

end for

return the filtered / and its derivatives.

III. FC SOLVERS IN ONE-DIMENSIONAL SPACE

As a first application of the FC method, consider the fol-

lowing FC-based solver for the simple linear advection

equation

ut þ ux ¼ 0: (6)

In preparation for the examples presented in Sec. IV, peri-

odic boundary conditions are considered, but see Remark 1

in these regards. The interval [a, b] is discretized uniformly

and the solution is represented in the interval by its values

on the N equispaced discretization points. After the number

of discretization points N has been chosen, the PDE (6) can

then be represented as a system of ordinary differential equa-

tions (ODEs) of the form

dv

dt
¼ �Dv; (7)

where the vector function v(t)¼ {vj(t)} is an approximate so-

lution to Eq. (6) in the sense that

vjðtÞ � uðxj; tÞ; xj ¼ aþ ðb� aÞj=N;
j ¼ 0; 1; 2;…;N � 1:

(8)

Except for a novel implementation of the operator D in

Eq. (7), which is the discrete FC approximation to the differ-

ential operator @=@x, the solution is obtained as it would be

for a classical finite difference scheme: the ODE system is

solved by means of a standard explicit time-marching

scheme (fourth-order Adams-Bashforth or Runge-Kutta for

the examples presented in the present paper).

The remainder of this section is devoted to the descrip-

tion of the FC derivative operator D. In Sec. III A, the details

of block domain decomposition are discussed. This decompo-

sition is vital for the parallelization technique described in

Sec. V B and is introduced in this simplified, one-dimensional

setting in anticipation of that section. In Sec. III B, the appli-

cation of the FC derivative operator D is described.

A. Block domain decomposition

Figure 2(a) illustrates a particular discretization of the

interval [a, b]. In anticipation of the parallelization technique

described in Sec. V B, the N discretization points are evenly

partitioned into M subdomain blocks. Note that for graphical

simplicity the figure shows significantly smaller parameter

values (N¼ 30 and M¼ 3) than are typically used in prac-

tice. In a parallel implementation, the solution would be

evolved almost independently in each of the three 10-point

subdomain blocks. Of course, the solution in each subdo-

main block cannot be computed entirely independently of

the solution in other blocks, or it would be impossible for

waves to cross subdomain boundaries. However, by the use

of the fringe regions described below, the solution u is

evolved in each subdomain block with a small amount of

data communicated from neighboring blocks.

Returning to Fig. 2(a), consider the solution in the right-

most of the M¼ 3 subdomain blocks. At each time-step, the

solution is evolved at the block’s N/M¼ 10 discretization

points, shown as black circles in the figure. The solution at

the next time-step must, of course, depend on the current so-

lution at these same discretization points. The evolved solu-

tion also depends on the solution values at a few additional

points in the domain: the unfilled circles indicate discretiza-

tion points that are not used to evolve the solution in the

right-most block. The remaining gray circles indicate points

in the fringe region, which are exterior to the block, but

which are nonetheless used to evolve the solution within the

block. In the FC code used to treat the examples presented in

FIG. 2. A simplified illustration of the spatial discretization used by the

FC-based solver for the advection Eq. (6). (a) N¼ 30 grid points are evenly

divided into M¼ 3 subdomains. (b) The curve represents a function that is

to be differentiated by means of the FC approach. The derivative values at

the points in the right-most subdomain [black circles in (a)] are computed

using the function values at these points as well as external fringe region

points [gray circles in (a)]; the function values on this augmented set

of points is represented by the thicker portion of the curve in (b). This (non-

periodic) function is differentiated by means of the FC differentiation

algorithm. The derivative values in the remaining two subdomains are

produced analogously.
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this paper, the fringe region typically extends by 4 or 6

points (called a 4-point or 6-point fringe, respectively)

beyond the boundary of a block; for the purposes of illustra-

tion, however, a two-point fringe is shown in the figure. Due

to the periodicity assumed in the current setting, the fringe

of the right-most block also extends (periodically) into the

left-most block. (Non-periodic, boundary value problems are

treated analogously, but without the use of fringe data at the

boundary of the domain; see also Remark 1.) Use of fringe

regions is crucial in this context, as they allow solution data

to pass between neighboring blocks as the solution pro-

gresses in time. In a distributed-memory parallel processing

environment, the fringe regions require extra care: data in

the fringes must be passed between processors controlling

neighboring blocks at the beginning of each time step. (In a

single-processor or a shared-memory parallel environment,

solution values in the fringe regions are immediately accessi-

ble to all processors, of course, and no data communication

is necessary.)

B. Application of the FC derivative operator

Having discretized the PDE (6) on a uniform N-point

grid by means of Eq. (7), and having further subdivided

these N points into M subdomain blocks as in Sec. III A, it is

now straightforward to describe the application of the FC de-

rivative operator D. The operator is applied to the solution

vector v by application of Algorithm 1 to each of the M sub-

domain blocks; this is illustrated in Fig. 2(b). In the figure,

the entire solid curve represents the discrete function v to

which the FC derivative operator D is to be applied. The

thicker portion of the curve represents the point values used

to compute the values of Dv in the right-most block, which

include the values at all points within the block as well as

the values in the fringe region. The derivative values in the

right-most block are computed by applying the FC differen-

tiation procedure defined in Algorithm 1 to this augmented

set of function values. The full derivative operator D is

applied to v by repeating this process for each of the M sub-

domain blocks. As the solution is evolved, this block-by-

block method for computing Dv is used whenever a spatial

derivative is required by the time-stepping algorithm.

IV. FC SOLVERS: ONE-DIMENSIONAL CASE STUDIES

Because it is based on Fourier series expansions, the FC

method exhibits essentially spectral accuracy in the interior

of the computational domain.27 Thus, as discussed in Sec. I,

for wave-propagation problems that require sufficiently

long-time propagation of high-frequency wave modes, the

FC solvers are significantly more efficient that their lower-

order counterparts. In the present section, it is argued that

problems of full-domain HIFU simulation are well within

the regime where the benefits of the FC method are observ-

able. This is demonstrated through comparisons in the con-

text of two one-dimensional acoustic models: the linear

advection equation and the (strongly advecting) viscous Bur-

gers equation. In these one-dimensional studies, the perform-

ance of the FC method is of significantly higher quality than

those resulting from low-order approaches. Based on these

results, it is then argued that the differences in efficiency

would be even more pronounced in higher dimensions.

In order to demonstrate the important performance dif-

ferences between the FC solver and low-order algorithms,

the solution of the one-dimensional equations explored in

this section are obtained by means of three different types of

solvers: (1) the one-dimensional FC algorithm described in

Sec. III, (2) a standard second-order finite difference solver,

and (3) the Godunov-type, finite-volume (FV) CLAWPACK

solver,31 including various flux-limiters provided as part of

the CLAWPACK package. While these comparisons are by

no means exhaustive, they do demonstrate that use of high-

order methods is necessary for long-range, nonlinear advec-

tion problems such as arise in HIFU simulation.

It should be mentioned, of course, that a wide variety of

high-order finite-difference and finite-element algorithms

exist. Examples include high-order centered-difference5

methods, summation by parts32 (SBP) methods, Chebyshev-

based spectral methods,33 Pad�e (or compact) schemes,34,35

and discontinuous Galerkin methods.36 The reader is referred

to Refs. 25–27 for detailed discussions on the relevance of

comparisons of the FC method with various approaches.

Briefly, one finds, on one hand, methods that, like the dis-

continuous Galerkin method, deliver high-order accuracy for

general domains in two-and three-dimensional space, but

whose computational cost is very high. (In a specific com-

parison presented in Ref. 27 with a previously published

two-dimensional result, for example, the FC method demon-

strated a speedup by a factor of 200, for a certain error toler-

ance, over the computing time required by a highly

optimized DG algorithm.) High-order finite difference meth-

ods, on the other hand, present difficulties in handling

boundary conditions: as discussed in Ref. 26, for example,

even for a simple diffusion equation, fourth order of accu-

racy is the highest order that has been demonstrated for gen-

eral domains. A similar situation occurs for Pad�e and SBP

methods: these methods rely on use of complex filtering

methodologies, and, unlike the FC method,27 require (gener-

ally prohibitively complex) perfect grid alignment for stabil-

ity in the multidomain formulations they use to incorporate

complex geometries and parallelization; see, e.g., Refs. 32,

37, and 38. Similarly, Chebyshev methods do not provide a

consistent basis for use as solvers on general geometries,

unless domain mappings into rectangular domains are used,

and, in view of their inherent point clustering, exhibit

extremely stiff CFL constraints. In sum, only a few algo-

rithms of order higher than 2, up to order 4 (especially at

boundaries) exist. Such methods require challenging special

treatments for stability in general domains and do not paral-

lelize easily. The comparisons with second order finite dif-

ference methods that are presented in what follows thus

provide an indication of the difficulties that arise from finite

difference and other methodologies in general contexts. As

discussed in detail in Ref. 27, in contrast, the FC method

does not give rise to difficulties at boundaries, in view of its

connection with Fourier series, the filtering step is straight-

forward, and, in fact, it gives rise to a nearly exact dispersion

relation: as shown in Ref. 27, the FC numerical dispersion

relation matches the exact relation much more closely than
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all other available algorithms, including both the Pad�e
method34,35 and the centered-difference method of eight-

order of interior accuracy.5 The numerical examples in Sec.

VII demonstrate in a two-dimensional context the character

of the proposed FC approach.

All computations for the examples presented in this sec-

tion were performed on a 2.5 GHz AMD Opteron processor.

Using the notation of Sec. III, the number of blocks M used

in the FC solver was chosen to scale with the number of grid

points N so that N/M � 1000 and the solution was integrated

in time via the standard fourth-order Runge-Kutta (RK4)

method. The finite difference (FD2) results were produced

by a solver based on second-order centered differences in

space and RK4 in time. The CLAWPACK (CL) results were

produced by the linear advection and Burgers equation solv-

ers included in CLAWPACK version 4.3; the notation CL(x)

indicates that the CLAWPACK solver was run with the flux

limiter selection parameter mthlim¼ x. The value x¼ 0

indicates that no limiter was used, while the values x¼ 1, 2,

3, 4 indicate that the minmod, superbee, van Leer and mono-

tonized centered flux limiter, respectively, was enabled. The

results thus include runs that incorporate each one of the

four flux limiters provided with the CLAWPACK software.

In order to ensure reasonable computing-time compari-

sons, for each algorithm and each spatial discretization Dx,

the temporal discretization Dt was selected in such a way

that additional temporal refinement did not significantly

reduce the error, but that temporal coarsening either

increased the final-time error or violated the CFL constraint

of the method (i.e., the optimal stable choice of Dt was used

for each algorithm and for each Dx).

Remark 1. Note that, although the solutions under con-

sideration in this section are periodic, the FC solver does not

take undue advantage of this fact—since the solution is not

generally periodic on the subdomain blocks used by the FC

method (see Sec. III and, in particular, Fig. 2 and its cap-

tion). As discussed in Sec. I, Eqs. (1) and (2) are based on

periodic Fourier analysis and, thus, provide heuristic predic-

tions of the behavior of numerical methods in regions at a

distance from boundaries; the purpose of the one-

dimensional examples is to demonstrate the significance of

this analysis. For this reason, the solution of boundary-value

problems for PDEs is deferred until the two-dimensional

examples presented in Secs. VI and VII.

A. Case study I: Linear advection equation

As a first example, consider the solution to the linear

advection Eq. (6) on the periodic interval [�100, 100] with

initial conditions, shown in the top portion of Fig. 3, given

by a smoothed sine wave packet approximately 150 wave-

lengths across containing approximately 100 full-amplitude

waves:

uðx; 0Þ ¼ exp
�
� ð0:0158xÞ10

�
sinð2pxÞ:

This configuration models, for example, the acoustic wave

generated by a low-pressure piston transducer in an inviscid

FIG. 3. (Top left) Initial conditions for the velocity u in the one-dimensional advection equation example presented in Sec. IV A. (Top right) Close-up view of

the initial condition near x¼ 0. (Bottom left and right) Errors vs computing time and discretization size, respectively at time t¼ 200 for the advection equation

example presented in Sec. IV A. The graphs indicate that the FC and CL(4) computing-time curves reach the 10�2-accuracy level at about 2.7 s (using 1400

discretization points) and at 1300 s (using 116 000 cells), respectively.
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fluid. In the comparisons that follow, the advection equation

was solved until time t¼ 200, at which point the wave

packet should wrap periodically back to its starting position,

traveling 200 times the fundamental wavelength—the dis-

tance the second or third harmonic might travel in a physi-

cally relevant HIFU simulation. For the comparison, the 1D

linear advection example distributed with CLAWPACK ver-

sion 4.3 was modified in four ways. First, the inhomogeneity

in the advection coefficient was removed so that the equation

solved is (6). Second, the spatial domain was extended from

the interval [�2, 2] to [�100, 100]. Third, the initial condi-

tion was changed from a Gaussian bump to the windowed

sine function shown in Fig. 3. Finally, the final time was set

to t¼ 200.

Figure 3 demonstrates the ability of the FC solver to

advect the pulse over long distances with a relatively coarse

mesh. For example, the graphs show that the FC solver attains

1% accuracy with approximately 1400 discretization points,

requiring approximately 2.7 s of computing time. Extrapola-

tion of the CL(4) (CLAWPACK with the monotonized cen-

tered flux limiter) results shows, by comparison, that the

CL(4) solver would require approximately 116 000 grid points

and 1300 s to achieve the same accuracy. Even larger improve-

ment factors may be expected in higher dimensions. In two

dimensions, for example, a simple scaling argument based on

the one-dimensional experiments mentioned above suggests

that, to produce the 1%-accurate solution in a comparable

two-dimensional problem, the CLAWPACK solver would

require 116 000/1400 � 83 times as many grid lines as the FC

solver, each of which would entail 1300/2.7 � 480 times as

much computing time—so that the two-dimensional CL(4)

solution would be 83� 480 � 40 000 times more costly, in

terms of computing times, than the corresponding two-

dimensional FC solution. In three-dimensions, the correspond-

ing improvement factor would be 832� 480 � 3 300 000.

Although these estimates are admittedly rough, they do sug-

gest many orders of magnitude differences in computing times

for 3D advection-dominated problems. The use of a high-

order FC solver for such a problem, instead of a lower-order

method, could reduce to several seconds the computation of a

solution that would otherwise require several months.

B. Case study II: Nonlinear viscous Burgers equation

As a second one-dimensional example, consider the vis-

cous Burgers equation model of nonlinear acoustics, which

can be used to model acoustic waves produced by high-

intensity piston sources in fluids with quadratic attenuation

laws. In particular, consider the initial value problem

ut þ ð1þ uÞux ¼ euxx; x 2 ½�10; 40�;
uðx; 0Þ ¼ u0 expð�ðwxÞ10Þ sinð2pxÞ (9)

for the viscous Burgers equation with periodic boundary

conditions. Here, the particle velocity u has been normalized

with respect to the small signal sound speed and the time

and space variables have been normalized with respect to the

period and wavelength of the source waveform respectively.

Although it is possible to introduce a retarded time frame to

make the Burgers equation less numerically challenging, as

is discussed in Remark 2 below, this cannot be done for gen-

eral full-wave problems. The form employed here allows for

the assessment of the FC algorithm’s ability to capture the

large local wave speed 1þ u� u present in full-wave

problems.

The initial values in Eq. (9) define the smoothly win-

dowed sine wave depicted in the upper left portion of Fig. 4.

Over time, this initial pulse advects towards the positive

x-direction, steepening appreciably—as can be seen in the

upper right portion of Fig. 4. The dimensionless parameters

in the equation were selected to be

u0 ¼ 7:96� 10�3; e ¼ 1:5� 10�5;
w ¼ 0:179:

(10)

The implementation of the FC solver for Eq. (9) is anal-

ogous to the solver for the linear advection Eq. (6). The PDE

is first discretized into a nonlinear system of ODEs:

dv
dt
¼ �f ðvÞ þ eEv; ðf ðvÞÞj ¼ ð1þ vjÞðDvÞj; (11)

where D is the (block-by-block) FC derivative operator

described in Sec. III and E is the second-order counterpart.

As before, the system of ODEs is marched forward in time

by a standard integration algorithm (fourth-order Runge-

Kutta in this case).

For the present example, the solvers were compared by

advancing the solution to final time t¼ 30 (at which point

the initial signal has traveled approximately 30 times the

fundamental wavelength). The problem has been designed

so that the solution to Eq. (9) vanishes on the boundary for

all times in the range 0� t� 30, in order to allow the

boundary conditions to be treated as either periodic (used

by the FD and FC solvers) or vanishing (used by the

CLAWPACK solver). This allowed CLAWPACK’s vis-

cous Burgers solver to be used with minimal modifications;

see also Remark 1.

The relative maximum error at the final time was then

approximated by comparison with a converged solution pro-

duced by the FC solver using 800 points per fundamental

wavelength. Comparisons of this solution with the solution

on an even finer grid indicate that the maximum error (rela-

tive to the initial amplitude u0) is less than 10�5. Although

Eq. (9) was not solved to this level of accuracy with the

CLAWPACK solver, the reference solution was further veri-

fied to within a relative maximum error of 5� 10�5 by com-

parison with a CLAWPACK solution to the time-retarded

version of (9), which, in view of its small advection coeffi-

cient, is much less challenging than Eq. (9) itself; see

Remark 2. It was found by a convergence study that the use

of 12 000 points per fundamental wavelength was required

to obtain a CLAWPACK solution to the time-retarded prob-

lem with a 5� 10�5 accuracy level.

The lower portion of Fig. 4 summarizes the results of

the comparison. As in the case of the linear advection equa-

tion, it is apparent that the high-order FC method can have

significant advantages in HIFU-related problems, and, as dis-

cussed in Sec. IV A, these advantages would be more pro-

nounced in higher spatial dimensions.
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Remark 2. In the present simplified context a moving

frame of reference x0 ¼ x � t can be used to transform the

PDE (9) into the classical viscous Burgers equation

utþ uux¼ euxx—greatly reducing the wave speed to the

value u 	 1þ u, and thus, essentially stopping wave propa-

gation. This procedure effectively eliminates the computa-

tionally challenging dispersion errors that originate both

from the approximate spatial derivative (which is multiplied

by the wave speed) and from the approximate time-

derivative (by greatly reducing time variation). This

velocity-reducing change of variables is the reason it was

possible to produce the accuracy level 5� 10�5 CLAW-

PACK solution to the problem considered in this section.

Use of such a moving frame of reference has purposely been

avoided for the one-dimensional comparison in this section.

The purpose of this one-dimensional study is to demonstrate

the performance of various solvers in a simple context that,

nonetheless, captures the main difficulties inherent in general

nonlinear acoustic simulations—for which use of moving

frame of reference cannot slow propagation of all existing

waves simultaneously; e.g., see Fig. 12(b). Note that, even

the acoustic fields displayed in Figs. 7–11—for which use

was made of a time-dependent change of variables to track

the acoustic signal in order to reduce the size of the compu-

tational domain—exhibit significant velocity gradients in the

x-direction [see Figs. 6–12(a)]. Unlike the z-component of

the convection velocity in the moving frame of reference,

the x-component of the convection velocity in these cases

cannot be made to be small by a frame of reference moving

in the z direction, and thus the potential for significant dis-

persion errors remains. In any case, for configurations for

which propagation and scattering occur [as demonstrated,

for example, in Fig. 12(b)], use of a moving frame of refer-

ence actually generally leads to even faster waves speeds

(e.g., for backscattered waves) than those occurring in the

stationary reference frame: use of a moving frame of refer-

ence under such circumstances gives rise to a requirement of

even finer resolutions than would be necessary if a moving

reference frame were not used.

V. FC SOLVERS IN MULTIDIMENSIONAL SPACE

The generalization of the one-dimensional techniques

described in Sec. III to multiple spatial dimensions require

relatively simple generalizations of Algorithms 1 and 2 to

compute the necessary spatial derivatives, and standard tech-

niques for time evolution. Two key differences between one-

dimensional problems and multidimensional problems do

exist, however, namely, (1) multidimensional domains can

have more complex boundaries and (2) efficient paralleliza-

tion becomes increasingly important. The present section

treats both of these topics in turn.

A. Overlapping curvilinear patches

Complex geometries are accommodated in the context

of the FC solver by means of the overlapping grid approach

FIG. 4. (Top left) Initial conditions for the velocity u in the one-dimensional (non-linear) Burgers equation example presented in Sec. IV. (Top right) Compar-

ison of the corresponding highly resolved, converged FC solution at time t¼ 30 (solid line, obtained numerically, as indicated in the text, with a relative accu-

racy of less than 10�5) and the corresponding FC solution (shown in black dots), obtained using a 11 500-point discretization. The relative maximum error in

the latter FC solution is 1.2� 10�2. (Bottom left and right) Errors vs computing time and discretization size respectively at time t¼ 30 for the Burgers equation

example presented in Sec. IV. The FC and CL(4) computing-time curves reach the 10�2-accuracy level at 106 s (using 12 100 discretization points) and at

2700 s (using 138 000 cells), respectively.
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illustrated in Fig. 5(c). (A comprehensive treatment of the

history and essential properties of the overlapping grid meth-

odology can be found in Ref. 39.) In this approach (whose

description is specialized here to the two-dimensional cases

considered throughout this paper) the geometry is divided

into logically rectangular curvilinear patches, each one of

which is the image of the unit square [0, 1]� [0, 1] under a

certain smooth mapping (x, y)¼ [x(n, g), y(n, g)], in such a

way that physical boundaries are described as the union of a

subset of all patch boundaries. As shown in Fig. 5(c), the

patches are designed to overlap neighboring patches by a

few grid points. This patch domain decomposition is incor-

porated into the time-stepping algorithm as follows: at each

time step, the solution is first advanced independently on

each patch; then the solution values at points near the bound-

ary of a patch that also overlap a neighboring patch are

replaced by interpolating the value from solution values on

the neighboring patch by means of high-order polynomial

interpolation. This interpolation procedure ensures that in-

formation is adequately exchanged across the computational

domain, and that convergence to the exact solution occurs as

mesh sizes and time steps are refined; see Refs. 27 and 39

for additional details.

Spatial derivatives on each curvilinear patch are pro-

duced by means of application of the FC differentiation algo-

rithm together with the chain rule relations

@

@x
¼ @n
@x

@

@n
þ @g
@x

@

@g
and

@

@y
¼ @n
@y

@

@n
þ @g
@y

@

@g
:

(12)

If the derivatives of n and g with respect to x and y are not

known analytically, they may be approximated by means of

the FC method itself. For the examples presented in this pa-

per analytical derivatives were utilized, together with wide
13� 13 polynomial interpolation stencils across patch

boundaries.

B. Parallelization techniques

In order to divide the work required to produce a numer-

ical solution evenly among a number of computational nodes

in a distributed parallel computer, the multidimensional ana-

log of the one-dimensional block domain decomposition

described in Sec. III A can be used. In this approach, one

proceeds by splitting the reference domain of each curvilin-

ear patch of the computational domain into an array of

approximately equally sized rectangular subdomains, assign-

ing the computation on each subdomain to one processor.

Where the subdomains abut, the processors share thin layers

of fringe values with their neighbors, as illustrated in

Fig. 5(a). The dashed lines in the figure denote subdomain

boundaries, across which the processors communicate, while

the black circles represent the (generally large number of)

grid points that are assigned to one particular processor. As

in the one-dimensional case, to advance the solution, this

processor uses values from the fringe region, which are

denoted by light-gray circles. Although the processor uses

these values in its computation, it does not update them, but

instead receives updated function values from its neighbor-

ing processors at every time step. In the simulations pre-

sented in this paper, 4-points fringes were used. (For

rendering simplicity, the illustration shows small numbers of

black circles and fringes that are only 2 points wide.)

In order to retain spectral-like accuracy across subdo-

main interfaces, it is necessary to introduce a modification to

the periodic extension algorithm described in Sec. II; we call

this modified algorithm the biased-order extension method.
The goal of the biased-order extension approach is to allow

the number of sampled values d in the extension construction

to vary depending on the type of boundary encountered. For

boundary points that lie inside the domain (arising from the

domain decomposition either from the overlapping grid

decomposition or from the block decomposition of a patch),

the algorithm uses the value d¼ 12 instead: since at non-

physical boundaries the algorithm uses 4 points from a

neighboring processor, stability can be ensured even when

polynomial interpolations of such high orders are used. At

physical boundaries, in contrast, only boundary values at a

single point (the boundary point) are given; for such cases

stability is ensured by the choice d¼ 5. The ability to

enforce interface conditions of very high order of accuracy

at interior boundaries gives rise to both excellent paralleliza-

tion, and dispersive properties that are very close to those

resulting from Fourier expansions of periodic functions. We

refer the reader to Ref. 27 for details on the biased-order

FIG. 5. (Color online) (a) An illustration of the domain decomposition used

for a parallel FC solver. The dashed lines represent processor boundaries. In

order to update the solution values in the central subdomain (represented by

dark circles), the associated processor receives a thin layer of shared values

(represented by light circles) from each of four neighboring processors.

(b) The treatment of the mirror points across the line of symmetry x¼ 0.

Values are copied from the mirror image values (on the same processor)

above the axis according to the symmetry relations (20)–(22). Additionally,

the vertical component of the velocity is set to 0 on the axis as required by

(22). (c) A portion of a grid covered by overlapping curvilinear patches. (d)

As indicated by solid filled regions, one of the patches subdivided into sub-

patches for distribution in a parallel computing environment.
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extension along with an analysis of the computational effi-

ciency of the method—which exhibits essentially linear scal-

ing for a wide range of configurations—as well as one-and

two-dimensional examples which demonstrate its high-

order/spectral accuracy.

VI. TWO-DIMENSIONAL APPLICATION: COMPARISON
OF THE NAVIER-STOKES AND KZK MODELS

Based on the one-dimensional examples presented in

Sec. IV, it should be expected that the high-order FC solver

will be much more efficient than standard low-order solvers

in treating full-wave models for HIFU-related problems,

thus rendering possible previously infeasible full-wave sol-

utions. The present section demonstrates a particular appli-

cation of the efficient full-wave solver presented in this

paper: comparative studies of full-wave and simplified

HIFU models. Although simplified models (e.g., those

based on the Rayleigh integral or paraxial approximation)

can significantly decrease the computational complexity of

the numerical simulation of an acoustic field, it is not

always clear when the solution of the reduced model should

be trusted. A high-order solver with the ability to efficiently

produce solutions to a full-wave model, therefore, can be a

valuable tool in exploring the validity of a simplified

model. The concept is illustrated here using the well-

known Navier-Stokes and a KZK models for focusing

sound beams. Although the results presented here are not

surprising—a common rule of thumb for the KZK equation

is that it should not be considered accurate in configurations

where acoustic waves approach the axis at angles of more

than about 20
—they do demonstrate a particular applica-

tion of the full-wave solver.

A. Model and equations

1. Ultrasound transducer model

The configuration considered in this example is illus-

trated in Fig. 6. The source is taken to be an infinite focusing

cylindrical transducer parallel to the y-axis, whose cross-

section in the xz-plane is a circular arc. The transducer is

parametrized by the aperture radius a, and the radius of cur-

vature R. The focal length F, which is the distance from the

mouth of the aperture to the geometrical focus is given by

F2¼R2 � a2. For both the Navier-Stokes and KZK solvers,

the transducer surface is migrated to a boundary condition at

the mouth of the source, i.e., the plane z¼ 0, as described in

Secs. VI C 2 and VI B.

2. Nonlinear acoustics Navier-Stokes equations

The Navier-Stokes model used for the present demon-

stration is expressed in the form [Ref. 11, Eqs. (1) and (2)]

Dq
Dt
þ qr � u ¼ 0; (13)

q
Du

Dt
þrP ¼ lr2uþ 1

3
lrðr � uÞ; (14)

where q is the density, u is the fluid velocity vector, P is

the total pressure, l is the coefficient of shear viscosity and
D
Dt ¼ @

@tþ u � r is the material or convective derivative. The

system is closed with the equation of state

p ¼ c2
0~q þ c2

0

q0

B

2A
~q2; (15)

where p¼P � P0 is the acoustic pressure and ~q ¼ q� q0 is

the acoustic fluctuation in density. Here P0 and q0 denote the

ambient values of the pressure and density respectively, c0 is

the small-signal sound speed, and the quotient B/A is the pa-

rameter of nonlinearity of the medium (see, e.g., Ref. 40).

For simplicity of presentation, thermal conductivity and bulk

viscosity have been neglected in the present demonstration,

but, as discussed in Sec. VIII, incorporation of these effects

poses no difficulties.

3. KZK equation

The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation

is a model of finite-amplitude wave propagation that is appro-

priate for sound beams for which the paraxial approximation

is sufficiently accurate. A detailed derivation of the KZK

equation is presented in Ref. 11. Briefly, Eqs. (13)–(15) are

expanded in terms of the acoustic fluctuations and only linear

and quadratic terms are retained. Combining these equations

under the assumption that sound propagates in accordance

with the paraxial approximation, the KZK equation

@p

@z
¼ c0

2

ðs

�1
r2
?p ds0 þ b

2q0c3
0

@p2

@s
þ d

2c3
0

@2p

@s2
(16)

results. [Equation (16) follows, by integration with respect to

s, from Ref. 11, Eq. (65)]. Here we utilize the notations used

in Ref. 11: b¼ 1þB/(2A) denotes the coefficient of

nonlinearity,

d ¼ 4

3

l
q0

(17)

is the diffusivity of sound, s¼ t - z/c0 is the retarded time vari-

able, and the operator r2
? is the Laplacian perpendicular to

the direction of propagation; for Cartesian coordinates and

propagation in the z directionr2
? is given byr2

? ¼ @2

@x2 þ @2

@y2.
FIG. 6. A circular arc transducer with focal length F, aperture radius a and

radius of curvature R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ F2
p

.
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B. KZK solver

For this example, the KZK Eq. (16) was solved by

means of the KZK Texas code.41 The two dimensional com-

putational domain for the KZK simulations is the rectangle

ðx; zÞ 2 ½0; 3a� � ½0; 2F� where a is the aperture radius of the

transducer source and F is the focal length. The KZK Texas

code only solves for x� 0 and uses a reflecting boundary

condition at x¼ 0. At the computational boundary x¼ 3a,
the boundary condition is pressure-release, which produces a

large reflection (Ref. 42, Sec. III C). The choice x¼ 3a is

sufficiently large, however, that this reflection arrives too

late to affect the results. As stated in the previous section,

the curved surface of the true source is mapped to the plane

z¼ 0 by retarding the phase of the waveforms according to

Ref. 24, where the approximate values ps¼ q0c0us were used

[cf. Eq. (25)], with us defined by Eq. (23).

C. Navier-Stokes solver

The Navier-Stokes solver was implemented using the

FC approach described in Sec. V. For added efficiency, the

solver was specialized to exploit certain properties of the so-

lution, namely reflection symmetry and the limited temporal

duration of the waveform implicit in Eq. (23). (Note, how-

ever, that in Sec. VII, a full-wave FC solver is presented that

does not make use of these specializations.) The implemen-

tation of the symmetry condition described in Sec. VI C 1

provides a decrease in computational costs of approximately

50% by restricting the computation to the half-plane x� 0.

In view of the aforementioned finite temporal duration of the

pulse, the signal from the transducer can be effectively local-

ized in space by using a temporal windowing function as

described in Sec. VI C 2. (Notice that simplification of the

problem through use of such temporal windowing functions

is not a requirement of the FC method: for example, the test

cases presented in Sec. VII do not use any such temporal

windowing.) While the entire domain is over 100k in length

[where, in this context, the fundamental wavelength k is

defined according to Eq. (30) below], the signal stays essen-

tially bounded inside a narrow strip as it progresses into the

domain. To take advantage of this localization, a moving

frame of reference is introduced so that the horizontal coor-

dinate becomes z¼ z0 þ c0t. The resulting equations are

transformed as

Dq
Dt
� c0

@q
@z0
þ qr � u ¼ 0; (18)

q
Du

Dt
� c0q

@u

@z0
þ rP ¼ lr2uþ 1

3
lrðr � uÞ; (19)

where the spatial derivatives now refer to derivatives in the

transformed coordinates (x, y, z0).

1. Reflection symmetry

The symmetry of the problem across the z axis implies

the following properties of the solution:

~qðx; z; tÞ ¼ ~qð�x; z; tÞ; (20)

uxðx; z; tÞ ¼ �uxð�x; z; tÞ; (21)

and

uzðx; z; tÞ ¼ uzð�x; z; tÞ; (22)

where ux and uz are the velocity components in the x and z
directions, respectively. Note, in particular, that ux(0, z, t) 
 0.

To take advantage of the symmetry with respect to the z axis,

nearby mirror points are used; see Fig. 5(b). A layer of these

mirror points are added to each subdomain block adjacent to

the z axis. They are used in a similar manner as fringe points,

but rather than being updated from a neighboring subdomain

block, they are updated from the block’s own solution values

above the z axis by means of Eqs. (20)–(22). For all points

which lie on the line x¼ 0, the condition ux¼ 0 is enforced.

2. Spatial and temporal windowing

a. Stage I: Near the transducer. The simulation is ini-

tiated with a rectangular computational domain whose left

edge lies on the line z¼ 0. Thus, the transducer lies just out-

side the domain, as illustrated in Fig. 7. Equations (13)–(15)

are solved within this domain until the signal is essentially

centered within the computational window. Spatial deriva-

tives are obtained by means of the FC method and time step-

ping is produced by means of a standard fourth-order

Adams-Bashforth time-marching scheme. A sinusoidal

source velocity waveform us (smoothly windowed in time to

reduce numerical artifacts,41

usðtÞ ¼ u0 expð�ð2f0t=ncycÞ2menvÞ sinð2pf0tÞ; (23)

is assumed at the transducer surface, where u0 is the source

velocity amplitude and f0 is the frequency. The parameter

ncyc determines the number of cycles in the pulse and menv

controls the taper with menv¼ 1 producing a Gaussian enve-

lope. For these simulations the values ncyc¼ 8 and menv¼ 5

were used, which give rise to an 8 cycle pulse with a sharp

transition and thus produce a finite-duration pulse as

required by the Texas KZK code—while containing suffi-

ciently many cycles that time-harmonic behavior is observed

FIG. 7. (Color online) Stages of the FC focused transducer solver. In Stage

I, the computational window is fixed in space next to the transducer (left

image). The computation proceeds in Stage I until the signal is centered

within the computational window (center image). At this point, the solver

enters Stage II computation and the computational window begins moving

away from the transducer (right image).
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in the focal region. As the purpose of this example is a com-

parison with the Texas KZK solution, a consistent transducer

model is required. In the Texas KZK code, the pressure

waveform on the plane z¼ 0 is time shifted by a parabolic

time delay:

pðx; 0; tÞ ¼ psðtþ x2=ð2c0FÞÞgðx=aÞ; (24)

where ps is the source pressure signal and g is the step func-

tion taking the value 1 for jx=aj < 1 and 0 elsewhere [see

Ref. 42, Eq. (2.30)]. Although more accurate transducer

models are possible by using curvilinear grids (similar to the

construction in Fig. 5), the primary point of interest here lies

in producing a model for the Navier-Stokes equations which

is consistent with (24) so that adequate comparisons of FC

results and KZK results can be made. Excluding the nonlin-

ear and viscous terms in (13)–(15) gives the relations43

p ¼ c2
0~q ¼ q0c0u � �; (25)

between the density, pressure and normal velocity at z¼ 0,

where

� ¼ ð�x; �zÞT ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ F2
p ð�x; FÞT (26)

is the unit vector normal to the transducer pointing towards

the focus. Based on (23)–(25), the boundary conditions

~qðx; 0; tÞ ¼ q0

c0

usðtþ x2=ð2c0FÞÞgðx=aÞ; (27)

uxðx; 0; tÞ ¼ usðtþ x2=ð2c0FÞÞgðx=aÞ�x; (28)

uzðx; 0; tÞ ¼ usðtþ 0:5c�1
0 x2=FÞgðxÞ�z; (29)

follow. On all other boundary points the conditions ~q ¼ u

¼ 0 are used. The simulation begins at time t< 0 suffi-

ciently small, so that, at that time, the right-hand-sides of

(27)–(29) are zero to machine precision for all x.
Remark 3. It is tempting to initialize the FC solver with

the same initial conditions as for the KZK solver, thereby

removing the need for Stage I of the solver. However, the

dramatic (and non-physical) drop in pressure and velocity at

the edge of this initial signal implies the existence of high-

frequency spatial signal components traveling in the radial

direction. Since the KZK equation is relatively insensitive to

radially directed waves, this does not cause any visible side-

effects in the KZK solver. However, these high-frequency

waves are apparent in the output of the Navier-Stokes solver.

To avoid this the FC solver is initialized with motion-free

initial conditions, and the transducer signal is directly

evolved across the line z¼ 0 and into the computational do-

main before introducing the moving reference frame, as

described in the previous section.

b. Stage II: Away from the transducer. Once the signal

has progressed into the domain and away from the trans-

ducer, a moving frame of reference is introduced and

Eqs. (18) and (19) are solved. This allows the computational

window to move along with the wave front as it progresses

into the domain, as illustrated in Fig. 7. For time-marching, a

standard fourth-order Runge-Kutta method is used, and the

conditions ~q ¼ u ¼ 0 are enforced on all window bounda-

ries. For simplicity, reflected acoustic waves are prevented

from interfering with the solution in the FC solver as they

are in the KZK solver: the computational window is made

sufficiently large in the x direction that reflected waves

remain outside the domain of interest. (See, Ref. 27, how-

ever, for examples of FC-based solvers that utilize absorbing

boundary conditions to prevent strong reflections from com-

putational boundaries.)

c. A note on time integration. Different time integra-

tion methods are used in Stage I and Stage II. In the first

stage, the boundary conditions are time-dependent. This is

known to be problematic for high-order Runge-Kutta meth-

ods:44,45 if Runge-Kutta methods are used, special care must

be taken to apply the correct boundary conditions at interme-

diate steps. The Adams-Bashforth integration scheme does

not give rise to such complications. Although the Adams-

Bashforth method requires the solution at three previous

time steps, the initial conditions are simple so that this

presents no difficulty at the initial step. Upon entering the

second stage, the boundary conditions no longer vary in

time. For this stage the Runge-Kutta method is used, as with

this choice the simulation can be restarted more easily—

should that prove necessary (in a parallel computation in

which there is a computing time limit, say)—since the

Runge-Kutta solver can be initialized from the solution at a

given time, rather than requiring the solution at four consec-

utive time steps.

D. Results of Navier-Stokes/KZK comparisons

This section presents comparisons between the numeri-

cal solutions to the KZK and Navier-Stokes model equations

produced by the solvers described in Secs. VI B and VI C,

respectively. The acoustic properties of the medium were

chosen to be close to those of soft tissue: q0¼ 1000 kg/m3,

c0¼ 1540 m/s, b¼ 4.8 and d¼ 6.4117� 10-4 m2/s. The

transducer was driven at a frequency f0¼ 1.1 MHz, produc-

ing a signal with fundamental wavelength

k ¼ c0=f0 ¼ 1:4 mm: (30)

For these comparisons, the focal length of the circular arc

transducer was fixed at F¼ 50k, and four different transducer

aperture radii were used: a¼ 5k, 10k, 20k and 30k. For the

KZK solver the transducer source pressure was set to

p0¼ 1 MPa, which corresponds to a velocity source in the

Navier-Stokes equations of u0¼ p0/(q0c0) � 0.64935 m/s. In

the accompanying figures, the label “KZK” refers to the solu-

tion produced by the KZK solver and “DNS” refers to the so-

lution produced by direct numerical simulation of the full

Navier-Stokes equations by means of the FC solver. The pres-

sures produced by the two solvers are compared using (25) to

approximate the pressure in the Navier-Stokes equation.

According to Eq. (15) this approximation is accurate—since,

in this case, j~qj 	 q0.

2382 J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012 Albin et al.: Nonlinear acoustic beam simulation

Downloaded 14 Nov 2012 to 129.130.37.190. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



For the Navier-Stokes simulations, a spatial grid discre-

tization of approximately Dx¼Dz¼ k/21 and a time discreti-

zation satisfying c0Dt � Dx=40 in Stage I and c0Dt � Dx/10

in Stage II were used; in view of comparisons with the solu-

tion with Dx¼Dz¼ k/15, it was found that the latter parame-

ters produce solutions with an error of less than 1%, and

thus, we conclude, so do the former (see Remark 4). For the

KZK simulations, the time discretization varied in the range

of 500 points per cycle to 2000 points per cycle—that is, a

sampling rate of 550 MHz to 2.2 GHz. The nominal step size

in the marching direction is F/500. The KZK code automati-

cally reduces this if the nonlinearity becomes too strong. In

the x-axis the discretization was chosen so that further refine-

ment did not significantly improve the solution and varied in

the range k/2.5�Dx� k/40.

For the 5k transducer, excellent agreement between the

KZK and FC solutions was observed. The peak positive and

negative pressures on the z-axis are plotted for both solvers

in Figs. 8(a) and 8(b) and the temporal waveforms sampled

at two on-axis points are plotted in Figs. 8(c) and 8(d), both

of which show almost perfect agreement except in the near

field where, as is known, the KZK approximation is inaccu-

rate. In order to compare the full acoustic field, Fig. 9 dis-

plays the amplitudes of the first five harmonics generated by

the transducer. Although the fundamental shows good agree-

ment away from the near field, some differences are noticea-

ble in the higher harmonics. (Note, for example, the

differences on the z-axis near the 0.5 tick mark.)

As the transducers are taken to be more strongly

focused—thereby deviating to a larger degree from a uni-

directional sound beam—a departure of the KZK approxi-

mation from the converged FC Navier-Stokes solution is

observed. Figures 10(a) and 10(b), for example, displays

the on-axis peak positive pressures for the 10k and 20k
aperture radius transducers. Although the 10k case also

shows good agreement, in the 20k case the two solvers

have started to differ noticeably near the acoustic focus.

The peak positive pressure plot for the 30k transducer is

shown in Fig. 10(c); the solvers in this case predict signifi-

cantly different locations for the acoustic focus and for the

peak pressure at the focus. The waveforms at the geometric

focus are plotted in Fig. 10(d). The harmonic plots for the

30k transducer in Fig. 11 also show significant differences

throughout the domain.

Remark 4. In view of the high-order convergence of the

numerical solvers used, evidenced, e.g., by the results pre-

sented in the bottom right portion of Fig. 4, a small increase

in the discretization density suffices to produce an adequate

basis for comparison and error determination.

VII. TWO-DIMENSIONAL APPLICATION: COMPLEX
GEOMETRIES AND FULL-DOMAIN SIMULATIONS

This section explores a second application of the new

high-order FC approach: the full-domain solution of the non-

linear acoustic field generated by a transducer both in a homo-

geneous medium and in a medium containing an array of

rigid cylinders at whose boundaries the velocity is assumed to

vanish. In the latter case the medium contains five circular

scatterers centered at the points of (x, z)-coordinates (�21.4k,
20.2k), (�11.2k, 19.4k), (2.3k, 18.1k), (8.1k, 19.6k) and

(20.4k, 20.9k) (see Fig. 6), and with radii 1.1k, 1.5k, 1.4k,
1.3k, and 1.2k, respectively. The circular inclusions are

FIG. 8. Comparisons of the KZK

and Navier-Stokes (DNS) solutions

for the 5k aperture radius transducer.

(a) Peak positive on-axis pressure.

(b) Peak negative on-axis pressure.

Axial pressure waveform (c) 50k
and (d) 80k from the transducer.
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FIG. 9. (Color online) Comparisons

of the amplitudes of the first five

harmonics (top to bottom) for the 5k
aperture radius transducer. (Left)

Results obtained from the Navier-

Stokes FC simulation. (Right)

Results obtained from the KZK

model. Horizontal axes are meas-

ured in focal lengths. Vertical axes

are measured in aperture radii.

FIG. 10. Additional comparisons of

the KZK and Navier-Stokes (DNS)

solutions for transducers with vari-

ous aperture radii. Peak positive

on-axis pressure for the (a) 10k,

(b) 20k, and (c) 30k aperture radius

transducers. (d) Axial pressure

waveform 50k from the transducer

for the 30k transducer.

2384 J. Acoust. Soc. Am., Vol. 132, No. 4, October 2012 Albin et al.: Nonlinear acoustic beam simulation

Downloaded 14 Nov 2012 to 129.130.37.190. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



incorporated into the geometry by means of overlapping cur-

vilinear patches as described in Sec. V A.

Figure 12 displays solutions produced by the FC solver

for a transducer with aperture radius a¼ 20k and focal length

F¼ 100k, with model parameters as in the previous exam-

ples. In these simulations, spatial windowing (Sec. VI C 2)

was not used; instead, the sinusoidal transducer signal was

smoothly ramped-up over five cycles [using a windowing

function akin to (23) but which equals 1 for t� 5/f0], and the

solution was then evolved throughout the computational do-

main up the final time. For these examples a geometric optics

transducer model was used to migrate the transducer signal

to the line z¼ 0. By comparing the solutions produced by

spatial discretizations of 21 and 25 points per fundamental

wavelength, we have estimated the maximum error (relative

to the maximum pressure at the acoustic focus) at the final

time in both solutions depicted in Fig. 12 to be on the order

of 1% (see Remark 4).

In the case of the geometry with inclusions, the nature

of the grids [see Fig. 5(c)] is such that the discretization is

somewhat finer near the circles. The computing time

required for the homogeneous problem was about 1.1 h,

while the inhomogeneous problem completed in 5.6 h. (The

additional computing cost in the latter case arises as a result

of the small time step that is required, in view of the CFL

condition for the finer discretization used near the circular

scatterers. This additional cost can be reduced significantly

through use of implicit/explicit FC solvers, wherein fine dis-

cretizations near circles are treated by means of an

alternating-direction implicit algorithm.) Both simulations

were performed on a total of 128 AMD Opteron cores, run-

ning at 2.2 GHz, at Caltech’s Shared Heterogeneous Cluster,

SHC. (For comparison, the full Navier-Stokes windowed

simulations presented in Sec. VI D required 7 min for the 5k
aperture radius transducer and 14 min for the 30k aperture

radius transducer in 128 cores of the same cluster.)

In light of the one-dimensional examples presented in

Sec. IV, a second-order solver would be expected to require

several orders of magnitude more time to obtain these solu-

tions. Even adopting a conservative estimate of 1000 times

(the estimate presented in Sec. IV A suggests a factor of

40 000), one finds that a second-order method would require

FIG. 11. (Color online) Compari-

sons of the amplitudes of the first

five harmonics (top to bottom) for

the 30k aperture radius transducer.

(Left) Results obtained from

the Navier-Stokes FC simulation.

(Right) Results obtained from the

KZK model. Horizontal axes are

measured in focal lengths. Vertical

axes are measured in aperture radii.

FIG. 12. (Color online) Pressure field for focusing transducer simulations.

(a) Propagation and focusing in a homogeneous medium. (b) Propagation

and focusing across an array of scatterers.
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at least 45 days and 7 months, respectively, to produce the sol-

utions to the examples in this section to within 1% accuracy.

VIII. DISCUSSION AND CONCLUSIONS

The examples presented in this work were motivated by

the problem of HIFU simulation, which requires the solution

of nonlinear acoustic advection equations in large (relative

to the fundamental wavelength) domains. In order to effi-

ciently treat the large-scale simulation of HIFU via a full-

wave model, it is essential to use a numerical algorithm with

very low dispersion errors; as demonstrated through the one-

and two-dimensional examples in this text, the FC method

exhibits the required exceptionally low dispersion errors

and, therefore, can be a powerful tool in efficiently and accu-

rately solving the types of problems under consideration.

Such a tool could have a number of uses for HIFU researcher

and practitioners, including, as demonstrated in Sec. VI, the

validation of simplified wave models. Moreover, in highly

complex tissue configurations, the assumptions inherent in

the paraxial or one-way propagation models are expected to

fail and, thus, it is unlikely that one can completely avoid the

use of a full-wave model, such as the Navier-Stokes or West-

ervelt equations. Therefore, the development of efficient

high-order solvers will be crucial for the advancement of

full-scale, multitissue HIFU simulation. In view of this sug-

gestion, the remainder of this section is devoted to a discus-

sion of the ways in which the flexible FC approach outlined

in this paper can be adapted to meet the challenging

demands of complex HIFU simulations. In particular, the

topics of three-dimensional simulations, advanced tissue

models, heterogeneous media, adaptive mesh refinement,

and solutions containing shocks are discussed.

A. Three-dimensional simulation

Axisymmetric three-dimensional problems can be

treated by solving the three-dimensional PDE in axisymmet-

ric form. The axial symmetry is implemented in three dimen-

sions analogously to reflection symmetry in two dimensions

[see, e.g., Sec. VI C 1 and Fig. 5(b)]. The extension from two

to three dimensions is also straightforward; the basic con-

struction necessary is the three-dimensional analog of Algo-

rithm 2. The concepts of overlapping grid decomposition

and block domain decomposition generalize trivially into

three dimensions. Several axially symmetric and fully three-

dimensional tests have provided promising results, and

research in this direction is ongoing.

B. Advanced tissue models

The inclusion of thermal conductivity and bulk viscosity

is trivial: the FC method is not restricted to any particular

PDE and, in fact, has been used to solve a number of differ-

ent advection-diffusion PDE systems.25–27,46 Power-law

attenuation can be modeled by adding relaxation processes

to the PDE model,14,47,48 and several preliminary tests of an

axisymmetric piston transducer have been able to recover

the correct attenuation curve efficiently using three to four

relaxation processes.

C. Heterogeneous media

Because smoothly varying parameter inhomogeneities

can be easily incorporated into the PDE coefficients, the

main challenge with heterogeneous tissues arises from dis-

continuities in parameters at tissue interfaces. Overlapping

grid techniques already exist for heterogeneous and multi-

material problems and have been used with finite-difference

solvers.49 Based on the successful use of overlapping grids

for the FC solver presented in this paper, it seems reasonable

to expect that a similar approach is suitable for the FC

method.

D. Adaptive mesh refinement

In HIFU simulation, steep, spatially localized pressure

gradients often occur, in such a way that use of a uniform

spatial discretization is inefficient. The standard approach

for dealing with a situation such as this involves the use of

adaptive mesh refinement (AMR). Although AMR has not

been used in the examples in the present paper, it can be

implemented by any standard technique currently used for

grid-based solvers. Several successful demonstrations have

indeed indicated that AMR can greatly increase the effi-

ciency of the FC solver for HIFU-type problems, and

research in this direction is ongoing. The comparisons pre-

sented in Sec. IV, which do not include use of AMR, none-

theless demonstrate the capabilities that AMR versions of

the FV, FD, and FC solvers would exhibit in each one of the

quasi-uniform portions of an adaptively refined grid. These

results are therefore suggestive of the overall behavior that

may be expected from AMR-augmented versions of the solv-

ers under consideration.

E. Solutions containing shocks

Due to its utilization of Fourier methods for spatial dif-

ferentiation, the FC method presented in the present paper is

not well-suited for problems involving moving shock discon-

tinuities. (Note, however, that Sec. IV B shows that the

method is very efficient in resolving viscous shocks.) Prob-

lems with shocks can be treated by means of an adaptive

hybrid approach wherein regions of smooth solution are

treated by the FC method and regions containing shocks are

treated by a high-resolution shock-tracking scheme. Such a

hybrid, which uses the weighted essential non-oscillatory

(WENO) differentiation operator near shocks, is discussed in

Ref. 46.
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