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Abstract 

This research studies a system-wide approach to monitor product quality in real time to 

avoid manufacturing defects in high dimensional multistage processes. Traditional control charts 

have been widely used in various manufacturing industries due to their simplicity. However, in 

today’s complex manufacturing processes, these charts are not efficient anymore. A complex 

manufacturing process may include multiple stages with sensors embedded throughout the 

processes that generate a huge amount of data in high dimensions. Since the numbers of stages and 

parameters are usually very large, traditional control charts are incapable of handling a multistage 

high-dimensional problem mainly due to the problem of false alarm rates of simultaneous 

monitoring.  

Industry 4.0 and Internet of things (IOT) provides opportunities to achieve better quality 

products toward a zero defect system. Currently, data is either thrown away or stored in unused 

databases. In a inefficient approach called “fire-fighting”, when there is a decline in the quality, 

process engineers go back to archived process data to figure out the problem. However, due to 

various reasons such as messy and unclean data, outdated data, and common manufacturing data 

features such as complexity and dimensionality issues, this process may take a long time. In the 

best cases, researchers provide classification-based process monitoring techniques to use the 

manufacturing data. However, the state-of-the-art classification-based process monitoring 

techniques usually provide quality predictions at the end of the manufacturing process and provide 

no chance to fix the problem. In addition, knowing high dimensional, unbalanced, and newly 

released manufacturing data, the literature is largely silent on providing a comprehensive study 

addressing those issues. While addressing above mentioned challenges, the proposed research 

delivers a stage-wise process monitoring which provides plenty of time for engineers to fix the 



  

process before the last point. Then, based on the results from the predictive models, adjustable 

process parameters can be altered to avoid potential defects. The proposed research relies on 

predictive models which are built on a series of classifiers.  

The proposed research is implemented in two different manufacturing application – 

additive manufacturing (AM) and semiconductor production. The proposed research in the AM 

industry called the Multi-Layer Classification Process Monitoring (MLCPM) is applied in the 

Laser Powder Bed Fusion (LPBF) metal printing process. In the semiconductor manufacturing 

industry, we applied the proposed method on a very imbalanced high dimensional production data 

called SECOM (SEmiCOnductor Manufacturing) which is publicly available through the UCI 

repository lab [1]. In this study, we examined various classification models and sampling 

approaches to find the best results in terms of specific metrics chosen regarding the imbalanced 

nature of the problem. The applied case studies show the effectiveness of the proposed framework 

in terms of accurately predict the real-time production quality state. The chance of predicting the 

quality of the process before the last step provides chances to reduce the waste and save cost and 

time in the production systems.  
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Chapter 1 - Introduction 

This research studies a system-wide multi-stage, real-time process monitoring approach 

for high dimensional multistage processes using predictive classification models. A multistage 

system contains several steps needed to produce a product or perform a service. Examples of 

multistage systems include semiconductor manufacturing, assembly lines, and additive 

manufacturing [2]. In multistage systems, each stage may have multiple characteristics. This kind 

of general multistage process may constitute a high dimensional vector in which each element 

contains either the status or measures of a process parameter or quality characteristics at the time 

of measurement. Note that the timestamps for each measurement may be different in different 

stages but can be strung together. This high-dimensional vector can be used directly for process 

monitoring or diagnosis during production and post-production. 

While manufacturing processes have seen much improvement, process monitoring 

techniques such as control charting have not experienced a transformative improvement since 

Shewhart [3] introduced X-bar and R charts in the 1920s. For example, in a car assembly line, the 

body dimension inspection is an important stage where coordinate measuring machines generate 

multiple data points [4]. Although all dimensions fit into their tolerance and no control chart 

indicates out of control, however, door fitting in a later assembly stage may leave large gaps in 

some areas. Existing process control methods such as control charts do not pass the dimensions 

information into later stages due to the sheer data volume or dimensional constraints in the data 

set itself. 

Since 1920, many studies have been published to incrementally improve process 

monitoring techniques. Examples include cumulative sum (CUSUM), exponential weighted 

moving average (EWMA), and Multivariate techniques such as Hotelling T2 [5], principal 
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component analysis (PCA), and generalized likelihood ratio test (GLRT) [6]. However, these 

process monitoring methods fail to answer the challenges posed by future manufacturing 

environments where abundant sensor data on process parameters and semi-finished parts are 

readily available for system-wide monitoring. 

For example, one of the visions of Industry 4.0 calls for a smart quality management system 

leveraging the real-time use of process data to monitor product quality [7]. Nowadays, machine 

learning techniques or loosely called AI (Artificial Intelligence) have been adopted for decision 

making in pockets of automation. Specifically, process data has still been used in an isolated 

manner regarding process monitoring practices. Control charts are implemented only for critical 

quality characteristics rather than on process parameters, of which data is either thrown away or 

stored in huge databases. This phenomenon is dubbed “dark data” in that most data has never been 

used for any purpose. Some manufacturers only use process data in a “fire-fighting” mode when 

data is dug out for root-cause analysis when there is a decline in product quality. To diagnose what 

parameters, which stage, and when such a discrepancy took place, process engineers have to 

examine archived process data, which may take a long time due to various reasons such as messy 

and unclean data, outdated data, complexity, and dimensionality issues [6].  

Answering these challenges, researchers have provided classification-based process 

monitoring techniques for manufacturing data [6]. However, these methods usually provide quality 

predictions at the end of the manufacturing process and therefore provide no chance to fix the 

problem during production. Moreover, data-driven approaches generally face different challenges 

such as high dimensionality, updating process, and rare faulty samples. Addressing these 

challenges, we propose a stage-wise process monitoring model which provides prognosis 

information related to future product quality following the stage of the current production before 
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the last stage is reached. The next section provides a background study regarding quality 

engineering and process monitoring studies for high dimensional multistage systems.   

 1.1. Process Monitoring in High Dimensional Multistage Systems 

Multistage systems are very common in practice in various industries. However, quality 

control of such systems is very complex since the variation of each stage does not solely depend 

on itself but may come from upstream stages. Figure 1 illustrates a diagram of the multistage 

system. 

 

Figure 1- A diagram of the multistage system 

Manufacturers have been using traditional control charts to monitor their product quality 

since the 1920s. Shewhart [3] converted a series of hypothesis testings into a graphic monitoring 

tool. Traditional statistical process control or monitoring (SPC or SPM) approaches are widely 
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used because of their simplicity and applicability. However, in the area of high-tech manufacturing 

products, traditional methods of quality control are not effective due to the “curse of 

dimensionality” [8]. Unlike the traditional methods where measurement is restricted to physical 

products or work in progress, process parameters offer ample opportunities for process monitoring 

and defect prevention. Since the number of parameters is usually very large, a high-dimensional 

problem often renders traditional control charts ineffective. For example, the production of a CPU 

includes hundreds of processes and thousands of process parameters. To study multiple quality 

characteristics, multiple techniques such as Hotelling T2 [5], PCA, and GLRT are proposed [6]. 

Hotelling T2 chart developed in 1947 are used where a 𝑝 × 1 sample vector with mean 𝜇 and 

covariance matrix 𝛴  are known or can be estimated. 

𝑋ଶ = (𝑥 − 𝜇)ᇱΣିଵ(𝑥 − 𝜇) = 𝜒௣
ଶ       Equation 1 

A constant 𝑐 can be determined according to the desired type I and type II error to define 

the boundaries of the normal process when 𝑋ଶ < 𝑐 the process of interest is in control. PCA is 

often used to reduce the dimension of the sample vector and then, a monitoring technique is applied 

to the reduced dimension. Finally, GLRT is another method to detect the changes in multivariate 

problems. It also can be used to incorporate time information into the change detection models. 

Suppose 𝑋௧ as a 𝑝-dimensioanl sample obtained at time unit t for a process. Two following 

hypotheses are testing the process to detect the change that happens in time 𝜏. 

𝐻଴: 𝑋ଵ, 𝑋ଶ, … , 𝑋௧~𝑓଴(𝑥)         Equation 2 

𝐻ଵ: 𝑋ଵ, 𝑋ଶ, … , 𝑋ఛ~𝑓଴(𝑥),          𝑋ఛାଵ, 𝑋ఛାଶ, … , 𝑋௧~𝑓ଵ(𝑥)     Equation 3 

The likelihood ratio is defined as  

𝐿 =
∏ 𝒇𝟎(𝒙𝒊) ∏ 𝒇𝟏(𝒙𝒊)𝒕

𝒊స𝝉శ𝟏
𝝉
𝒊స𝟏

∏ 𝒇𝟎(𝒙𝒊)𝒕
𝒊స𝟏

=
∏ 𝒇𝟏(𝒙𝒊)𝒕

𝒊స𝝉శ𝟏

∏ 𝒇𝟎(𝒙𝒊)𝒕
𝒊స𝝉శ𝟏

       Equation 4 
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where 𝑓଴, 𝑓ଵ are identified as unknown probability densities for the in-control (IC) and out-of-

control (OC) process points. To find out the unknown 𝜏, the generalized ratio can be defined to 

maximize the likelihood ratio in Equation 4. The log of the generalized likelihood ratio is  

𝐿௧ = max
ఛ

∑ 𝑙𝑛
௙భ(௫೔)

௙బ(௫೔)

௧
௜ୀఛାଵ          Equation 5 

The signal is triggered when the decision parameter 𝐿௧ exceeds a certain limit. This signal indicates 

that a change has taken place.  

Despite the effectiveness of these methods, however, the traditional multivariable methods 

cannot be effectively applied in complex processes because they were designed to detect mean 

shifts of a moderate number of quality characteristics usually less than 10 [6]. Another major SPC 

innovation since its inception was to detect the small process changes faster. Univariate control 

charts for this purpose include cumulative sum (CUSUM) and exponentially weighted moving 

average (EWMA) control charts. The main concept is to involve historical observations leading 

up to the current observation to expedite mean shifts or variance changes. These univariate control 

charts like the X-bar and R charts cannot be implemented effectively in cases where multiple 

quality characteristics or process parameters exist. In the multivariate environment, multivariate 

exponentially weighted moving averages (MEWMA) [9] and multivariate cumulative sum 

(MCUSUM) [10] control charts are appropriate. However, these methods either cannot detect off-

target (AKA OC) signals fast enough or cause unacceptable false alarm rates as the number of 

variables increases [6]. Therefore, more efficient models are needed to tackle high dimensional 

process monitoring problems. Also, most SPC methods do not perform well in multistage 

applications since data from a multistage process is often considered as a whole without 

timestamps and, therefore, traditional multivariate SPC methods could not discriminate which 
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stage where a change occurs [2]. Hence, the need for in-process monitoring for multistage systems 

cannot be greater in the context of SPC.  

Jin and Shi [11] first considered the modeling of a general multistage system where the key 

quality characteristics of the product at stage 𝑘 is represented by 𝑥௞as the following equation: 

𝑥௞ = 𝐴௞ିଵ𝑥௞ିଵ + 𝐵௞𝑢௞ + 𝑤௞ and 𝑦௞ = 𝐶௞𝑥௞ + 𝑣௞      Equation 6 

where 𝑢௞ , 𝑤௞ , and 𝑣௞  represent process error source, unmodeled error, and sensor noise 

respectively. 𝐴௞ିଵ𝑥௞ିଵ represents the transformation of product quality deviations from station 

𝑘 − 1 to station 𝑘, 𝐵௞𝑢௞ represents the product deviations resulting from process errors at stage 𝑘 

and 𝐶௞ maps the product quality states to quality measurements. The model has been used in many 

applications such as rigid-part assembly processes, compliant-part assembly processes, machining 

processes, and sheet stretch forming processes [2]. However, the physics of the process needs to 

be thoroughly studied to construct the process model.  

Cause-selecting charts are other tools for monitoring the quality of the process in multistage 

systems. These charts have shown to be effective in finding the responsible stage in a faulty 

condition. Cause-selecting charts generally use univariate techniques, hence, cannot handle high 

dimensional problems [11]. Another commonly used technique in a special multistage system 

called multistream production is the group charts which can be used to detect quality changes in 

identical, individual streams. However, this technique cannot perform diagnosis within stages 

because it only tracks the worst performance in a stage to analyze the process [12].   

Data-driven approaches emerged as promising framework classes for SPC [6]. These 

approaches include the use of classification-based models to group historical data into two: IC or 

OC. After learning from known patterns, trained models can predict the class IC or OC of a new 
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dataset. Several studies have been proposed to monitor the process in the multivariate environment 

under two main categories [6].  

The first category utilized a method called the artificial contrast method [13-18] which 

artificially produced OC points to balance the sample set. Tuv and Runger [13] first introduced the 

artificial contrast data to represent the OC points. The artificially generated data were random 

numbers generated by a uniform distribution. In this study, the range of IC points has been used to 

generate random numbers. Then, the generation of contrast data has been repeated for each 

parameter independently. A gradient boosting machine has been used in this study to classify the 

IC and OC points. In addition, in case of high dimensionality, the authors recommended the 

reduction of the number of parameters using by a feature selection classifier.  

Hwang, et. al., [18] followed the previous work by Tuv and Runger [13] where the 

generation of artificial contrast data was limited to one standard deviation of the target point. In 

addition, the selected classifiers by Hwang, et. al., [18] include Random Forest (RF) [19] and 

regularized least square classifier (RLSC) [20].  

Hu, et al., [14] then introduced the concept of fine-tuning the artificial contrast data by 

incorporating prior knowledge of the manufacturing process [13]. While  Tuv and Runger [13] 

used a uniform distribution to generated artificial contrast data, Hu, et. al., [14] instead generated 

the contrast data using the artificial contrast data in an intentional pre-defined direction. The tuned 

direction comes from the pre-knowledge of the process. The classifier used by this method is RF. 

Hu, et. al., [14] claimed to obtain more precise results in terms of accuracy and false alarms. 

Li, et. al., [15]  applied the artificial contrast concept in a change point detection problem 

where a vector of data points considered as features to capture the time when there was any change 

in the pattern. By using the likelihood ratio function (Equation. 5), Hu and Runger [16] 
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incorporated the time element in the artificial contrast concept. The probability of each class by 

RF in each time unit is used to represent the functions in the likelihood ratio. Then, the EWMA 

chart using the obtained likelihood ratio is used to monitor the process.  

Using the real-time data and the artificial contrast concept, Deng, et. al., [17] introduced 

the real-time contrast concept to monitor a process. This proposed study used fixed-size new real-

time observations to contrast the reference data (training set). By having a new observation 

window, a new classifier is trained for process monitoring. Like the traditional process monitoring 

studies, Deng, et al. [17] did not alter the reference data (points labeled y =0 ) while the new 

observations were defined as OC points. Hence, in normal process condition, the error of the 

proposed method is expected to be high as both IC and OC points are following the same pattern. 

Once a shift in the process occurs, the error reduces. To identify the important features, Deng, et. 

al., [17] used RF as the classifier.  

The second category applies feature selection methods [21-24] to reduce the dimensionality 

of high-dimensional process monitoring problems. The developed T2 statistic by Jian and Tsui [21] 

enables the identification of the responsible variables for OC points.  

VS-MSPC is a variable selection based multivariate SPC control chart developed by Wang 

and Jiang [22]. The variable selection in the VS-MSPC is based on a penalized likelihood function. 

Then, the VS-MSPC method only monitors the selected variables. Wang and Jiang [22] assumed 

that the simultaneous shift in multivariate problems usually happens in a limited number of 

variables. Based on the assumption, monitoring a small fraction of variables is then possible by 

the multivariate SPC methods. One of the limitations of the proposed method, however, is not 

being sensitive to small shifts.  



 

9 

Zou and Qiu [23] used Lasso [25] as the variable selection based model. Then, the 

MEWMA chart is proposed as the monitoring tool in the reduced problem. Like the previous 

studies, Zou and Qiu’s approach [23] comes with strong assumptions such as a limited number of 

variables to shift and normal and independent observations.  

To incorporate cascade information, Jin, et al. [24] extended the previous work by Zou and 

Qiu [23]. In the cascade process, a process leads to a number of succeeding processes. Hence, 

when a shift in the process occurs, besides the root cause parameter, the subsequent process 

parameters might be considered as responsible elements as well where this might not be always 

the case. Jin, et. al., [24] incorporated the cascade information using a Bayesian Network. Hence, 

the proposed method is called Lasso-BN where BN stands for Bayesian Network. After identifying 

the truly responsible variables, a T2 chart is used to monitor the process. The availability of the 

cascade relationship between parameters is assumed to be available and represented by a BN. 

The above-mentioned studies generally follow the traditional SPC approaches where only 

product quality characteristics are considered in process monitoring and quality assessment. Using 

data-driven techniques, Wuest, et al., [26] incorporated both product state and process state data 

for quality monitoring. The proposed study benefits from a wide range of supervised and 

unsupervised machine learning techniques. In the multistage production system illustrated by 

Wuest, et al., [26], changes in the product physical shape are defined as the checkpoints.  
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Table 1- A literature review of machine learning approaches for process monitoring[6]. 

Authors Approach Method used Assumption  Application 

Tuv and Runger [13] Artificial Contrast 
Data 

Gradient boosting 
machine 

Uniform contrast data by 3 standard 
deviations from the reference data. 
Enough amount of data is available to 
train the model. Easy to implement.  

General high-
dimensional problem 

Hwang, et. al., [18]  Artificial Contrast 
Data 

RF, RLSC Uniform contrast data by one standard 
deviation from the reference data. Enough 
amount of data is available to train the 
model. Easy to implement. 

General high-
dimensional problem 

Hu, et. al., [14] Artificial Contrast 
Data 

RF Prior knowledge of the process is 
available. Enough amount of data is 
available to train the model. Easy to 
implement 

Prior knowledge is 
available 

Hu and Runger [16] Artificial Contrast 
Data 

RF Prior knowledge of the process is 
available. Enough amount of data is 
available to train the model. Moderate to 
implement 

Time-based monitoring 

Deng, et. al., [17] Artificial Contrast 
Data 

RF Prior knowledge of the process is 
available. Enough amount of data is 
available to train the model. Hard to 
implement 

Real-data is used to 
contrast the reference 
data 
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Table 1-continued- A literature review of machine learning approaches for process monitoring [6]. 

Authors Approach method used Assumption  Application 
Jian and Tsui [21] Dimension 

Reduction 
Extended T2 statistic Independent, normal data. Complex 

implementation 
General high-
dimensional problem 

Wang and Jiang [22] Dimension 
Reduction 

VS-MSPC Independent, normal data. Complex 
implementation 

General high-
dimensional problem 
 

Zou and Qiu [23] Dimension 
Reduction 

Lasso Independent, normal data. Moderate to 
implement. 

General high-
dimensional problem 

Jin, et. al., [24] Dimension 
Reduction 

Lasso, Bayesian 
Network 

The cascade relation between elements is 
available and can be modeled by a 
Bayesian network. Independent, normal 
data. Complex implementation. 

Process monitoring of 
cascade processes. 

Wuest, et. al., [26] Process monitoring 
using 
product/process data 

Support vector 
machine, 
Agglomerative 
hierarchical 
clustering 

The relation between the processes could 
be very complex which in this study a 
simple process is illustrated.  

Process monitoring using 
product/process states.  

Uhlmann et al. [27]  Pattern recognition 
in the 3D printing 
process 

Support vector 
machine, Neural 
networks, Bayesian 
classifier, Nearest 
neighbors 

A limited number of variables are selected 
(17 parameters). A predefined category is 
assumed for product quality. The number 
of samples is limited; hence the accuracy 
of the model is not satisfactory.  

Process monitoring in 
selective laser melting 
process 

Kao et al. [28] Semiconductor 
manufacturing 

Decision tree, 
Support vector 
machine, Naïve 
Bayes 

Majority of the features have been 
dropped (550 out of 590). Stages have 
been combined and only one model has 
been trained on all feature set. 

Process monitoring in 
semiconductor 
manufacturing systems 
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Data-driven techniques have also been used by Uhlmann et al. [27] to perform quality 

monitoring in a metal 3D printing process called selective laser melting. Several machine learning 

models such as support vector machine, neural networks, Bayesian classifier, and nearest 

neighbors were applied to perform the monitoring task. Kao et al. [28] also applied. several 

machine learning techniques on a semiconductor manufacturing dataset called SECOM 

(SEmiCOnductor Manufacturing) [1]. Table 1 provides a summary of the above-mentioned 

studies. 

Despite all these improvements in process monitoring of multistage systems, there are still 

ample opportunities and challenges remained including problem dimension, new unseen fault 

behaviors, and unbalanced classes of training data. These challenges are discussed by details in 

the next section. 

 1.2. Challenges 

In developing classification-based process monitoring techniques for high dimensional 

multistage systems, researchers usually face three main challenges: high dimensionality, updating 

process, and rare OC points as discussed in the following subsections. 

 1.2.1. High Dimensionality 

Today’s production machines are often equipped with multiple sensors generating a large 

amount of process data at a torrential pace.  The widening use of the internet of things (IoT) has 

contributed to this trend [29]. Machine learning (ML) techniques, a subset of “artificial 

intelligence,” has also contributed to the possibility of solving problems with high dimensionality 

because algorithms are used to autonomously learn from data [30]. The production machines 

usually generate a huge amount of data with high dimension. As discussed earlier, coordinate 

measurement machines produce great measurements in a high dimension. Dealing with high 
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dimensional data usually asks for more efforts and computations. Besides the computation time, 

data-driven models with high dimensions tend to overfit. Overfitting is a very common problem, 

especially in predictive models where they perform very well in the training sets. However, they 

fail to generalize meaning that they cannot predict unseen datasets well [19]. Hence, researchers 

usually avoid overfitting by reducing the dimension of problems. Dropping correlated features, 

dimension reduction techniques such as PCA, linear discrimination analysis (LDA), and penalized 

learners such as Lasso [25] and Ridge Regression are examples of the dimension-reduction 

techniques to avoid overfitting.   

 1.2.2. Updating Process (Cover Unseen Data Patterns) 

The training phase is a crucial part that makes a data-driven based model more accurate. In 

traditional SPC practice, the training data set usually does not change. This practice is often 

referred to as the Phase I SPC in which data from a processing period deemed in control constitutes 

a training set. However, most data-driven approaches cannot perform accurately facing unseen 

patterns. Hence, the training phase must be updated periodically to enable the model to cover new 

patterns which should include both IC and OC patterns. In general ML models benefit from more 

training samples for better accuracy. 

 1.2.3. Rare OC points (Unbalance classes) 

In traditional manufacturing processes, the reference data consisted of only IC points and 

the process was monitored against the reference data to pinpoint faulty spots. However, data-driven 

approaches such as classification algorithms require both IC and OC observations in the training 

set. However, a healthy manufacturing process contains occasional OC conditions.  Hence, a 

historical data set consists of much more IC than OC data. This phenomenon causes the unbalance 

classification issue, especially in binary classification problems. Two approaches including 
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undersampling and oversampling have been proposed in the literature [31] to tackle this issue. In 

the undersampling method, the number of training data from the majority class is reduced to the 

level of a minority class. On the other hand, the oversampling method generates more samples 

from the minority class to those of the majority class. Artificial contrast data is one of the 

oversampling methods applied to the process monitoring studies [13]. Despite the existence of 

several studies that use the artificial contrast data in process monitoring problems, a 

comprehensive study exploring several machine learning approaches facing unbalance samples is 

lacking. It is not certain whether the undersampling approach is better than the oversampling 

methods to tackle unbalance sampling problems in the content of process monitoring. Hence, both 

approaches should be investigated.   

 1.3. The Proposed Data-Driven Multistage Process Monitoring Model 

In this part, a short summary of the proposed framework is presented. The first step of the 

proposed framework is the organization of the collected data for each manufacturing stage. Then 

at each stage, a clustering method (K-means) reduces readings of each parameter into a few 

discrete categories. Specifically, the parameters data in each production stage is reduced to an 

assigned cluster to reduce dimension. In other words, each cluster represents a production recipe 

in a production stage. In the next step, a classification algorithm performs feature selection to 

further reduce the dimension by selecting only significant stages in predicting the final quality 

status, i.e. either a good product or bad product. Multiple classification models then are built upon 

the significant stages to perform process monitoring. The most crucial outcome of this proposed 

framework is the identification of significant process parameters at critical stages potentially 

affecting the final production quality. This knowledge would enable a viable process control 

strategy to be developed. The developed model has been successfully implemented in two cases: 
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metal additive manufacturing (AM) and semiconductor manufacturing. The cases where the 

proposed framework has been implemented are different in nature. Therefore, although both 

models share the same basic framework, there are major differences in term of implementation 

strategies.  A summary of two case studies will be provided in the next session. 

 1.4. Applied Industries 

 1.4.1. Case 1- Metal AM 

We have applied a multi-layer classification process monitoring model (MLCPM) [32] to 

the metal 3D printing industry, which a multistage process considering its layer-by-layer nature of 

production. We adopt supervised and unsupervised models in MLCPM to control the quality of 

the print process before the print process reaches its final layer. MLCPM provides solutions toward 

the high dimensionality of metal 3D print data using clustering and feature selection methods. 

MLCPM model will be discussed in detail in Chapter 2.  

 1.4.2. Case 2- Semiconductor Manufacturing   

In this research, we extended the previous study [32] by addressing multiple challenges 

such as imbalanced classes, high dimensionality, and covering unseen patterns. A semiconductor 

manufacturing repository dataset is used to demonstrate how the proposed framework can be 

implemented. This framework will be discussed in detail in Chapter 3.  

 1.5. Conclusion 

In this chapter, we outline the need for new studies toward process monitoring for complex 

multistage production systems. This chapter explained why the traditional process monitoring 

studies fail in complex high dimensional systems. In addition, we summarized several challenges 

for implementing data-driven process monitoring methods. Then, the proposed process monitoring 

framework applied to two applications were briefly explained.  
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This study contains the following chapters. Chapter 2 provides detailed information 

regarding the MLCPM model applied in the laser-powered, power-bed, 3D metal AM processes. 

Then, in Chapter 3, the proposed framework will be applied to a semiconductor manufacturing 

industry. Finally, future studies and conclusions are presented in Chapter 4. 
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Chapter 2 - MLCPM: A Process Monitoring Framework for 3D 

Metal Printing in Industrial Scale 

Chapter 2, in full, is a reprint of the material as it appears in Computers & Industrial Engineering, 2018, 
Mohammadhossein Amini and Shing. I. Chang. doi: 10.1016/j.cie.2018.07.041 
 

Abstract 

Metal 3D printing is one of the fastest growing additive manufacturing (AM) technologies 

in recent years. Despite such improvements in its technical capabilities, reliable metal printing is 

still not well understood. One of the barriers of industrialization of metal AM is process monitoring 

and quality assurance of the printed product. These barriers are especially much highlighted in 

aerospace and medical device manufacturing industries where the highly reliable and quality 

products are needed. Selective Laser Melting (SLM) is one of the main metal 3D printing methods 

where more than 50 parameters may affect the quality of the print. However, current SLM printing 

processes only utilize a fraction of the collected data for quality related tasks. This study proposes 

a process monitoring framework named MLCPM (Multi-Layer Classifier for Process Monitoring) 

to predict the likelihood of successful printing at critical printing stages based on collective data 

provided by identical 3D printing machines producing the same part. The proposed framework 

provides a blueprint for control strategies during a printing process and aims to prevent defects 

using data-driven techniques. A numerical study using simulated data is provided to demonstrate 

how the proposed method can be implemented.  

 2.1. Introduction 

Complex and flexible production technologies such as additive manufacturing (AM) 

widely known as 3D printing [33] is increasingly in demand for building sophisticated products. 

The term "AM" defines the production process by adding material layer by layer rather than 
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removing material from a block. Metal printing is one of the applications of AM that has been 

widely studied in recent years. The overall AM has seen 34.9% growth while the metal AM 

segment has experienced growth of over 75% in 2013 [34]. Industries such as aviation, healthcare, 

and automotive that use complex metallic parts have contributed to this growth of metal AM. 

Although there are various categories of metal printing, powder bed printing is one of the most 

prominent types widely used in the industry. Under the category of powder bed printing, Selective 

Laser Melting (SLM) is the most promising method that has drawn much attention in recent years 

[35]. The focus of this research is mainly on the SLM method application in the industrial scale 

[36]. By industrial scale, we mean that multiple identical 3D printing machines scattered in 

different 3D printing farms. 

Even though AM technologies are improving, there are still several main challenges 

including process reliability and quality assurance of the process and finished product [37]. Quality 

assurance and reproducibility are two key factors to bring AM into the industrial scale. The first 

challenge is the amount of sensor data collected during a SLM printing process. For example, the 

coaxial visible-wavelength camera in Concept Laser’s machines is capable of capturing pictures 

at the rate of 4000 frames per second [37]. At this rate, the size of the data is huge which is 

cumbersome for the traditional relational databases to handle. Some studies have provided closed-

loop feedback control systems to adjust the parameters affecting the quality of the final product 

[38]. However, the limited knowledge of significant parameters leads to inefficient monitoring 

models [35]. In addition, more than 50 process parameters have impacts on print quality but only 

a small set of these variables are actively used for process control purposes [35]. Existing process 

monitoring and control methods often based on the first principle focus on single SLM machine. 

These methods ignore the possibility of process data generated from other SLM machines. In the 
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situation where the same part is printed in multiple SLM machines in various printing farms, it 

provides the opportunity for a data-driven approach to learn the relationship between print quality 

and process parameters. A system-wide monitoring framework may provide a way to ensure 

printing reliability and reproductivity by pooling production and quality data from various printers. 

This study proposes a system-wide process monitoring system using data from all 

machines printing the same part to predict printing quality at critical layers. The proposed method 

is called MLCPM which stands for Multi-Layer Classifier for Process Monitoring. We assume 

process and quality data from multiple printers located in various places are shared through secured 

servers in the cloud. All analyses take place in the cloud so that big data analytics is possible [39]. 

Unlike the current techniques in the metal AM process monitoring, MLCPM is capable of 

monitoring all measurable process parameters in the printing process. The predicted quality at 

certain critical layers provides operators a chance to change process settings before a part is fully 

printed. The proposed MLCPM overcomes high-dimension issues by adopting multiple techniques 

such as clustering and feature selection. Equipped with various predictive models, MLCPM is 

designed to predict defective possibilities while a part is still printing.  

This chapter contains the following sections. The next section provides a brief literature 

review of metal 3D printing methods and studies related to quality monitoring. Then MLCPM is 

introduced for process monitoring. A simulated numerical example is further provided to show the 

operation of the proposed MLCPM. Finally, future studies and conclusions are presented in the 

last section. 
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 2.2. BACKGROUND 

 2.2.1. Additive Manufacturing and Metal Additive Manufacturing 

AM has provided the ability to make complex parts such as honeycomb structures, and 

intricate internal features right from a 3D CAD model [40]. Due to its capability of manufacturing 

complex parts and easy and fast process, many industries are moving toward it. 3D printers have 

built plane engine parts, medical parts, houses, toys, and even the development of printing human 

organs are on the horizon. 3D printers are capable of printing polymer or metallic parts. Polymer 

printing has been around for 40 years while the metal printing has been emerged around 20 years 

[41]. Since the industry has shown huge interests toward the metal segment of AM [34], the focus 

of this paper is on the metal 3D printing. 

American Society for Testing and Materials (ASTM) technical committee F42 [42] has 

provided a list of AM terminologies where five out of seven categories are capable of printing the 

metallic material [36]. The metal printing capable methods include the following main categories: 

directed energy deposition (DED), powder bed fusion (PBF), material jetting, binder jetting, and 

sheet lamination processes. Among these methods, PBF and DED are the two major technologies 

contributing to the AM industrial revolution. In DED, the part is shaped by melted material as the 

metal is deposited. Metal DED is similar to the other deposition methods involving polymer and 

ceramic. PBF techniques use either a laser or electron beam to melt and fuse the metal powder. In 

this paper, we focus on the SLM method that is a technique under the PBF category. SLM uses 

laser power to melt the metal powder by selectively melting a thin layer of the powder to shape 

the part. The powder is evenly distributed on the surface layer by a roller. Figure 2 shows the 

mechanism of an SLM process. 
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Figure 2-Mechanism of SLM process [43] 

 2.2.2. Process Monitoring in AM 

Process monitoring techniques should be applied to ensure quality production. Due to the 

complex nature of the SLM, the process monitoring, and controlling is very difficult [44, 45]. In 

some mission-critical industries, destructive inspections are used to check the quality of the final 

product. To overcome this issue, several studies have been conducted to assure the quality of the 

final product [27, 35, 36, 38, 46-56]. The first step of monitoring a printing process is to identify 

the variables affecting the quality of the printed products. Leaving these variables uncontrolled 

will generate defects such as balling effects or cracks. Variables affecting printing quality includes 

powder, laser beam, printing chamber environment, and so on. Figure 3 illustrates some of these 

parameters in a diagram. Variables are further categorized into predefined variables and 

controllable variables which can be used to adjust a process in closed-loop feedback control 

systems [51]. In the process of SLM, more than 50 variables may affect printing quality, which 
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makes the understanding of the process physics and process monitoring more challenging [35]. 

Understanding these variables will drastically help control the process. 

 

Figure 3- Diagram of affecting parameters in the SLM process 

Malekpour and El-Mounayri [51] provided a list of variables affecting SLM printing 

quality. Their studies in the context of process control in metal 3D printing mainly focused on 

process signatures such as the characteristics of the melt-pool, which is believed to be the most 

influential to the quality of the printed product [38]. Based on the laser power and scan speed, the 

melt-pool grows or shrinks. Figure 4 shows a melt pool on a workpiece under a laser beam. 



 

23 

 

Figure 4- Melt-pool and emitted process signatures under the laser beam 

Two main categories of monitoring a laser printing process involve acoustic and optic 

methods where the latter is more popular [46]. In acoustic methods, surface-contact and non-

contact sensors are used to convert sound waves into electrical outputs [46]. Optic methods contain 

two approaches: Lagrangian and Eulerian. In the Lagrangian method, the camera moves with the 

laser beam to follow the melting area wherein the Eulerian method the sensor focuses only on a 

fixed position. The Lagrangian method provides the opportunity to follow and control the melt-

pool area but it lacks the record of a historical thermal characteristic at the assessment point. On 

the contrary, the historical thermal data of points can be achieved in the Eulerian method, but the 

melt-pool analysis cannot be accomplished. Many studies have focused on the shape and 

temperature distribution of the melt-pool. Kruth and Mercelis [48] patented a feedback control 

system where temperature distribution in melt-pool was used to adjust the laser power. In the setup, 

a photodiode was installed to record the light intensity reflected by the melt-pool. Yadroitsev et 

al. [49] introduced a temperature monitoring system using a charge-coupled device (CCD) camera. 

To monitor the temperature distribution, a camera was coaxially aligned to the laser beam. The 

focus of the study was to monitor and detect built-in microstructures during a heating process. 

Imani et al., [52] proposed a layer-based monitoring based on X-ray computed tomography (XCT) 
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images of titanium alloy (Ti-6Al-4V) printed cylinder. Yao et al. [53] utilized the image profiles 

acquired in a powder bed fusion process and studied the fractal patterns for the purpose of process 

monitoring, quality assessment, and control. Chivel and Smurov [50] proposed the closed loop 

control system for selective laser sintering (SLS) systems where the goal was to monitor the 

temperature distribution and record the maximum surface temperature. Infrared (IR) cameras are 

used widely as well to monitor the temperature distribution. Chivel and Smurov [50] applied IR 

cameras to monitor a temperature distribution over an entire workpiece as oppose to photodiodes 

which were designed to focus on a single spot only. In the monitoring process, the location of the 

camera is extremely challenging especially in electron beam melting (EBM) printing due to the 

lack of space in the housing for electron beam gun in EBM process [38]. While most of the studies 

have focused on melt-pool effects on print quality, studies such as Montazeri et al., [54], Imani et 

al., [52], Morsali et al. [55], Montazeri and Rao [56], and Malekipour and El-Mounayri [51] have 

focused on other affecting parameters such as material quality, nozzle diameter, and hatching 

space. 

While most of the studies rely only on the melt-pool area to control the process, Uhlmann 

et al. [27] proposed a machine learning (ML) algorithm considering 16 different variables such as 

platform temperature, process oxygen, and process chamber temperature. This study aimed to 

provide a pattern recognition tool by using ML algorithms. In addition, the authors provided a 

variable selection tool to identify the most effective parameters. A condition monitoring tool is 

used for analysis. First, three different states for the final product were defined as finished 

perfectly, finished with errors, and not finished. Using a section of the dataset (totally 271 

samples), they trained the proposed classifier and obtained its accuracy. In general, an accurate 

model should not provide too many false positives or false negatives. The highest accuracy 
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obtained by Uhlmann et al. [27] however is less than 60%. ML methods heavily rely on the given 

samples. In general, the larger the dataset containing all the categories (product states), the more 

prediction accuracy can be achieved. Our proposed study leverages a networked 3D printing 

machines and the data generated to provide amble training data set for better model accuracy. 

In terms of industry’s effort toward quality metal printing, Simufact [57] released a 

simulation software which could predict the failures of the printed job based on the given 

parameters. In addition, ESI also provided simulation tools for AM industries. ESI’s platform is 

called unified integrated computational material engineering (ICME) that provides tools to predict 

workpiece behavior during the printing process. These tools focus on powder interaction and 

thermal distribution issues to eliminate potential defects [58]. Other developments in the metal 

printing industry are mostly led by aerospace and healthcare industries [59]. 

Despite these improvements in process monitoring in the AM industry, current methods 

use local data and provide a closed-loop feedback system to adjust a small portion of independent 

variables such as laser power in one AM machine. To improve prediction accuracy, more samples 

and data are needed to train a predictive model. It may involve other patterns that may have been 

faced in different machines. We propose a data-driven framework called MLCPM that utilizes data 

from multiple printing machines and machine learning technologies to identify opportunities for 

process control during a printing process. Details of the proposed MLCPM framework is described 

in the next section. 

 2.3. MLCPM: The Proposed Data-Driven Approach for Metal 3D Printing 

Process Monitoring 

The nature of the laser melting process makes the understanding of the physics of printing 

process challenging. In addition, a large number of affecting parameters make the process 
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monitoring more complex. Current studies usually focus on a certain area (melt-pool) which is 

deemed the most influence on the quality of the finished part. Further, ML models such as the 

proposed model by Uhlmann et al. [27] have shown to be promising in 3D print process 

monitoring. ML models have been widely used in the industry and academic studies. ML can be 

categorized into supervised and unsupervised methods. The main difference between them is that 

supervised learning methods need labeled targets whereas unsupervised models do not require 

labeling. One of the most important features of ML methods is relaxing the assumption of known 

data distributions. Regression and classification models are the most well-known supervised 

models while clustering is the main technique of the unsupervised category. Regression and 

classification models have been used for prediction based on a set of independent parameters. 

Uhlmann et al. [27] used four powerful classification methods as support vector machine, neural 

networks, Bayesian classifier, and nearest neighbors toward 3D printing problems. However, one 

of the drawbacks of ML models is the demand for a large sample of data to learn patterns. 

Therefore, when a limited amount of data is given, the accuracy of the model decreases. This 

limitation causes the model developed by Uhlmann et al. [27] to be less satisfactory as its model 

accuracy is less than 60%. In addition, the proposed method by Uhlmann et al. [27] does not 

perform the diagnosis and adjustment task. The main purposes of the method were to evaluate the 

pattern recognition and parameter selection tasks. Further, it applies locally on a single printing 

machine. 

In this study, we propose a system-wide process monitoring method that incorporates 

processing data from all printing machines in a printing farm. The proposed method monitors 

process parameter readings layer by layer and provides warning signals when a defective pattern 

emerges before a printing part is fully printed. In the proposed method, we assume that data comes 
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from multiple machines but prints the same job, Analyses of the proposed model are performed in 

the cloud-based servers. Therefore, enough amount of samples are available to apply ML 

techniques. 

This section provides a proposed framework to tackle the process monitoring task in SLM 

process using ML techniques to provide an adequate amount of samples for training. MLCPM 

consists of several clustering and classification models to analyze the data during the printing 

process. The inclusion of a large amount of data is designed to increase prediction accuracy. 

In metal printing methods such as SLM, ML techniques could effectively be applied to 

predict the products state in term of printing quality. To tackle the complexity of layer-by-layer 

printing process involving data with large dimensions, we propose a multi-layer model called 

MLCPM using multiple clustering, classification, and prediction models. MLCPM is built and 

performed in two separate phases. Phase I is the training phase while phase II is the monitoring 

phase. 

Phase I – Data Pooling and Model Building 

Assume the training data set is composed of n printed parts collected from identical printing 

machines available in the farm where each print is called a job. This assumption helps to train the 

model with multiple patterns identified on as many as possible machines. Next, job quality and the 

process data generated from all printing layers are collected. Job quality is based on a final 

inspection of printing quality at the end of printing. A binary decision should be made regarding 

job quality: good (0) or defective (1), which is denoted as a target value (Y). The printing process 

for each job is composed of M layers of printing. During each layer of printing, production data 

from k process parameters are collected as shown in Table 1. Printing parameters are either 

controllable or pre-defined where controllable parameters are used for adjustment [35]. Usually, 
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the speed of data collection is high and therefore the amount of data collected is tremendous. This 

application is a typical big data problem often encountered in modern manufacturing facilities. 

For each job, a matrix listed in Table 1 is formed by the collected data from various sensors 

where 𝑋௜௝௞ represents the collected data for job 𝑖 and parameter 𝑘 in layer 𝑗. In Table 2, rows 

represent the printing layers for each job 𝑖 and columns represent the data for each measurement 

by a parameter. However, the last column represents the target value for job 𝑖. After collecting 

data for all printing parts, a matrix for each printing layer is formed. The new matrix contains data 

from all jobs within a layer. Table 2 illustrates the layers matrix. 

Table 2- Data collected for job 𝒊 

Layer 
Affecting Parameters Target value (Y) 

Parameter 1 Parameter 2 … Parameter k 

Yi 

Layer 1 Xi11 Xi12 … Xi1k 

Layer 2 Xi21 Xi22 … Xi2k 

… … … … … 

Layer M XiM1 XiM2 … XiMk 

 

An unsupervised clustering algorithm is then applied to each layer of data shown in Table 

3. These clusters help identify hidden patterns inside the collected data. The resulted cluster is a 

representation or snapshot of this printed layer. The clustering algorithm used in this study is the 

embedded K-means method in Scikit-Learn [60] package available for Python 2.7. In addition, an 

“elbow method” [61, 62] is used to determine the efficient number of clusters. 
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Table 3- Data collected for layer 𝒊 

Job 
Affecting Parameters 

Parameter 1 Parameter 2 … Parameter k 

Job 1 X1i1 X1i2 … X1ik 

Job 2 X2i1 X2i2 … X2ik 

… … … … … 

Job n Xni1 Xni2 … Xnik 

 

An elbow method uses the distortion within clusters to determine the efficient number of 

clusters. Generally, in clustering a dataset, the distortion of clusters is zero when each point is 

assigned to one cluster and is in maximum when all points are grouped in one cluster. The first 

cluster illustrates a lot of variation, but at some point, the marginal gain will drop, giving an angle 

in the graph. The number of clusters is chosen at this point, hence the "elbow criterion". 

Several distance methods such as Euclidean, Manhattan, or Chebychev [63] can be applied 

in clustering task. MLCPM uses the Euclidean distance to measure the similarities between points. 

The K-means++ method embedded in Scikit-Learn [60] package was chosen for initial centroids 

in K-means clustering. K-means++ initializes the centroids to be distant from each other, leading 

to better results than random initialization [60]. 

The K-means algorithm assigns each printed part in a given layer to a cluster based on 

Equation 7. This process is repeated for all parts and all layers to form the classification matrix 

illustrated in Table 4. The outcome is that each printed part has one identified cluster for each 

layer. These assigned clusters then import into the classification models to be discussed. 

𝐶௜௝ = 𝑔(𝑋௜௝௞), 𝐶௜௝ ∈ ቄ𝐶ଵ௝, 𝐶ଶ௝ , … , 𝐶௣ೕ௝ቅ       Equation 7 
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where 𝐶௜௝  is the assigned cluster for part 𝑖 within layer 𝑗 and pj is the efficient number of clusters 

for layer 𝑗 obtained by the elbow method. 

Table 4- Classification matrix 

Job 
Printing layers 

Target value (Y) 
Layer 1 Layer 2 … Layer M 

Job 1 C11 C12 … C1M Y1 

Job 2 C21 C22 … C2M Y2 

… … … … … … 

Job n Cn1 Cn2 … CnM Yn 

 

In Table 4, 𝐶௜௝ is the identified cluster for job i in layer j generated from the K-means 

algorithm and 𝑌௜ is the target value (e.g. 0 for good and 1 for defective) for job i. Using Table 4, 

additional classification models need to be built to monitor the printing process and predict the 

target value. In the proposed model, features of the classification model are the clusters of layers. 

We propose the use of Random Forest (RF) model because the number of layers is usually very 

high. In addition, RF provides the probability to the predicted classes. These probabilities can be 

used further by quality technicians to define the level of product quality. Random Forest model 

uses multiple decision trees to perform the classification model. Therefore, the prediction result is 

more accurate as more classifiers are generated [6]. RF provides the importance of features (i.e. 

layers) where a cut off number (significance value) can be chosen to select only the most important 

ones. For example, in a printing process containing 1000 layers of printing, RF can sort the 

importance of the layers regarding the print quality. Then, the limited number of those layers (for 

example, layer 20, layer 50, and layer 900) can be chosen to further predict the print quality. Next, 

three classification models will be generated where the first classifier includes layers (features) up 

to 20 but with layer 20 as the most important layer. The second classifier includes layers up to 50 
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but with the most significant layers 20 and 50. The last classifier includes all printer layers up to 

900. In general, assuming m significant layers in M layers of printing, m classification models can 

be built as shown in the following set of equations: 

Model 1: 𝑌ప
෡ = 𝑓ଵ(𝐶௜ଵ)) 

Model 2: 𝑌ప
෡ = 𝑓ଶ(𝐶௜ଵ, 𝐶௜ଶ)   

… 

Model m: 𝑌ప
෡ = 𝑓௠(𝐶௜ଵ, 𝐶௜ଶ, … , 𝐶௜௠) 

where 𝐶௜௝ is the identified cluster for job i in layer j generated from the K-means algorithm and 𝑌௜ 

is the target value (e.g. 0 for good and 1 for defective) for job 𝑖. Note that not all layers are 

significant although they are considered in the classification models. For example, the 

classification models that significantly affect the outcome of 𝑌 are at layers 20, 50, and 900 (m=3) 

as follow: 

Model 1: 𝑌ప
෡ = 𝑓ଵ(𝐶௜ଵ, 𝐶௜ଶ … , 𝐶௜ଶ଴) 

Model 2: 𝑌ప
෡ = 𝑓ଶ(𝐶௜ଵ, 𝐶௜ଶ … , 𝐶௜ଶ଴, … , 𝐶௜ହ଴)   

Model 3: 𝑌ప
෡ = 𝑓ଶ(𝐶௜ଵ, 𝐶௜ଶ … , 𝐶௜ଶ଴, … , 𝐶௜ହ଴, … , 𝐶௜ଽ଴଴) 

Phase II – Process Monitoring 

When a new part is being printed, a K-means algorithm is used to assign each layer into 

clusters determined by the training data set. When the first significant layer (e.g. layer 20) is 

reached, the first classification model can then be used to predict the target value. If the prediction 

result is 0 (i.e. the good part), the process continues until it reaches the next significant layer (e.g. 

50). If the prediction result is 1 (i.e. the defective part), then the process engineers should adjust 

parameters for the rest of the process. For example, the operator may adjust the controllable 

parameters such as the laser power in the consequent layers to reduce the chance of printing the 

Prediction Models 

Prediction Models 

Equation 8 

Equation 9 
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defective part. This is a warning to the process engineers to adjust parameters to prevent the 

possible deficiency in the printed part. The same procedure applies to the rest of the layers until 

the printing process finishes. The proposed framework may also provide a blueprint for a close-

loop process control of SLM printing.   

MLCPM can be summarized as follow: 

Phase I: 

1. Data collection. The data generated by sensors from multiple printers for all printing 

parts in each printing layer are collected (Table 2).  

2. Clustering. The K-means is applied to the data collected in each printing layer (Table 

3). A K-means algorithm generates clustering for each layer of printing. The number 

of clusters is determined by the elbow method [59, 60]. 

3. Classification matrix generation. A matrix consist of the assigned cluster for each layer 

of printing along with the target value (Y) is formed for all printed parts (Table 4). This 

matrix is the input for building predictive models. 

4. Layer selection. RF is applied to the matrix generated in the previous step to find the 

most significant layers. Only the significant layers out of M layers will be used for 

further use. 

5. Building the classifiers. Based on the significant layers found in the previous step, 

multiple prediction models using RF are built.  

Phase II 

6. Clustering the new data layer by layer. The trained K-means is used to assign clusters 

for printing layer of a new job. 
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7. Process monitoring. The classifiers built in step 5 are used to predict the target value 

for the assigned clusters in step 6 when a significant layer identified in Phase I is 

reached. If the prediction result is a good part (𝑌 = 0), then the printing process 

continues, and a cluster is obtained for all layers up to the next significant layer. 

However, if the prediction result is a defective part (𝑌 = 1), then engineers should 

adjust the process parameters in subsequent layers to avoid the defective part. 

One of the advantages of MLPCM over current data driven process monitoring studies is 

multi-layer prediction. Built on multiple layer-based predictive models, MLCPM can predict the 

overall print quality in multiple stages. While the current data driven process monitoring 

techniques in AM, provide a single predictive model. Due to this limitation and high 

dimensionality of the problem, the applied feature selection techniques in current studies shrink 

the model by dropping good amount of data.  

MLCPM includes several contributions to the study of process monitoring in 3D metal 

printing. The clustering task in MLCPM reduces a high-dimension ML problem dramatically. For 

example, consider a printing process with 1000 of layers and 50 parameters. The MLCPM 

clustering task reduces the matrix of 1000 x 50 to 1000 x 1 (98% reduction). In addition, the 

significant layer selection further reduces the computation by not focusing on other layers. It 

should be noted that in current literature, since only one predictive model is built feature selection 

models drop a significant amount of data. However, MLCPM uses feature selection to select 

checkpoints on significant layers to make efficient numbers of predictive models. As data is 

precious, MLCPM does not ignore any printing data. MLCPM predicts the defects during a 

printing process while the current quality-monitoring practice has to wait until a printing job is 
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finished. Printing farm operators can benefit using proposed MLCPM to prevent printing defective 

parts or prevent unnecessary printing when printing adjustments are not feasible. 

The MLCPM framework, however, comes with a set of assumptions. First, we assume that 

samples are printed using identical printing machines in the farm. This assumption helps to 

populate the training set with patterns identified on as many as machines as available. Second, 

samples are using the same material and same design. Printing a single design means mass 

producing the same part. Third, MLCPM assumes that the data from the same parameters are 

collected from each printing machine. Fourth, the printing parameters can be controllable or pre-

defined. But there should be at least one controllable parameter to be used for adjustment purpose. 

Fifth, the initial value for controllable parameters are set based on the pre-knowledge of the 

process. Finally, MLCPM assumes that once the printing job is finished, the data is instantly 

available on the cloud to be analyzed. A numerical example using the simulated values is provided 

in the following subsection to illustrate the use of the proposed framework. 

 2.3.1. A Numerical Example 

In this section, a simulated case is used to demonstrate how the proposed MLCPM 

functions using the information gleaned from the literature [27, 57-59, 64]. The training data set 

contains n=1000 printed parts where 100 layers of printing are considered. The same procedure 

illustrated here can be extended for parts with much more layers. Four process parameters selected 

for demonstration are oxygen level, optical bank temperature, pump temperature, and laser power 

where the first three are non-controllable parameters but very crucial for print quality [27] while 

the last controllable parameter is used to adjust machines’ parameters during printing.  

Python 2.7 was used to code MLCPM. RF and the K-means embedded in Scikit-Learn [60] 

package are used to perform the classification and clustering tasks. A uniform random number 
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generator embedded in scipy package for python 2.7 [65] was used to generate simulated values 

for the first three parameters and random integer values [65] were assigned for laser power. The 

steps of the algorithm are implemented as follow: 

Step 1: Collect the data for all layers of printing (M=100) for 1000 printing jobs from 

identical printing machines. The training data can be collected from a smaller number of printing 

machine, however, a higher number of machines can potentially cover more patterns result in more 

accurate predictive models. Table 5 illustrates the data for the first printing layer for all 1000 

samples collected from multiple SLM printers.  

Table 5- Data collected from the first layer of printing 

Samples 
Parameters 

oxygen level optical bank temperature pump temperature laser power 

Sample 1 0.0153 996.62 4995.053 48 

Sample 2 0.0083 993.98 5002.389 42 

… … … … … 

Sample 1000 0.0792 994.72 4998.753 46 

 

Step 2: An elbow method is applied to the data of all 1000 samples/jobs from every printing 

layer to select the best number of clusters for each printing layer. After obtaining the number of 

clusters, a K-means algorithm is applied to each printing layer. The input to the K-means for each 

layer is the data collected for the specific layer (e.g. the first layer shown in Table 5) with the 

intended number of clusters (obtained by the elbow method). Figure 4 shows the elbow chart by 

applying the K-means algorithm to the first layer data in Table 3. Figure 5 shows that the selection 

of more than 2 clusters does not introduce that much distortion. Therefore, we chose two clusters 

for the first layer. Similarly, the numbers of clusters for the rest of the layers have been selected. 
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Figure 5- Elbow chart for the first layer of the print 

Step 3: A 1000 x 1001 matrix is generated with the first 100 columns representing layers 

and the last column hosting the target value (𝑌). The number of rows of the newly generated matrix 

is the number of samples (1000). Note that the first 100 columns of this matrix contain numbers 

representing their corresponding cluster members while the last column consists of numbers of 

either 0 or 1 representing printing quality. The newly generated matrix is as follow. 

൮

1 1 … 0
1 1 … 0
1 0 … 0
… … … …

൲ 

Step 4: A random forest algorithm is applied to the matrix generated in Step 3. Using the 

ranking tool provided in the random forest model, the layers can be sorted based on their 

significance value. In this example, 12 important layers are selected at the significance level at 

0.013. Using random forest importance function embedded in Scikit-Learn [60] package, the 

significance value of five first printing layers are shown in Table 6. 
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Table 6- Importance factor for printing layers from 10 to 14 

Layers … layer 10 layer 11 layer 12 layer 13 layer 14 … 

Significance … 0.0075 0.0349 0.0060 0.0345 0.0065 … 

 

A significance level is chosen based on the respected importance values for all layers. By 

sorting the importance values for all layers, significant layers can be easily distinguished. We are 

interested in having a handful of classifiers to be able to predict the faulty prints early. However, 

a higher number of classifiers means more computation and more false alarms. In addition, the 

limitation of computation time will prevent real-time monitoring from taking place. Thus, there is 

a tradeoff between time and accuracy in the selection of the best value of the significance level. 

Table 6 shows that between layers 10 and 14, layers 11 and 13 are the most significant layers while 

layers 10, 12, and 14 are not significant based on weights, which add to 1. In this case, users can 

choose a significance level or critical value of 0.013. Then layers 11, 13, 29, 31, 36, 40, 45, 48, 

52, 57, 89, and 97 can be selected as the most significant layers according to this criterion. 

Step 5: By using the results from step 3 and 4, 12 (m=12) classifiers are trained. The first 

classifier uses up to layer 11 and the second classifier uses layers up to 13 to predict the target 

value 𝑌, i.e. 𝑌 = 0 means good and 𝑌 = 1 means defect and the rest classifiers are based on the 

other significant layers detected in step 4. The classifiers were trained based on 90% of the data 

(900 samples). The rest of the 100 samples were used to validate the prediction result. Based on 

the testing sets, the first and the second classifiers obtained 75% and 79% of accuracy respectively. 

The same computation has been done for the rest of the classifiers. Once the classifiers are 

generated, we are ready for process monitoring. The classification models then are as follow: 
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Model 1: 𝑌ప
෡ = 𝑓ଵ(𝐶௜ଵ, 𝐶௜ଶ … , 𝐶௜ଵଵ) 

Model 2: 𝑌ప
෡ = 𝑓ଶ(𝐶௜ଵ, 𝐶௜ଶ … , 𝐶௜ଵଷ)  Equation 10  

… 

Model 12: 𝑌ప
෡ = 𝑓ଵଶ(𝐶௜ଵ, 𝐶௜ଶ … , 𝐶௜ଽ଻) 

Phase II: 

Step 6: A new printing job is proceeding. For example, job number 1001 is forwarded to 

one of the printing machines and process monitoring is underway to predict the printing quality 

(i.e. target value) during the printing process. Once the data from up to the first significant layer 

of printing (layer 11) is realized, the K-means algorithm in Step 2 would generate a cluster for 

layers 1 to 11. Suppose the first layer contains the printing data for the job 1001 as (oxygen level, 

optical bank temperature, pump temperature, and laser power) = (0.104, 999.48, 4999.56, 50), the 

assigned cluster is zero. Similarly, the K-means assigns the proper cluster to layers 2 to 11. 

Step 7: Using the first classifier (Model 1) built in Step 5, a prediction on printing quality 

can be obtained. If the result is that the printing quality is good (i.e. 𝑌 = 0), the printing process 

continues to print. Otherwise, engineers are asked to adjust the controllable parameter (laser 

power) in the next layers to prevent the production of a defective part. In this example, the 

prediction of the print quality by the first classifier is good i.e. 𝑌 = 0. Therefore, we move to the 

next significant layer for quality prediction. The second classifier imports clusters up to layer 13 

and predicts the print quality as 𝑌 = 0. This shows that the process is controlled, and no adjustment 

is necessary. The same procedure continues to up the last significant layer.  

Building and training the classification and clustering model contribute to phase I of the 

process monitoring technique. The trained models are capable of detecting the defects and prevent 

them by warning operators to adjust the parameters in the rest of the process. Then, phase II is the 

Prediction 
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deployment of the trained models on the new coming data where the target value is unknown. This 

step performs the tasks that are defined in phase II of the process monitoring technique. However, 

MLCPM inherits the same features as data-driven approaches where they need as many samples 

as possible to achieve good accuracy [17, 38, 40, 44, 45]. In today's industries, AM techniques are 

used generally to produce prototypes or very complex parts in which the number of productions is 

not large. Therefore, the number of samples to train a model may not be adequate. However, having 

a 3D printing farm with many printers producing the same part can potentially generate many 

samples, which may enable the use of ML techniques to be effective. 

MLCPM is capable of analyzing the printing process at significant layers. It benefits from 

several ML techniques to control the printing process. The number of layers of a printing part 

depends on layer thickness. It may start with 50 layers to thousands of layers. Therefore, an 

automated process monitoring method such as MLCPM may provide a plausible way for close-

loop feedback process control.  

 2.3.2. Validation Based on Simulated Cases 

The simulated dataset includes 276 defective parts (𝑌 = 1) and 724 good parts (𝑌 = 0). 

The models were trained using 90% randomly chosen of the total dataset. Therefore, 100 samples 

were used for testing purpose. The first predictive trained model (model 1) acquired 75% accuracy 

using a randomly selected dataset contains 26 and 74 defective and good parts respectively. 

However, the confusion matrix shows that model 1 has misclassified 25 parts where 15 parts are 

misclassified as good where they were defective parts (i.e. false positive or FP) and 10 parts are 

misclassified as defective where they were good parts (i.e. false negative or FN). The second model 

is improved since it benefits from more layers. The random selection of testing dataset is repeated 

for model 2 where it includes 26 and 74 defective and good parts respectively. Model 2 acquired 
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79% accuracy while it misclassified 21 parts including 16 FPs and 5 FNs. The statistics for the rest 

of the models can be acquired in the same way. 

 2.4. CONCLUSION 

The laser melting processes such as SLM are very complex. This complexity makes 

process monitoring and printing reliability very challenging. There may be more than 50 

parameters impacting the printing quality in the SLM process. The correlation of these parameters 

is still unknown and is ignored in the current state of the art.  The proposed framework illustrates 

a plausible approach that melt-pool parameters along with other parameters may provide a way to 

adjust the printing process during the melting process for defect reduction. Therefore, feedback 

control systems for the metal printing process is achievable if the prediction models are highly 

accurate. The proposed framework trains various ML models based on the data accumulated from 

multiple printing machines. Theoretically, prediction accuracy is greatly enhanced with large 

enough data sets that include most if not all defective cases.   

We propose a MLCPM framework based on ML techniques to monitor the printing 

process. ML techniques such as classification can effectively help the AM industry to build 

predictive models and control the process using multiple process variables. In addition, ML 

techniques such as feature selection methods could reduce the amount of data drastically. Data 

reduction helps reduce the amount of time needed to process the data and provides a possibility to 

monitor the printing process in real time. The proposed framework techniques should foster efforts 

towards the ultimate goal of 100% yield [66]. 

For future research, the proposed MLCPM framework should be validated through real 

datasets from various printing parts. The proposed framework has been tested on simulation data 

only. We plan to compare its performance against the current process monitoring technologies in 
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terms of a number of defective parts and model accuracy rates. Since a good training phase is the 

main part of making any predictive model more accurate, we are seeking more effective ways to 

improve training. In the current state of the art of process monitoring, a training set often remains 

fixed. However, we believe that the training set must be updated periodically to enable MLCPM 

to cover the new possible patterns during the printing process. It is still an open-ended research 

question of how the proposed classification and prediction models are updated and how frequent 

they should be updated.  

The proposed MLCPM framework warns printing operators about possible defective part 

production before finishing the process. Therefore, they have time to adjust the parameters to avoid 

the production of defective parts. In the future, we will explore possible approaches toward making 

adjustment process automatically. The layer-based nature of the proposed MLCPM may enable 

the feedback control algorithms possible by collecting big data on controllable parameters during 

all printing processes.  

In manufacturing, training sets generally do not contain many bad samples (defective 

parts). Therefore, the accuracy of the classifier may suffer due to the omission of adequate bad 

samples in a training data set. To populate the training set with more defective samples, the method 

called artificial contrast data may be used to further improve the proposed models. The concept of 

artificial contrast data was first proposed by Tuv and Runger [13]. The idea enables classification 

techniques as a possible tool for process monitoring. In a nutshell, it simulates out-of-control cases 

to expose any ML model to patterns of OC sample observations. To make the artificial data, Tuv 

and Runger [13] used a uniform random number generator. The random numbers were generated 

based on the range of out of control points. The contrast data generation was repeated for each 
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parameter independently. It is not clear how the use of artificial contrast can help improve the 

proposed MLCPM. Future studies are in order. 

In addition, the challenges and solutions provided in this study have a common major 

element that is the data. The data is the input into the analysis systems and predictive models. 

Recently, many important decisions are data-driven, which makes data quality (DQ) at the center 

of trustworthiness for an organization’s business intelligence [67]. With the large amount and wide 

varieties of data generated by sensors from machines daily at high speed, engineers have always 

assumed that data quality is perfect without proper verification [68]. When this assumption is no 

longer valid, one of the approaches to tackle the uncertainty of the data is simulating multiple 

scenarios. Simulation helps to consider the unseen scenarios into the analysis. This is very crucial 

since ML techniques use sample data to make predictive models. If a pattern generated from 

uncertainty is not covered in the training set, the model is not able to fully cover possible patterns 

and therefore, the accuracy drops. Thus, the quality of the data must be verified and assessed. 

MLCPM can benefit from studies with the consideration of data quality assessment such as that in 

[67] to guard against data uncertainty. 
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Chapter 3 - A Data-Driven Monitoring Model for High Dimensional 

Semiconductor Manufacturing Systems 

 3.1. Introduction 

This chapter aims to study a system-wide process monitoring system based on predictive 

models. The proposed platform intends to monitor the manufacturing process and trigger necessary 

alarms while any process is heading into a detrimental quality outcome. The proposed framework 

is capable of process monitoring for high dimension multistage systems. The proposed system can 

be applied to various multi-stage systems such as assembly lines and layer-by-layer additive 

manufacturing [32]. The proposed model is an extension of our previously published work 

(MLCPM) for additive manufacturing in that each layer of print is considered as a production 

stage. Specifically, MLCPM provides a multi-layer predictive model process monitoring tool for 

the metal 3D print industry. MLCPM benefits from several supervised and unsupervised machine 

learning methods to tackle the prediction and high dimensionality problems. MLCPM is the base 

of this work. The proposed framework includes multiple stage-wise, predictive models that 

incorporate process parameters in a semiconductor production system. Since the dimension of this 

kind of process parameters is enormous, several data reduction techniques are applied to make the 

problem less complex to save the time of computation. For example, the SECOM dataset used as 

the case study in this study includes around 600 parameters. Hence, some techniques are necessary 

to reduce computation costs and avoid overfitting.  

Also, any machine learning model including the proposed ones requires updated training 

data for prediction accuracy. Moreover, the unbalanced nature of the process monitoring problem, 

that is more IC observations available than OC ones may cause too many false alarms (i.e., type I 

errors) or miss out defective prone processes (i.e., type II errors). Hence, we have investigated 
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ways to mitigate this issue and explored multiple machine learning techniques to implement the 

proposed system. The ensemble of machine learning modeling and computations were 

implemented by python 2.7 using Scikit-Learn [60] package. 

 3.2. Building Predictive Models to Detect Faults 

This section provides the initial steps toward building the intelligent stage-wise process 

monitoring in high dimensional multistage systems. Predictive models have been widely used in 

the industry. Especially in the field of process monitoring, many researchers have proposed the 

use of predictive models to classify product quality. Most of the studies have considered product 

quality as either good or defective (binary classification). The predictive models are generally 

classifiers based on supervised models such as Bayesian network, random forest [19], and support 

vector machine (SVM) [69] where a set of training data (includes both good and defective classes) 

are given to train a classifier. Then, the classifier can be used to classify a new observation into 

either the good or defective category. In general, assuming a problem with 𝑛 samples and 𝑚 

parameters, a classification model can be modeled as: 

𝑌 =  𝑓(𝑥) 𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑌) = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௠, 𝑌௜),    𝑖 = 1, … , 𝑛   Equation 11 

where 𝑌 is the class set of data (target value of a quality characteristic) and 𝑥 is the feature set 

(AKA process parameter or variable).  

In a manufacturing process, 𝑥 represents the setting of a process parameter such as 

temperature and 𝑌 is the quality state class (which could be 0 as good or 1 as defective). In some 

cases, the quality state can be more than two classes. In that situation, decision tree-based 

classifiers can work without modification. However, classifiers such as SVM need to be modified 

for multilabel classification. Two commonly used methods include one-vs-rest and one-vs-one. 

Assuming 𝑁 different classes, the one-vs-rest method trains one binary model for each class where 
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classes are based on one class versus the rest (seen as a single class). In other words, for 𝑗 ∈

{1, … , 𝑁},  single classifier will be trained where the class of 𝑗 will be seen as positive and the rest 

as negative. In this approach, a total of 𝑁 classifiers are trained for all classes. On the other hand, 

the one-vs-one approach makes a binary classifier for each pair of classes. Therefore, total 𝑁(𝑁 −

1)/2 classifiers need to be trained. Either method has its own advantage and disadvantage. One-

vs-one is computationally expensive but does not cause imbalance problems where one-vs-rest 

method encounter imbalance problem and hence, cannot be solved with general classifiers such as 

generic SVM. The quality parameter in this study is a binary variable and hence, we do not face a 

multilabel classification problem.  

Process parameters could be either numerical or categorical. In a multistage system, the 

result of each stage is the input to the next stage in the system. Hence, each stage contributes to 

the final quality state. Depending on the applications, production time varies from seconds to days 

or even weeks. Hence, predicting the faulty process before the last step can save plenty of time 

and avoid costs. The first step to build predictive models is data collection of production 

parameters affecting the final quality state in all stages. Assuming a manufacturing process with 𝑘 

process parameters scattered in various production stages, a training data set that contains n 

produced products can be listed in Table 7.  

Table 7- A Training Dataset 

Part 
Production Parameters 

Target Value 
Parameter 1 Parameter 2 … Parameter k 

Part 1 𝑥ଵଵ 𝑥ଵଶ … 𝑥ଵ௞ 𝑌ଵ 

Part 2 𝑥ଶଵ 𝑥ଶଵ … 𝑥ଶ௞ 𝑌ଶ 

… … … … … … 

Part n 𝑥௡ଵ 𝑥௡ଶ … 𝑥௡௞ 𝑌௡ 
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where 𝑥௜௝ is the measured value of the 𝑗௧௛process parameter for part 𝑖 and 𝑌௜ is the quality 

characteristic for part 𝑖. Using the training data as Table 7, we propose to establish an ensemble 

predictive platform based on 𝑘 predictive models as follow: 

Model 1: 𝑌 =  𝑓ଵ(𝑥) where (𝑥, 𝑌) = (𝑥௜ଵ, 𝑌௜) 

Model 2: 𝑌 =  𝑓ଶ(𝑥)  where (𝑥, 𝑌) = (𝑥௜ଵ, 𝑥௜ଶ, 𝑌௜) 

… 

Model k: 𝑌 =  𝑓௞(𝑥) where (𝑥, 𝑌) = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑌௜) 

The proposed platform enables online process monitoring during the production process 

where the data up to each point, can be used in the set of models to predict the final quality state. 

Therefore, 𝑘 different assessments on the final quality state are performed to ensure the quality 

process.  

Several classification models are promising candidates for the function f(x) in equation 

(12). Based on [70], K-Nearest Neighbors (KNN), Naïve Bayes (NB), Neural Network (NN), 

Decision Tree (DT), and SVM are effective classifiers for anomaly detection problems. Also, 

Logistic Regression (LR) and Random Forest (RF) are among the list of classifiers. In unbalance 

classification problems, accuracy is not the best evaluation measurement where specificity, 

sensitivity, and area under the curve (AUC) are more effective. Hence, we propose to compare the 

classifiers based on the specificity, sensitivity, and AUC evaluation. The specificity and sensitivity 

equations are as follow: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
்௥௨௘ ே௘௚௔௧௜௩௘

்௥௨௘ ே௘௚௔௧௜௩௘ାி௔௟௦௘ ௉௢௦௜௧௜௩௘
       Equation 13 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
்௥௨௘ ௉௢௦௜௧௜௩௘

்௥௨௘ ௉௢௦௜௧௜௩௘ାி௔  ே௘௚௔௧௜௩௘
       Equation 14 

Predictive Models Equation 12 
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where true negative refers to the correctly classified good parts, true positive refers to correctly 

classified bad parts, false negative (type II error) refers to the parts that are truly bad while the 

model has misclassified them as good, and the false positive (type I error) refers to the parts that 

are truly good, however, the model has mistakenly classified them as bad. These measurements 

are usually placed in a confusion matrix for the evaluation of any classifier. For more details about 

the confusion matrix, the reader can refer to [71]. AUC calculates the area under the Receiver 

Operating Characteristic (ROC) curve, which is a figure resulted by plotting true positive rate 

(TPR) and false positive rate (FPR) of classifiers where TPR is equal to sensitivity and FPR = 1 −

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. Higher the AUC score, the better the quality of prediction.  

 3.3. Tackle Dimensionality Problem 

The proposed system can detect faulty products while the product is still in a production 

process but may generate many false alarms and disrupt normal production operation. This issue 

is more pronounced in a high dimensional problem because a huge number of parameters (𝑘) are 

included. Hence, we propose the use of dimension reduction techniques to reduce the time and 

computation. The complexity reduction can be applied in two different stages.  

 3.3.1. Stage Clustering 

We assume that the production process in a stage follows certain patterns. Therefore, 

instead of feeding the original raw data for modeling, clustering methods are proposed to identify 

these patterns. Model building time will be greatly reduced when the dimension reduction is 

accomplished. Toward this goal, the data from each stage should be gleaned from Table 7. Note 

that curating data into the format shown in Table 7 is nontrivial because process parameter data 

comes in different timestamp at different stages. Most experts agree that data wrangling usually 

takes about 80% of a data analytics project [72]. 
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Assuming 𝑝 parameters in stage 𝑗, Table 8 illustrates the production data for stage 𝑗 where 

Xijk represents the collected data for part i and parameter k in stage j. 

Table 8- Data collected for stage 𝒋 

Part 
Production Parameters in stage 𝑗 

Parameter 1 Parameter 2 … Parameter 𝑝 

Part 1 X1j1 X1j2 … X1jp 

Part 2 X2j1 X2j2 … X2jp 

… … … … … 

Part n Xnj1 Xnj2 … Xnjp 

 

To perform the clustering analysis we propose to use the K-means algorithm in Scikit-

Learn [58] package available for Python 2.7. K-means is the widest clustering method that has 

been used in many applications. After applying the K-means in Table 8, a cluster will be assigned 

for each part’s data in a stage. It should be noted that the K-means ++ method embedded in Scikit-

Learn, and Euclidean method are chosen as initial centroid and distance method for K-means. 

Since the K-means algorithm needs the knowledge of the number of clusters, “elbow method” [61, 

62] is used to determine an efficient number of clusters. The elbow method uses the distortion 

within clusters to determine the efficient number of clusters. The elbow method is a graphical tool 

to detect an efficient number of clusters.  

Most stages may have many possible production setting combinations. However, we 

assume that there are only small limited numbers of combinations that are used in production. 

The K-means algorithm used first assigns each processed part in a given stage to a cluster 

based on Equation 15. Then it is repeated for all parts and all stages to form the matrix illustrated 

in Table 9. The outcome of this step is that each part has one identified cluster for each stage.  
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𝐶௜௝ = 𝑔(𝑋௜௝௞), 𝐶௜௝ ∈ ቄ𝐶ଵ௝, 𝐶ଶ௝ , … , 𝐶௟ೕ௝ቅ                       Equation 15 

where g is the clustering function, 𝑋௜௝௞ is the measurement of parameter 𝑘 for part 𝑖 in stage 𝑗, Cij 

is the assigned cluster for part i within stage 𝑗 and lj is the number of clusters for stage 𝑗 obtained 

by the elbow method.  

Table 9- Classification matrix 

Part (i) 
Production Stage (𝑗) 

Target value (𝑌) 
Stage 1 Stage 2 … Stage 𝑀 

Part 1 C11 C12 … C1M 𝑌ଵ 

Part 2 C21 C22 … C2M 𝑌ଶ 

… … … … … … 

Part n Cn1 Cn2 … CnM 𝑌௡ 

 

Assuming total 𝑀 production stages in Table 9, Yi is the product quality characteristic for 

part i as it can be simply defined as 0 (for good) and 1 (for defective) part. Table 9 is then used as 

the training and testing set for predictive models (Equation 12). Hence, the total number of required 

predictive models drops from 𝐾 to only 𝑀 models. This step reduces computation time as the 

manufacturing processes usually include many processes parameters (𝐾) while the number of 

stages (𝑀) are limited.  

Clustering reduces the parameters per stage into a limited number of classes (i.e. the 

assigned cluster). The training set then is used to perform the clustering model. After training, the 

trained clustering model will assign an appropriate cluster to each new data. This process has a 

huge impact on complexity reduction. Then, instead of using a large number of process parameters, 

the assigned clusters can be used in the predictive models of Equation 12. However, the stages that 

have only one process parameter may not need to go through the clustering process. 
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 3.3.2. Stage Selection 

In multistage systems, not all the stages have the same impact on the final quality 

characteristic. Accordingly, we propose the use of a few selected highly important stages for 

building predictive models. Feature selection techniques can be applied to achieve this purpose. 

For example, RF provides the feature importance values in the predictive models. Then, a cut off 

number can be chosen to select only the most important stages. However, several different methods 

such as BN, LR, and KNN can also be applied and compared to the RF algorithm. In this study, 

we apply several classification models on all stages and then, using the best classification model 

in terms of AUC for the stage selection process (feature selection).  

This step will reduce the number of predictive models when limited or the most important 

models are selected. For example, in a production process containing 100 stages, RF can sort the 

importance of the stages regarding the product quality. Then, the limited number of those stages 

(for example, stage 20, stage 50, and stage 90) can be chosen to predict the product quality. Then, 

three predictive models will be generated where the first predictive model includes stages up to 20 

but with stage 20 as the most important stage. The second predictive model includes stages up to 

50 but with the most significant stages 20 and 50. The last predictive model includes the most 

significant stages up to 90 but with the most significant stages 20, 50, and 90. In general, assuming 

𝑚 significant stages in a production system with a total of 𝑀 stages, 𝑚 predictive models can be 

built as follow: 

 

Model 1: 𝑌ప
෡ = 𝑓ଵ(𝐶௜ଵ) 

Model 2: 𝑌ప
෡ = 𝑓ଶ(𝐶௜ଵ, 𝐶௜ଶ)           Equation 16 

… 

Model m: 𝑌ప
෡ = 𝑓௠(𝐶௜ଵ, 𝐶௜ଶ, … , 𝐶௜௠) 

Predictive Models 
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where Cij is the predicted cluster for part 𝑖 in stage 𝑗 and 𝑌ప
෡ is the predicted quality for part 𝑖. Two 

proposed complexity reduction techniques will reduce the time and effort of performing the 

proposed process monitoring framework. 

 3.4. Training Update Process and Imbalance Classes 

As stated in Chapter 1, the update process and Imbalanced classes are the two main 

challenges for the proposed framework. To address the update process, we propose to use the AUC 

score as a threshold scale. Once the predictive models are trained, new datasets in the deployment 

process can be evaluated. Then, this new dataset can be appended to the training set. So, the new 

training set grows as the new datasets join. Generally, more data improves the accuracy of data-

driven approaches. However, the established models are based on the previous training sets and 

they need to be evaluated using the updated dataset. Since the AUC score can identify the 

misclassifications, a threshold should be set to trigger a warning when the AUC score goes below 

the threshold. At this point, clustering and prediction models should be trained again using the new 

training set. These updated models will reduce the chance of misclassification. However, while 

the models are under training, the process monitoring can still take place using the old models. As 

the training set grows, the training time will increase. But the model performance is expected to 

improve. A balance must be struck for how often to repeat the clustering and training process. The 

pseudo code for the training update procedure can be seen as follow: 
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Specify the training_evaluation time and the threshold 

Trigger training procedures. 

Deploy the trained models on new coming samples. 

Evaluate the new sample and add it to a separate dataset called temp_training. 

Update the current time. 

If time= training_evaluation time, then 

Deploy the trained models on the temp_training and obtain AUC. 

If AUC>= threshold then  

  continue 

Else 

add temp_training to the training set, trigger the training procedures using 

the new training set  

To address the imbalance classes, two general approaches considered include 

oversampling and undersampling. As the names suggest, the undersampling method aims to 

balance the classes by trimming the data in the majority group while the oversampling method 

aims to increase the numbers of samples in a minority group. In this study, a random 

undersampling method has been used as the under-sampling approach. In this approach, all data 

points from the minority group plus randomly selected points from the majority group have been 

considered for the training set. The number of selected data points from the majority group is equal 

to the total number of samples in the minority group. For oversampling approach, SMOTE [31] 

(Synthetic Minority Over-sampling Technique) has been selected. SMOTE does not simply 

randomly copy from the available points in the minority group, but also it creates synthetic 

minority class examples. The algorithm selects similar samples from the minority group (using 
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distance methods) and creates an instance using interpolation of the selected points. In this study, 

SMOTE method is the one used in Scikit-Learn [60] package for Python 2.7. These techniques 

will be applied to the SECOM [1] dataset in the numerical example section.   

 3.5. Model Deployment (Process Monitoring) 

Once the clusters and predictive models are generated, new production data can be 

evaluated by the trained models. First, K-means is applied to data in each stage to create clusters. 

Then, when the first significant stage is reached, the first predictive model (Equation 16) will 

predict the initial result. This prediction provides the likelihood of the quality outcome while the 

semi-finished product is still in the manufacturing process. If the result is a success, the process 

continues up to the next significant stage where the second predictive model can be applied to 

predict the quality. Otherwise, engineers have enough time to change the process parameters so 

that this semi-finish part may have a better chance to be good. The same procedure is repeated 

until all of the crucial stages are reached.  

The main difference between the proposed model and the other studies is that the proposed 

model provides an evaluation of the product while the product is still in the production process. 

The other machine learning methods reviewed in the literature all wait until the very end to 

generate a prediction. Generally, at the end production stage, product quality has been determined 

and there is no chance to go back and adjust process parameters to improve product quality. Details 

of the proposed method will be shown in a numerical example in the next section. 

 3.6. A Numerical Example 

The proposed model is applied to SECOM dataset – a semiconductor manufacturing 

dataset extracted from the UCI repository lab [1]. Each row of the dataset contains production 

parameters and the final quality stage. SECOM consists of 1567 examples each with 591 features 
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and a label containing the classification of the quality characteristic. The classifications reported 

as +1 stands for a defective part while -1 is for a good part. In all, 104 parts were identified as 

defectives (+1) and 1463 parts were failed (-1). It is clear that this data set is very unbalanced in 

term of the classes presented. 

 3.6.1. Data Preprocessing 

Among 591 features, 116 of them are fixed (meaning its row value does not change) and 

therefore do not contribute any information toward this classification problem. Hence, they were 

dropped from this study. According to [73], each data point is generated by a manufacturing sensor.  

Data columns representing process parameters can be divided into five groups each representing a 

manufacturing workstation [28]. In addition, there are missing data reflected as empty cells in the 

data set. In this study, all empty cells were filled with the most frequently occurred number within 

each feature.  

The first step is to divide all columns of data based on five production stages as stated in 

[28].  Table 10 demonstrates the process parameter data within all stages. For example, the first 

stage contains parameter readings from parameter 1 to parameter 107. After splitting the data, K-

means can be applied to assign clusters to parts within each stage.  

Table 10- SECOM dataset 

Part 
Stage 1 … Stage 5 

Parameter 
1 

Parameter 
2  

… 
Parameter 

107 
… Parameter 

493 
Parameter 

494 
… Parameter 

590 

Part 1 3030.93 2564.00 … 0 … 10.0167 2.9570 … 0 

Part 2 3095.78 2465.14 … 0 … 10.0167 3.2029 … 208.2045 

… … … … … … … … … … 

Part 
1567 

2944.92 2450.76 … 0.0009 
… 10.0167 2.7756 … 137.7844 
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 3.6.2. Clustering 

Before applying K-means, the efficient number of clusters for each stage data should be 

identified. According to the elbow method, 4,3,3,4, and 4 are the most efficient number of clusters 

for stages 1 to 5, respectively. For example, according to elbow chart in Figure 6, stage 5 can be 

divided into 4 clusters. 

 

Figure 6- Elbow method for stage 5 

After identifying the clusters, K-means can be applied on stages data to assign a cluster to 

each part within a stage. Then using identified clusters, a classification matrix can be formed as 

shown in Table 11 based on the SECOM dataset.  

Table 11- Classification matrix 

Part 
Production Stage 

Target value (𝑌) 
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Part 1 0 0 2 1 3 -1 

Part 2 4 3 0 1 3 +1 

… … … … … … … 

Part 1567 1 0 0 3 4 -1 
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 3.6.3. Classification 

Table 11 is a sample of the input array into classification models. The classification type 

of this problem is binary and, hence, a handful number of classification models can be applied. 

We have applied KNN, NB, NN, DT, LR, RF, and SVM on the classification matrix. Figure 7 

shows the evaluation of these models on the classification matrix from Table 11. Evaluation of 

models is based on accuracy, sensitivity, specificity, and AUC scores. The classifiers were trained 

on 70% of the data while 30% has been reserved for validation. It is noted that the training and 

testing sets were randomly selected.  

 

Figure 7- Evaluation of classifiers  

93.21

93.42

45.65

93.42

20.81

69

61.35

99.77

100

45.45

100

16.14

71.36

62.72

46.93

52.12

47.06

60.88

51.62

47.93

48.92

0

0

48.39

0

87.1

35.48

41.93

0 10 20 30 40 50 60 70 80 90 100

NN

NB

LR

KNN

SVM

RF

DT

Evaluation of classifiers on classification matrix

Specificity AUC Sensitivity Accuracy



 

57 

Due to the imbalanced nature of the dataset, a balanced classification is required in all 

classifiers except for NN, KNN, and NB since these classifiers do not adjust weights based on a 

number of classes.  In each set of evaluation (i.e. on original data, with undersampling, and with 

oversampling) the classifiers have been tuned to perform the best in terms of the AUC score. The 

tuning has been performed by H2O autoML platform [74].  

Among all classifiers listed in Figure 7, RF, and DT perform the best in terms of overall 

evaluation scores. Although KNN, NN, and NB perform better in terms of accuracy, however, they 

have misclassified all the bad parts (zero specificity). In the imbalanced sampling problem, AUC, 

specificity, and sensitivity are better tools to evaluate a model than accuracy.  

The next step is to tackle the imbalance problem of the dataset. As discussed before, two 

general approaches are oversampling and undersampling [31]. To solve the imbalance 

classification, we applied techniques using imblearn package [75] available for both python 

versions 2 and 3. It should be noted that in all of the discussed classification models, oversampling 

and undersampling methods were applied to the training set (70% of the data) but not on the testing 

set (30%).  

Undersampling was applied by imblearn [75] set where data was bootstrapped from the 

majority class with the same size of the minority class. Using this technique, Figure 8 was 

generated by the evaluation of models with the newly trained model (trained with the 

undersampling method). Figure 8 shows clearly that undersampling method improves the training 

of the classifiers in terms of specificity and sensitivity scores. However, the accuracies of the 

models were dropped dramatically. For example, the NN had the accuracy of 93.21 before under 

sampling but the new rate is only 50.11. This phenomenon is due to the fact that by adjusting the 

samples, accuracy reflects a more realistic number than before.  
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Figure 8- Evaluation of classifiers after applying the undersampling method 

Next oversampling was applied to the original data using SMOTE [31] embedded in 

imblearn [75]. Training the classifiers with the oversampled dataset, Figure 9 was generated using 

the new training set.  
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Figure 9- Evaluation of classifiers after applying the oversampling method 

Like undersampling, the oversampling method by SMOTE [31] improves the training of 

the classifiers in term of specificity and sensitivity. But unlike undersampling, the accuracy values 

did not drop too much from the original analysis. As shown in Figure 9, we concluded that RF 

performs the best in terms of the overall consideration of accuracy, specificity, sensitivity, and 

AUC metrics. Therefore, oversampling by SMOTE has been selected as the imbalanced approach. 

Table 12 summarizes all different combinations.  
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Table 12- Evaluation of all models 

Model Original Data Undersampling Oversampling 

Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC 

DT 61.35 62.72 41.93 48.92 55.41 55.68 51.61 49.38 63.06 64.32 45.16 47.9 

RF 69 71.36 35.48 47.93 47.56 46.6 61.29 51.47 63.06 64.1 67.71 60.82 

SVM 20.81 16.14 87.1 51.62 55.84 56.36 48.39 52.37 35.88 33.41 70.97 52.19 

KNN 93.42 100 0 60.88 73.88 77.05 29.03 51.96 74.95 78.86 19.35 51 

LR 45.65 45.45 48.39 47.06 50.53 50.45 51.61 50.88 55.41 56.6 38.71 49.61 

NB 93.42 100 0 52.12 41.82 40 67.74 52.95 33.54 30.45 77.42 51.18 

NN 93.21 99.77 0 46.93 50.11 50 51.61 47 63.27 64.55 45.16 49.03 
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After establishing the main predictive model, the next step is to select the most important 

stages to reduce the number of predictive models. RF has an inherent feature property that can 

weigh the features based on the amount of information they provide toward detecting the patterns 

of classes. Table 13 shows the importance of stages in the selected classifier.  

Table 13- Importance factor for production stages 

Stages Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Importance 0.1101 0.3580 0.108 0.1305 0.2934 

 

A significance level of 0.25 is chosen based on the respected importance values for all 

stages in Table 13. Then, stages 2 and 5 are selected as the most important stages toward predicting 

the final quality. The stage selection helps to reduce the number of predictive models. This feature 

selection stage may be trivial in this example. However, it would be significant for the other 

applications such as 3D prints where thousands of layers are required to finish a product. In 

addition, more predictive models will provide more chance to catch the faulty process. On the 

other hand, it may also increase false alarm or false negative rates and time computation. 

Therefore, there is a tradeoff between these considerations. In this example, two classifiers can be 

built as shown in Equation (17).  

Model 1: 𝑌ప
෡ = 𝑓ଵ(𝐶௜ଵ, 𝐶௜ଶ) 

Model 2: 𝑌ప
෡ = 𝑓ଶ(𝐶௜ଵ, 𝐶௜ଶ, … , 𝐶௜ହ)   Equation 17 

The first model includes data from the first two stages where the second model includes all 

production stages data. Model 2 was trained previously by applying RF using SMOTE method on 

70% of the data while 30% was reserved for validation. The same procedure was done for model 

1 while only two stages were considered. Figure 10 shows the metrics for both models.  

Predictive Models 
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Figure 10- Evaluation of stage-based predictive models-based predictive models 

After establishing the predictive models, process monitoring phase or Phase II of SPC can 

be initiated. Specifically, a new part proceeds to the production line. When this new product 

reaches stages 1 and 2, the K-means models associated with each stage will assign an appropriate 

cluster to each. Then, the first predictive model would provide a prediction on the final quality 

state (-1 for a good and +1 for a defective product). If the prediction results as good (-1) then the 

process continues up to the last stage to provide a prediction using model 2. Otherwise, process 

engineers have plenty of time to control the process to prevent producing a faulty product by 

examining historical data of those parts having the same pattern as this new part in the first two 

stages but still ending to be good part at the end of stage 5. Process engineers can then use the 

machine settings in stages 3, 4, and 5 of the good parts for this new part.  
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Chapter 4 - Conclusions and Future Research 

 4.1. Summary 

Multistage systems are a major part of the general production of goods and service. Today’s 

manufacturing processes are much more complex. Sensors embedded throughout multiple stages 

of the production processes generate a huge amount of data in high dimensions. Traditional quality 

engineering methods cannot be implemented effectively in this modern-day production 

environment. Most process parameters are often not used for decision making. Control charting is 

usually implemented independently throughout the production stages. A recent development in 

machine learning methods may provide solution strategies. Although various existing 

classification-based process monitoring techniques have been implemented for multi-stage 

processes, these methods either focus on quality characteristics on the project or just provide 

quality predictions at the end of the manufacturing process and offer no chance to fix potential 

problems during production. Also, the literature to date is largely silent on comprehensive models 

addressing issues related to high dimensions, new unseen fault behaviors, and unbalanced nature 

of training data set.  

This research proposes a process monitoring framework for high-dimensional, multistage 

processes. The proposed framework offers an opportunity to provide a prognosis of product quality 

and mitigation strategies before the production of a product is finished. Hence, in a costly 

production system unlike the state of the art studies that do not provide real control over the 

manufacturing process, the proposed framework can save time, effort, and cost by warning about 

the defective procedure while the part is still in production.  

The proposed framework has been successfully applied in the additive manufacturing 

industry and semiconductor manufacturing industry.  
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To address the high dimensionality challenge, the proposed framework benefits from two 

complexity-reduction steps as clustering and stage selection (feature selection). In the clustering 

step, we reduced the within stage parameters into a limited number of production recipes 

representing the behavior of the manufacturing in that stage. The stage selection step further selects 

the highly impactful stages affecting the final quality. The proposed complexity reduction 

techniques successfully reduced the computation of the proposed framework applied to two 

datasets with a dimension of 400 and 600 variables in the additive manufacturing and 

semiconductor manufacturing, respectively.  

As discussed, updating the training set is one of the challenges in classification-based 

process monitoring techniques. The current practices in process monitoring only required an IC 

dataset as the reference data (training set) while the training of machine learning models requires 

both the IC data set as well as the data sets with different OC patterns of data.  Due to the 

unbalanced nature of the manufacturing datasets, we proposed to use an AUC metric in order to 

monitor the updating process of the training set. A threshold is proposed to set to trigger the alarm 

to update the training set. Once the AUC metric results below the threshold, the training set should 

be updated with the newly identified samples.  

Rare OC points is another challenge for the classification-based monitoring models. In 

manufacturing datasets, there is a lack of OC conditions where the product quality is usually at a 

satisfactory level. Hence, the historical data is full of healthy condition data while OC data consists 

of a very small fraction of the entire database. Unbalance data sets lead to poor classification 

accuracy. Hence, we conducted a comparative study using two different oversampling and 

undersampling methods using the SECOM dataset. The comparative study shows that the 

oversampling method results in better evaluation metrics than the undersampling method. The 
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limited number of available data to train the model can be the reason for better oversampling 

results.  

The effectiveness of the proposed process monitoring framework has been shown by the 

evaluation of the results in two different case studies. In both cases, the proposed framework 

successfully warns about prone failure in the system while the manufacturing process is not 

finished. Then, process engineers have the opportunity to alter process parameters in order to save 

the identified part.  

A recent development in Industry 4.0 [7] and the Internet of things (IoT) [29] have enabled 

the environment in which the proposed framework may become a reality. We expect this research 

to have a significant impact on product or service quality in various multistage systems not limited 

to manufacturing. Using cloud computing technologies, the proposed research may handle the 

process monitoring of a supply chain. The implementation of the proposed research could lead to 

smart firms where processes can be adjusted automatically in real time. This can help to bring the 

ideal system of a zero-defect production system closer to reality. 

 4.2. Future Studies 

For future research, the training set should be periodically updated with new data points. 

Hence, in addition to the proposed strategy, the current developed practices in the field of continues 

learning can be studied to maintain the trained models at a satisfactory level. The continuous 

learning is still in the early stages; however, several optimized developed models are currently 

available. For example, Watson ML framework developed by IBM has already a continuous 

learning feature that can help to maintain the training models updated.  

Also, a prognosis model such as a Bayesian Network can be used to establish stage-based 

predictive models. Since the proposed model generates limited clusters for multiple stage-based 
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modeling, a prognosis model can benefit from tremendous complexity reduction. This prognosis 

model can be used to suggest process parameter settings in unfinished stages to prevent defective 

production. Once a part is identified to be potentially faulty, then a search procedure is necessary 

to find the best possible production settings in the unfinished stages to guide the faulty part to back 

into healthy conditions. Since the number of parameters is large, an efficient approach is necessary 

to perform a fast and efficient computation and search among all possible production settings. A 

prognosis model or algorithm is required to provide potential impactful process parameters and 

proper settings for control purposes. 

The effectiveness of a prognosis model can be evaluated using an accessible manufacturing 

process such as a metal 3D printing or semiconductor manufacturing processes. The prognosis part 

of the proposed framework may also be applied to non-manufacturing applications. A prognosis 

model is under development for a drug recommendation system. The proposed model can be based 

on classification-based models. The recommender system called 1DrugAssist currently is 

currently designed for two different diseases: breast cancer, and type 2 diabetes. 1DrugAssist 

utilizes machine-learning based predictive models to recommend a drug to reduce the patient’s 

risk. The risk is calculated based on five different possible outcomes such as death, hospitalization, 

disability, life-threatening, and other serious outcomes. The risk level can be measured by the 

probability of the target classes. For example, a response variable as death indicates the death 

record for a patient. Then, a drug which has the least probability toward the negative class (death 

class) will be favorable against the rest of the candidates. The underlying predictive models have 

been trained on public FDA Adverse Events Reporting System (FAERS) [76]. FAERS dataset 

includes patients’ visit considering the disease, drug information, demographic information, and 

outcomes. To enrich the dataset, drug characteristics such as drug class, target, and pathway have 
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been extracted from the DrugBank database [77]. Then, based on the trained models, a 

recommender system has been generated to recommend a drug with least risk level based on the 

patient’s information such as gender, age, weight, country, and limiting the drug target. A user-

friendly web-based system [78] has been developed and is publicly available. In addition, since 

the risk is associated with multiple outcomes, a simulation-based weighing system has been 

established to glean the relative importance of outcomes in users’ point of view while aiming to 

reduce the sensitivity of results. However, the reaction associated with the recommended drug has 

not been completely understood yet. One of the challenges in this study is the large categorical 

variables in the dataset where the reaction set includes more than 1500 unique values and different 

techniques have yet to be applied on the dataset to check the association between the recommended 

drug, and reactions.  
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