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Abstract 

Site-specific weed management (SSWM) is defined as the process of managing weeds 

where they are growing as opposed to treating the whole field and treating areas with no weeds. 

Artificial intelligence (AI), the process of creating intelligent machines, has become a part of 

everyday life in modern society. Utilizing convolutional neural networks and object detection 

algorithms, weeds can be distinguished from crops, and herbicide applications can target weeds 

where they are growing. The objectives of this dissertation were to 1) train open-sourced object 

detection algorithms to detect in central Kansas soybean (Glycine Max [L.] Merr.) fields, 

focusing on Palmer amaranth (Amaranthus palmeri S. Watson, henceforth denoted as A. 

palmeri), 2) determine herbicide efficacy and cost savings of SSWM herbicide applications 

using a ONE SMART SPRAY research sprayer, an intelligent dual-boom sprayer using AI 

technology to locate and spray weeds growing within crops, and 3) compare traditional broadcast 

(BCST) applications with spot-spray (SS) herbicide applications using a commercial-sized ONE 

SMART SPRAY sprayer. Images were obtained from two soybean fields in 2021 containing A. 

palmeri infestations and were annotated with bounding boxes to identify both A. palmeri and 

soybean plants. In this study, the YOLOv5 object detection algorithm was identified as having 

the highest mean average precision scores and was therefore selected for further analysis. The 

precision, recall, and F1 evaluation metrics found for the test image dataset was 0.71, 0.70, and 

0.71, respectively. Regression analysis revealed that our trained YOLOv5 model evaluation 

metrics were higher when identifying A. palmeri plants 2 cm in height at low plants m-2. For the 

second objective, corn (Zea mays L) and soybean field trials were conducted in Manhattan, KS 

and Seymour, IL with the research-sized ONE SMART SPRAY. Simultaneous herbicide 

applications of residual BCST + foliar SS, base-rate foliar BCST + SS “Spike” rates, and SS 



  

only were compared in corn (Zea mays L.) and soybean trials. Specific SS thresholds tested 

included an herbicide efficacy, balanced, savings, and traditional BCST applications were tested 

for comparison. Results showed that both residual BCST + foliar SS and “Spike” approaches 

provided weed-free area not different than traditional broadcast applications, in many cases. The 

greatest savings were achieved by SS only applications, but weed-free area was almost always 

significantly less than for other treatments. Simultaneous BCST + SS of soil residual and foliar 

herbicides, respectively, provided the most weed-free area with the greatest cost savings for both 

crops. Thirdly, we tested a commercial-sized ONE SMART SPRAY and compared traditional 

broadcast applications with SS only and simulated two-boom/two-tank applications using the 

foliar base rate + “Spike” approach. Treatments included SS only, low rate BCST + high rate SS, 

and high rate BCST + low rate SS applications. Results indicated that high rate BCST + low rate 

SS applications provided the highest weed-free area, but savings were not different from a 

broadcast application in soybeans. In corn, thresholds were not different, but both applications 

with BCST applications demonstrated greater weed-free area than SS only treatments. Overall, 

this research demonstrated that 1) open-sourced object detection algorithms can be custom 

trained to identify A. palmeri in soybean crops, with opportunities to train and identify other 

weed species in other crops, 2) intelligent AI sprayers show potential in providing weed-free area 

comparable to traditional BCST applications, especially systems that utilize two-tank/two-boom 

technology for simultaneous BCST and SS applications, and 3) herbicide costs were significantly 

reduced for SS applications compared to traditional BCST applications. 

  



  

Use of artificial intelligence to locate and treat weeds in Midwestern United States corn (Zea 

mays) and soybean (Glycine max) cropping systems 

 

 

 

by 

 

 

Isaac Harrison Barnhart 

 

 

 

B.S., Sterling College (KS), 2017 

M.S., Kansas State University, 2020 

 

 

A DISSERTATION 

 

 

submitted in partial fulfillment of the requirements for the degree 

 

 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Department of Agronomy 

College of Agriculture 

 

 

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

 

2024 

 

 

 Approved by: 

 

Major Professor 

Johanna Anita Dille 

  



  

Copyright 

© Isaac Harrison Barnhart 2024. 

 

 

  



  

Abstract 

Site-specific weed management (SSWM) is defined as the process of managing weeds 

where they are growing as opposed to treating the whole field and treating areas with no weeds. 

Artificial intelligence (AI), the process of creating intelligent machines, has become a part of 

everyday life in modern society. Utilizing convolutional neural networks and object detection 

algorithms, weeds can be distinguished from crops, and herbicide applications can target weeds 

where they are growing. The objectives of this dissertation were to 1) train open-sourced object 

detection algorithms to detect in central Kansas soybean (Glycine Max [L.] Merr.) fields, 

focusing on Palmer amaranth (Amaranthus palmeri S. Watson, henceforth denoted as A. 

palmeri), 2) determine herbicide efficacy and cost savings of SSWM herbicide applications 

using a ONE SMART SPRAY sprayer, an intelligent dual-boom sprayer using AI technology to 

locate and spray weeds growing within crops, and 3) compare traditional broadcast (BCST) 

applications with spot-spray (SS) herbicide applications using a commercial-sized ONE SMART 

SPRAY sprayer. Images were obtained from two soybean fields in 2021 containing A. palmeri 

infestations and were annotated with bounding boxes to identify both A. palmeri and soybean 

plants. In this study, the YOLOv5 object detection algorithm was identified as having the highest 

mean average precision scores and was therefore selected for further analysis. The precision, 

recall, and F1 evaluation metrics found for the test image dataset was 0.71, 0.70, and 0.71, 

respectively. Regression analysis revealed that our trained YOLOv5 model evaluation metrics 

were higher when identifying A. palmeri plants 2 cm in height at low plants m-2. For the second 

objective, corn (Zea mays L) and soybean field trials were conducted in Manhattan, KS and 

Seymour, IL with the research-sized ONE SMART SPRAY. Simultaneous herbicide applications 

of residual BCST + foliar SS, base-rate foliar BCST + SS “Spike” rates, and SS only were 



  

compared in corn (Zea mays L.) and soybean trials. Specific SS thresholds tested included an 

herbicide efficacy, balanced, savings, and traditional BCST applications were tested for 

comparison. Results showed that both residual BCST + foliar SS and “Spike” approaches 

provided weed-free area not different than traditional broadcast applications, in many cases. The 

greatest savings were achieved by SS only applications, but weed-free area was almost always 

significantly less than for other treatments. Simultaneous BCST + SS of soil residual and foliar 

herbicides, respectively, provided the most weed-free area with the greatest cost savings for both 

crops. Thirdly, we tested a commercial-sized ONE SMART SPRAY sprayer and compared 

traditional broadcast applications with SS only and simulated two-boom/two-tank applications 

using the foliar base rate + “Spike” approach. Treatments included SS only, low rate BCST + 

high rate SS, and high rate BCST + low rate SS applications. Results indicated that high rate 

BCST + low rate SS applications provided the highest weed-free area, but savings were not 

different from a broadcast application in soybeans. In corn, thresholds were not different, but 

both applications with BCST applications demonstrated greater weed-free area than SS only 

treatments. Overall, this research demonstrated that 1) open-sourced object detection algorithms 

can be custom trained to identify A. palmeri in soybean crops, with opportunities to train and 

identify other weed species in other crops, 2) intelligent AI sprayers show potential in providing 

weed-free area comparable to traditional BCST applications, especially systems that utilize two-

tank/two-boom technology for simultaneous BCST and SS applications, and 3) herbicide costs 

were significantly reduced for SS applications compared to traditional BCST applications. 
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Preface 

Before coming to Kansas State University to earn my graduate degrees, I had the 

opportunity to work as a custom pesticide/fertilizer applicator and tractor trailer driver in central 

Kansas. Even though I had previous experience working as a farm hand and doing farm-related 

work, this was the position that inspired my interest in agronomy, specifically weed control. 

Having operated a variety of row-crop sprayers and liquid/dry application systems over 

thousands of acres, I had the opportunity to learn the business first-hand. I became familiar with 

herbicides, insecticides, fungicides, spray adjuvants, both dry and liquid fertilizer products, and 

lime applications. 

It was during this time that I noticed the large quantities of pesticides that were applied to 

our cropping systems. I especially took an interest in herbicides, as herbicides constituted most 

of my pesticide applications. This was not only my experience, but is the experience of many 

agricultural professionals, as herbicides make up the largest category of pesticide applications 

around the world. Although these applications are necessary to prevent costly yield losses, I 

became aware just how expensive these applications were for farmers. During the time I spent in 

the cab of the application tractors, I began to wonder if there were ways that could reduce the 

quantity of herbicides applied. ‘Surely,’ I thought, ‘there has to be a way to help reduce herbicide 

waste, environmental contamination, and input expenses for farmers.’ 

Fast-forwarding to 2020, when I had the opportunity to begin my Ph.D. studies, I became 

especially interested in artificial intelligence (AI) and how it could be used for precision weed 

management. Many researchers were (and remain) excited about it because of the opportunities 

to identify weeds using a concept that has potential to be superior to previous electronic means of 

weed identification. However, the concept was still very new, and was very limited in terms of 
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practical uses for farmers. To illustrate the infancy, it wasn’t until a research team led by Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton released AlexNet in 2012 that people realized 

that AI for image classification (and later, object detection) was, in fact, practical. Since 

AlexNet, the AI options for visual object identification have exploded, including for precision 

weed detection. 

When we began this research, we wanted to determine if it was feasible to train AI object 

detection algorithms on pictures of weeds collected in central Kansas, and how accurate they 

would be when making detections. To keep this process as simple as possible, we focused only 

on one weed species and one crop. Although the idea behind this was practical, it was still 

difficult to practically use this algorithm because we had no knowledge of how to build an 

intelligent sprayer and how to deploy the model for weed detection. Fortunately, we were able to 

form a partnership with BASF®, giving us the opportunity to test their novel Smart Sprayer. This 

sprayer has since become known as the ONE SMART SPRAY, stemming from the joint venture 

of Bosch® and BASF® that came together to build these sprayers. Although we did not use our 

specific algorithm that we trained, the process of training our algorithm contributed greatly to 

our understanding of how the ONE SMART SPRAY system makes detections. If we had not 

embarked upon this first project, we would have been at a great disadvantage in terms of fully 

understanding and appreciating the ONE SMART SPRAY research project. 

The dissertation that follows highlights the results of my Ph.D. work that I have become 

very passionate about. I am very grateful to my adviser, Dr. Anita Dille, for supporting my 

endeavors in these projects, as well as all those who participated in the academic-industry 

collaboration that allowed us to conduct this research. I am also very grateful to be a part of a 

collaboration that never lost sight of the end goal, which was to help farmers control weeds while 
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helping farmers reduce herbicide costs and thus, help to increase cropping system profitability. 

The results obtained in this research were very encouraging and illustrate that the future is bright 

for AI and precision weed management. My dream is that this technology will one day become 

available to farmers across the world, as it would greatly help to increase sustainability and 

ensure cropping system productivity for generations to come. For those reading this preface, I 

challenge you to pick up the research baton that I am handing off and continue to make great 

strides to help this dream become a reality! 
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Chapter 1 - Literature review 

 1.1 Artificial intelligence, machine learning, and neural networks: an 

overview 

 Artificial Intelligence (AI) is defined as the science behind producing and creating 

intelligent machines (McCarthy 2007).  These AI machines are modeled after the human brain 

and are programmed to make decisions as the mind does (Boden 1996). AI was first proposed in 

the 1950s by Alan Turing when he published an article entitled “Computing Machinery and 

Intelligence” (Turing 1950), in which he described a test (known as the ‘Turing Test’) to 

determine whether computers could imitate human intelligence (Haenlein and Kaplan 2019; 

Kaul et al. 2020). Between 1964 and 1966, Joseph Weizenbaum created ELIZA, a language 

processing tool that could simulate human conversation and was one of the first programs able to 

pass the Turing Test (Haenlein and Kaplan 2019). Another example of early AI innovation is the 

“General Problem Solver” program created by Herbert Simon, Cliff Shaw, and Allen Newell 

(Haenlein and Kaplan 2019). Today, AI is characterized mostly by complicated neural networks 

and deep learning programs. What began as a series of “if-then” statements has developed into 

complex algorithms that have found their way into almost every aspect of modern society (Kaul 

et al. 2020). 

 Modern-day AI comes in many forms, ranging from (but not limited to) self-driving cars, 

personal assistants on smart phones (i.e. “Siri”), online chatbots, conversationalist AI such as 

ChatGPT (OpenAI 2023), and self-checkout technology at the grocery store. These systems can 

“learn” by discovering patterns and automatically generating insights by using machine learning 

(ML) (Kelly 2023). Machine learning is defined as algorithms that emulate human intelligence 

by making inferences from the surrounding environment (El Naqa and Murphy 2015). Global 
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data is expected to reach 175 zettabytes (1.75 x 1014 gigabytes) by 2025 (Reinsel et al. 2018); 

this accumulation of “Big Data” must be processed with ML methods because older, traditional 

methods will quickly be overwhelmed by these data (Oracle 2022). 

 Deep learning (DL) is a subcategory of ML that provides AI systems with the ability to 

learn by using networks that resemble a human brain’s neural networks (Kelly 2023). These 

networks can make sense of patterns, trends, noise, and sources of confusion in data (Kelly 

2023). These networks are often referred to as artificial neural networks (ANNs) due to their 

similarities to the human brain (Tavanaei et al. 2019). Just as in the human brain, these neural 

networks are made up of connected neurons. Input neurons are activated through environmental 

stimuli, and other neurons are activated as a result (Schmidhuber 2015). Artificial neural 

networks can therefore learn complicated and often non-linear relationships and solve problems 

that traditional computing cannot (Basu et al. 2010). Different  ANNs are often used for speech 

recognition, image classification, facial recognition software, medical diagnostics, and even 

fraud detection (Akash 2023; Kalita 2022). 

 One of the most well-known ANN applications is image recognition via computer vision 

(Akash 2023). A breakthrough for image classification came in 2012, when AlexNet (Krizhevsky 

et al. 2012) was used in the ImageNet Large Scale Visual Recognition Challenge, or ILSVRC 

(Standford University 2020; Tavanaei et al. 2019). AlexNet won the competition and was the 

first successful application of DL, thereby demonstrating that DL was in fact practical (Briggs 

and Carnevali 2023). AlexNet is a deep convolutional neural network (DCNN, also known as 

convolutional neural networks, or CNNs), consisting of eight layers of neurons and a total of 60 

million parameters (Tavanaei et al. 2019). DCNNs are a specialized type of ANN for computer 

vision (Meel 2023) and analyze imagery by passing input imagery into arrays and assigning a 
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likelihood of the image belonging to a certain class (Chatterjee 2019). DCNNs are used for 

image problems instead of ANNs because ANNs are unable to extract complicated image 

features (Mwiti 2022). The input arrays are passed through several convolutional, activation, 

pooling, and fully connected layers prior to making a classification decision (Chatterjee 2019). 

Interestingly, DCNNs were developed based on working neurons of animal visual cortexes, 

allowing computers to “see” and classify imagery as humans do (Chatterjee 2019). In addition to 

image classification, DCNNs have been used for speech recognition (Nassif et al. 2019), text 

recognition (Wang et al. 2012), and object detection (Dhillon and Verma 2020). 

 

 1.2 Site-specific weed management 

 In most situations, weed infestations left uncontrolled cause more crop losses than 

insects, fungi, or other pests (Gharde et al. 2018). For instance, weed interference in corn 

production has been estimated to cause 50% yield loss annually, valued at $26.7 billion (Soltani 

et al. 2016), and soybean annual yield losses due to weeds has been valued at $16.2 billion 

(Soltani et al. 2017). Weeds are ideally managed using a “zero tolerance” strategy because even 

one weed escape can produce many seeds and contribute to many more years of weed 

infestations (Barber et al. 2015). Herbicides are the most frequently used tool in the United 

States for weed control, costing growers between $4 and 5 billion each year (Atwood and 

Paisley-Jones 2017). However, the number of herbicide-resistant weeds is continually increasing, 

with 518 unique cases confirmed as of April 2023 (Heap 2023). Because herbicides are usually 

applied via whole-field broadcast applications, overapplications of herbicides have been linked 

with rises in occurrence of herbicide resistance, human and animal health risks, environmental 

pollution, and increased input costs for farmers (Ferreira et al. 2019).  
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To reduce herbicide overapplications and the problems that come with it, herbicide 

applications should focus on targeting weeds where they are growing in the field rather than 

broadcast applications throughout the whole field. This practice is a component of site-specific 

weed management (SSWM), which is defined as the process of “varying weed management 

within a crop field to match the variation in location, density, and composition of the weed 

population” (Fernández-Quintanilla et al. 2018; Wiles 2009). SSWM for precision herbicide 

spraying has been the focus of many weed scientists and engineers for more than 30 years 

(Swinton 2005).  In the early days of SSWM, fields were mapped manually by superimposing a 

grid on a field and measuring weed densities at pre-determined points (Weis and Sökefeld 2010). 

Weed densities at each location were sampled via quadrats, and spray maps could be generated to 

either activate or deactivate nozzles or vary the rate of herbicides applied. Although this has been 

shown to effectively control weeds in some studies, it is a very labor-intensive and time-

consuming process that is not economically advantageous as compared to whole field broadcast 

applications (Rider et al. 2006). 

SSWM has also been accomplished using aerial imagery and remote sensing. Satellite 

imagery has been used to identify weed infestations, but often insufficient spatial resolution 

makes this challenging at field-level (Casady et al. 2005; Weis and Sökefeld 2010). A new 

opportunity for high-resolution weed detection arose when commercial-grade unmanned aerial 

vehicles (UAVs) started to gain popularity in the mid-2010s (Alkobi 2019). Lower-cost sensors 

could be mounted to these autonomous UAVs, allowing for very high spatial and temporal 

resolution data to be collected. UAVs have been found to be more accurate when compared to 

traditional weed scouting (Rasmussen et al. 2018; Rozenberg et al. 2021), as UAV imagery can 

capture discrete weed density data over a large area without being subject to human 



5 

interpretation errors. Rosenberg et al. (2018) found that images collected using low-cost UAV 

systems could distinguish weeds from onion crops using maximum likelihood and support vector 

machine classification. Jurado-Expósito et al. (2021) used UAV imagery and ground-sampled 

weed density data to create management maps using cokriging. Sapkota et al. (2020) used UAV 

data to identify cotton (Gossypium hirsutum L.) crop rows using the Hough transformation and 

classify weeds using object-based classifications. In Castaldi et al. (2017), UAV imagery was 

used to identify weeds and to create a patch-spraying map, which was uploaded to a precision 

sprayer for targeted applications. Using this method, the authors observed significant herbicide 

savings. Through using high-resolution imagery captured with UAVs, weeds have been 

successfully detected and mapped for both fallow and in-crop situations. 

 

 1.3 Deep convolutional neural networks in site-specific weed management 

 A major component of SSWM includes using AI through DCNNs for weed detection. 

DCNNs can be trained on custom image datasets using the processes of transfer learning (Roman 

2020). Transfer learning involves taking information used in one problem to solve another, 

similar problem (Ghazi et al. 2017). Typically, this involves using pre-trained models such as the 

ResNet (Keras 2023a) or VGG (Keras 2023b) models, which are trained on very large datasets 

such as the Microsoft Common Objects in Context database (Lin et al. 2014). During transfer 

learning, the model weights are updated using a different image database, thus allowing different 

image problems to be solved. Transfer learning is usually preferred rather than training DCNNs 

from scratch, with the latter being very complicated and time-consuming (Ruder 2021). 

 There are two main uses of DCNNs for weed detection: Image classification and object 

detection. Image classification consists of assigning a single class to an input image (Vadapalli 
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2020). A simple example that is often referred to is the 2013 “Dogs vs. Cats” Kaggle competition 

that required contestants to use a DCNN to correctly classify images of dogs and cats (Kaggle 

2013). Many studies have shown that weeds can be detected using image classification. Yu et al. 

(2020) used AlexNet, GoogLeNet (Szegedy et al. 2014), and VGGNet (Simonyan and Zisserman 

2015) and concluded that VGGNet detected crabgrass species (Digitaria spp.), doveweed 

(Murdannia nudiflora L. Brenan), dallisgrass (Paspalum dilatatum Poir.), and tropical sungrass 

(Urochloa distachya L. T.Q. Nguyen) with an overall accuracy of 1, or 100%. In a similar study, 

Yu et al. (2019) found that VGGNet accurately classified spotted spurge (Euphorbia macualta 

L.), ground ivy (Glechoma hederacea L.), and dandelion (Taraxacum officinale Web.) in 

perennial ryegrass (Lolium perenne L.) turfgrass imagery with high accuracy. Subeesh et al. 

(2022) found that when comparing AlexNet, GoogLeNet, InceptionV3 (Szegedy et al. 2015), and 

Xception (Chollet 2017) networks for weed detection in bell peppers (Capiscum annum L.), the 

InceptionV3 model performed superiorly. Additionally, Peteinatos et al. (2020) used 93,000 

images to train VGG16 (Simonyan and Zisserman 2015), ResNet-50 (He et al. 2015), and 

Xception models for weed detection in corn (Zea mays L.), sunflower (Helianthus annuus L.), 

and potato (Solanum tuberosum L.) crops. They observed varying levels of success among the 

models, with accuracy rates between 77 and 98%. 

A major shortfall of weed classification is that classification does not locate individual 

weeds in an image. Because detecting and localizing pests is more applicable than classifying 

images of pests (Chen et al. 2021), DCNN object detection is often preferred over image 

classification. Object detection refers to computer vision tasks that localize and identify objects 

in digital images (Brownlee 2021). Multiple free and open-sourced object detection models are 

available for use, including the You Only Look Once (YOLO)-series models, which were first 
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introduced by Redmon et al. (2016). The YOLO models are single-stage object detectors, 

localizing and classifying objects in a single pass of the neural network (Barnhart et al. 2022; 

Forson 2017). At the present time, more recent releases of the YOLO-series models are YOLO 

version 8 (YOLOv8), (Ultralytics 2023) and YOLO-World (Liu et al. 2024). Other single-stage 

models include the Single Shot Detection (SSD) models (Liu et al. 2016), SqueezeDet (Wu et al. 

2019), and the DetectNet (Tao et al. 2016) models (Hollemans 2018). In contrast, two-stage 

object detectors localize objects and classify the localized objects in two separate stages (Boesch 

2023). Widely used two-stage object detection models include the regional convolutional neural 

network (R-CNN) models such as Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 

2016), and Mask R-CNN (He 2018). In general, single-stage object detectors can detect objects 

faster than two-stage detectors, but two-stage detectors are generally more accurate (Boesch 

2023). However, this is not always the case, as YOLO models have been shown to outperform 

two-stage object detectors in some situations (Barnhart et al. 2022; Chen et al. 2021). Several 

models such as YOLOv8 provide different sizes of models with different detection accuracies 

and inference speeds. For instance, YOLOv8n has a mean average precision (mAP) of 37.3 and 

an inference speed of 80.4 ms, whereas YOLOv8x has a mAP and an inference speed of 53.9 and 

479.1 ms, respectively (Ultralytics 2023). Smaller models can be useful for smaller platforms 

with less computing power (Hussain et al. 2020; Xiao et al. 2019), whereas larger, more 

powerful computational systems are better suited for larger models with slower inference speeds. 

Object detection evaluation metrics include precision, recall, mean average precision 

(mAP), and F1 scores. Prior to computing these metrics, an Intersection over Union (IoU) 

threshold must be chosen. IoU is a number from 0 to 1 which indicates the percentage of overlap 

between detected objects and ground truth bounding boxes (Hofesmann 2020). IoU thresholds 
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between 0.5 and 0.75 are the most common (Vijayabhaskar 2020), with many weed detection 

studies selecting a threshold of 0.5 (Fatima et al. 2023; Jiang et al. 2019; Thanh Le et al. 2021). 

IoU thresholds are used to compute true positive (TP), false positive (FP), and false negative 

(FN) detections. Detections with overlap percentages below the chosen threshold are FP 

detections, whereas detections above the thresholds are TP detections (Henderson and Ferrari 

2017). FN detections are objects with ground truth bounding boxes but do not have any detection 

bounding box overlap. Precision is the quotient of the number of TP predictions divided by the 

total number of TP + FP predictions (Barnhart et al. 2022; Hussain et al. 2021). When a model 

makes a low number of TP predictions or a high number of FP predictions, precision scores are 

reduced (Gad 2021). Recall is computed by dividing the TP by the sum of the TP and FN 

detections. Recall measures how well a model identifies TP predictions; higher recall scores 

indicate more TP detections (Barnhart et al. 2022; Huilgol 2020; Hussain et al. 2021). A model’s 

F1 score is the harmonic mean between precision and recall (Barnhart et al. 2022; Zhong et al. 

2019). F1 scores demonstrate the model’s ability to capture both TP values (recall) and to also be 

accurate (precision) (Allwright 2022). Precision, recall, and F1 values range from 0 to 1, with 0 

and 1 being the worst and best scores, respectively. The average precision (AP) is determined by 

graphing the precision-recall curve for each object detection class, and the average of the AP 

scores is the main average precision (mAP) for the model (Barnhart et al. 2022). mAP scores 

range from 0 to 1, with higher scores indicating better model performance. 

Object detection has been used to identify weeds in many studies. In Barnhart et al. 

(2022), the authors achieved a mAP of 0.77 when using YOLOv5 (Ultralytics 2022) to identify 

Palmer amaranth (Amaranthus palmeri S. Watson) in soybeans (Glycine max L. Merr.). Ahmad 

et al. (2021) found that YOLOv3 (Redmon and Farhadi 2018) was fast and accurate for 
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localizing and detecting weeds, but achieved relatively low AP scores of 43.28%, 26.30%, 

89.89%, and 57.8% for common cocklebur (Xanthium strumarium L.), foxtail species (Setaria 

spp.), redroot pigweed (Amaranthus retroflexus L.), and giant ragweed (Ambrosia trifida L.), 

respectively. Additionally, the overall mAP score was 54.3% and relatively low. Sharpe et al. 

(2020) used YOLOv3 to identify grasses, sedges, and broadleaves with F1 scores of 0.96, 0.96, 

and 0.93, respectively. When trying to detect hedge bindweed (Convolvulus sepium L. var. 

americanus Sims) in sugar beets (Beta vulgaris L.), Gao et al. (2020) found that YOLOv3 

detected sugar beets well (AP = 0.938) but struggled to detect hedge bindweed (AP = 0.726). 

Finally, Sivakumar et al. (2020) found that late-season weed escapes in soybean crops could be 

detected with Faster R-CNN and SSD models; Faster R-CNN was determined to be the best-

performing model in this study. The authors also noted that by reducing Faster R-CNN (a two-

stage detector) to 200 proposals, the inference speed could be as fast as SSD, thus combining 

speed and accurate weed detections. Recently, and after the publication in Chapter 2, YOLOv8 

has been used to identify Caosu (Phlomoides umbrosa (Turcz.) Kamelin & Makhm) (Guo et al. 

2023) and undefined crops and weeds (Kumar et al. 2024). Guo et al. (2023) achieved success 

identifying Caosu with precision, recall, mAP50, and F1-scores of 91.1%, 86.7%, 92.6%, and 

88.85%, respectively, and Guo et al. (2023) claimed to achieve an accuracy of 86% in crop and 

weed identification in a “real-time agricultural environment.” These examples show that weed 

detection with object detection DCNNs is both possible and feasible with modern technologies. 

After object detection models have been trained and evaluated, they can be deployed on a 

variety of weed control platforms. These platforms range from precision sprayers, robots, and 

UAV systems. Hussain et al. (2020) trained both YOLOv3 and tiny-YOLOv3 (Adarsh et al. 

2020) to identify common lambsquarters (Chenopodium album L.) and potato and uploaded the 
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trained tiny-YOLOv3 model to a prototype precision sprayer developed by their team. The 

authors reported an herbicide savings of 42% during trials. Ruigrok et al. (2020) trained a 

YOLOv3 model to detect volunteer potatoes growing in sugar beet fields, uploaded the trained 

model to a precision spraying robot, and reported 96% of the volunteer potatoes sprayed while 

only incorrectly spraying 3% of the sugar beet crop. This methodology is not only limited to 

weed control; for example, Mustafid et al. (2022) trained an SSD Mobilenet V3-small (pkulzc 

2019) model to detect cabbage (Brassica oleracea L.) plants. The model was uploaded to a 

robotic sprayer so that crop protection products such as insecticides and fungicides were applied 

only to the cabbages. The robotic sprayer used a Raspberry Pi 4 (Raspberry Pi 2023), a relatively 

inexpensive processor that can allow such sprayers to be constructed at a lower cost. The authors 

reported an average cabbage detection accuracy of 88%, with an average accuracy of spraying 

position reported as 80%. 

 

 1.4 Commercial AI application equipment 

 Commercial field sprayers that enable SSWM have been on the market for several years; 

however, these systems utilize multispectral sensing rather than artificial intelligence. For 

example, companies such as Weed-It® (Weed-It, 7221 CJ Steenderen, The Netherlands) 

manufacture external sensors that can be retrofitted to existing commercial sprayers and can 

activate and deactivate nozzles/boom sections when weeds are detected. These sensors typically 

use vegetative indices such as the Normalized Difference Vegetation Index (Kriegler et al. 1969), 

which detects plant vegetation by subtracting the near infrared (NIR) band from the red radiation 

band, divided by the NIR band plus the red band of the electromagnetic spectrum (Huang et al. 
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2020). However, these systems are limited in that they detect only green vegetation, thereby 

limiting spraying options to fallow applications (Weed-It 2023). 

 In addition to multispectral-powered field sprayers, sprayers powered by AI for in-crop 

applications are becoming available on the market. These sprayers include the ONE SMART 

SPRAY (ONE SMART SPRAY 2023), the John Deere® See & SprayTM Ultimate (John Deere 

2023), and Greeneye TechnologyTM sprayers (Greeneye Technology 2023a). These companies 

differ from one another slightly in that the ONE SMART SPRAY and See and SprayTM Ultimate 

are factory-fitted with AI application equipment, whereas sprayers are retrofitted with  

GreeneyeTM equipment and thereby upgrade existing sprayers with spot-spraying capabilities 

(Greeneye Technology 2023b). These sprayers are different than the Weed-it® system in that they 

are capable of both fallow (green on brown) and in-crop (green-on-green) site-specific herbicide 

applications. By using an approach such as crop row removal or object detection, weeds can be 

located by the sprayers’ AI systems and targeted for herbicide application within the field, thus 

reducing the need for whole-field applications (Rai et al. 2023). 

 

 1.5 Dissertation objectives 

 AI has been shown to be effective in identifying and locating weeds in many agronomic 

and horticultural cropping systems, including but not limited to corn and soybeans (Ahmad et al. 

2021), sugar beet (Gao et al. 2020), lettuce (Lactuca L.) (Osorio et al. 2020), and bermudagrass 

(Cynodon dactylon (L.) Pers.) turf crops (Yu et al. 2020). AI is a rapidly changing field (Pan 

2016), with advances, upgrades, and new algorithms seemingly released every day. Because of 

this, AI-empowered weed control is also changing, thus making it critical to evaluate these new 

technologies to better understand how they can influence weed control. Two very important 
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pieces to this are (1) the backbone AI algorithm(s), and (2) commercial AI herbicide application 

systems. Commercial sprayers utilize AI algorithms to recognize and treat weeds, so 

understanding how both fit into agronomic cropping systems is very important. The overall 

objective of this dissertation is to evaluate how well AI weed control tools can detect and control 

weeds using open-sourced object detection algorithms and a commercial AI sprayer. For chapter 

2, we focused on detecting Palmer amaranth (Amaranthus palmeri S. Watson) in soybean, as A. 

palmeri is frequently designated as the most problematic weed in the United States (WSSA 

2016). In chapters 3 and 4, we switch from an algorithm focus to an evaluation of a commercial 

AI field sprayer, using a ONE SMART SPRAY sprayer. Thus, specific objectives of chapters 2, 

3, and 4 were to: 

Chapter 2: 

1. Develop an annotated image database of A. palmeri and soybean with multiple weed 

densities and soybean row spacings that can be used to fine-tune object detection 

algorithms. 

2. Compare multiple open-source algorithms’ effectiveness in detecting A. palmeri. 

3. Evaluate the relationship between A. palmeri growth features (diameter, height, density, 

and ground cover) and A. palmeri detection ability. 

Chapter 3: 

1. Evaluate the weed control efficacy of different commercial AI sprayer herbicide 

treatment programs, including one-pass versus two-pass programs, spot-sprayed 

treatments only, and simultaneous broadcasted residual and spot-sprayed foliar 

herbicides. 

2. Determine if sensor weed detection threshold settings influences weed control. 
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3. Determine the seasonal cost for each herbicide program, comparing each with a 

traditional broadcast treatment. 

Chapter 4 

1. Evaluate the weed control efficacy of a commercial AI field sprayer using a two-tank 

simulated approach versus a traditional broadcast and a spot spray only approach (using a 

commercial-sized field sprayer). 

2. Determine herbicide cost savings using treatments with spot spray applications applied 

with commercial field sprayers. 

  



14 

 1.6 References 

Adarsh P, Rathi P, Kumar M (2020) YOLOv3-Tiny: Object detection and recognition using one 

stage improved model.” Pages 687-694 in Proceedings from the 6th International 

Conference on Advanced Computing and Communication Systems. Coimbatore, India: 

Institute of Electrical and Electronics Engineers  

Ahmad A, Saraswat D, Aggarwal V, Etienne A, Hancock B (2021) Performance of deep learning 

models for classifying and detecting common weeds in corn and soybean production 

systems. Comput Electron Agric 184:106081  

Akash S (2023) Top 10 applications of artificial neural networks in 2023. Available online: 

https://www.analyticsinsight.net/top-10-applications-of-artificial-neural-networks-in-

2023/. Accessed: March 29, 2023 

Alkobi J (2019) The evolution of drones: From military to hobby & commercial. Available 

online: https://percepto.co/the-evolution-of-drones-from-military-to-hobby-commercial/. 

Accessed: March 30, 2023 

Allwright S (2022) How to interpret F1 score (simply explained). Available online: 

https://stephenallwright.com/interpret-f1-score/. Accessed: April 4, 2023 

Atwood D, Paisley-Jones C (2017) Pesticide industry sales and usage, 2008-2012 market 

estimates. Washington DC: Environmental Protection Agency. 13 p 

Barber TL, Smith KL, Scott RC, Norsworthy JK, Vangilder AM (2015) Zero tolerance: A 

community-based program for glyphosate-resistant Palmer amaranth management. Little 

Rock, AR: University of Arkansas Division of Agriculture Research and Extension. 2 p 



15 

Barnhart IH, Lancaster S, Goodin D, Spotanski J, Dille JA (2022) Use of open-source object 

detection algorithms to detect Palmar amaranth (Amaranthus palmeri) in soybean. Weed 

Sci 70:648-662  

Basu JK, Bhattacharyya D, Kim T (2010) Use of artificial neural network in pattern recognition. 

Int J Softw Eng Ap 4:23-34 

Boden MA, ed (1996) Artificial Intelligence: Handbook of Perception and Cognition. 2nd edition. 

San Diego, CA: Academic Press, Inc. XV p 

Boesch G (2023) Object detection in 2023: The definitive guide. Available online: 

https://viso.ai/deep-learning/object-detection/. Accessed: April 3, 2023 

Briggs J, Carnevali L (2023) AlexNet and ImageNet: The birth of deep learning. Available 

online: https://www.pinecone.io/learn/imagenet/. Accessed: March 29, 2023 

Brownlee J (2021) A gentle introduction to object recognition with deep learning. Available 

online: https://machinelearningmastery.com/object-recognition-with-deep-learning/. 

Accessed: April 3, 2023 

Casady GM, Hanley RS, Seelan SK (2005) Detection of leafy spurge (Euphorbia esula) using 

multidate high-resolution satellite imagery. Weed Sci 19:462-467  

Castaldi F, Pelosi F, Pascucci S, Casa R (2017) Assessing the potential of images from unmanned 

aerial vehicles (UAV) to support herbicide patch spraying in maize. Precis Agric 18:76-94  

Chatterjee CC (2019) Basics of the classical CNN. Available online: 

https://towardsdatascience.com/basics-of-the-classic-cnn-a3dce1225add. Accessed: 

March 30, 2023 



16 

Chen JW, Lin WJ, Cheng HJ, Hung CL, Lin CY, Chen SP (2021) A smartphone-based 

application for scale pest detection using multi-object detection methods. Electronics 

10:372  

Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. Pages 1251-

11258 in Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern 

Recognition. Honolulu, HI: Institute of Electrical and Electronics Engineers 

Dhillon A, Verma GK (2020) Convolutional neural network: a review of models, methodologies 

and applications to object detection. Lect Notes Artif Int 9:85-112  

El Naqa I, Murphy MJ (2015) What is Machine Learning? Pages 3-11 in El Naqa I, Li R, 

Murphy MJ, eds. Machine Learning in Radiation Oncology. Switzerland: Springer  

Fatima HS, ul Hassan I, Hasan S, Khurram M, Stricker D, Afzal MZ (2023) Formation of a 

lightweight, deep learning-based weed detection system for a commercial autonomous 

laser weeding robot. Appl Sci 13:3997  

Fernández-Quintanilla C, Peña JM, Andújar D, Dorado J, Riberio A, López-Granados F (2018) Is 

the current state of the art of weed monitoring suitable for site-specific weed management 

in arable crops? Weed Res 58:259-272  

Ferreira ADS, Freitas DM, da Silva GC, Pistori H, Folhes MT (2019) Unsupervised deep 

learning and semi-automatic data labeling in weed discrimination. Comput Electron Agr 

165:104963  

Forson E (2017) Understanding SSD MultiBox—Real-Time Object Detection in Deep Learning. 

Available online: https://towardsdatascience.com/understanding-ssdmultibox-real-time-

object-detection-in-deep-learning-495ef744fab. Accessed: April 3, 2023 



17 

Gad AF (2021) Evaluating Deep Learning Models: The Confusion Matrix, Accuracy, Precision, 

and Recall. Available online: https://www.kdnuggets.com/2021/02/evaluating-deep-

learning-models-confusion-matrix-accuracy-precision-recall.html. Accessed: April 4, 

2023 

Gao J, French AP, Pound MP, He Y, Pridmore TP, Pieters JG (2020) Deep convolutional neural 

networks for image-based Convolvulus sepium detection in sugar beet fields. Plant 

methods 16:29  

Gharde Y, Singh PK, Dubey RP, Gupta PK (2018) Assessment of yield and economic losses in 

agriculture due to weeds in India. Crop Protec 107:12-18  

Ghazi et al. (2017) Plant identification using deep neural networks via optimization of transfer 

learning parameters. Neurocomputing 235:228-235  

Girshick R (2015) Fast R-CNN. arXiv database 1504.08083v2  

Greeneye Technology (2023a) Greeneye: Spray less, grow more. Available online: 

https://greeneye.ag/. Accessed: September 21, 2023 

Greeneye Technology (2023b) Introducing Greeneye’s selective spraying system, designed for 

seamless integration and maximum profitability. Available online: 

https://greeneye.ag/technology/. Accessed: September 21, 2023 

Guo B, Ling S, Tan H, Wang S, Wu C, Yang D (2023) Detection of the grassland weed 

Phlomoides umbrosa using multi-source imagery and an improved YOLOv8 network. 

Agronomy 13:3001 

Haenlein M, Kaplan A (2019) A Brief History of Artificial Intelligence: On the Past, Present, and 

Future of Artificial Intelligence. Calif Manage Rev 61:5-14  

He K, Gkioxari G, Dollár P, Girshick R (2018) Mask R-CNN. arXiv database 1703.06870  



18 

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv 

database 1512.03385  

Heap I (2023) The international herbicide-resistant weed database. Available online: 

https://www.weedscience.org/Home.aspx. Accessed: March 30, 2023 

Henderson P, Ferrari V (2017) End-to-end training of object class detectors for mean average 

precision. Pages 198–213 in Lai SH, Lepetit V, Nishino K, Sato Y, eds. Computer 

Vision—ACCV 2016. ACCV 2016 (Lecture Notes in Computer Science, Vol. 10115). 

Cham, Switzerland: Springer 

Hofesmann E (2020) IoU a better detection evaluation metric. Available online: 

https://towardsdatascience.com/iou-a-better-detection-evaluation-metric-45a511185be1. 

Accessed: April 4, 2023 

Hollemans M (2018) One-stage object detection. Available online: 

https://machinethink.net/blog/object-detection/. Accessed: April 3, 2023 

Huang S, Tang L, Hupy JP, Wang Y, Shao G (2020) A commentary review on the use of 

normalized difference vegetation index (NDVI) in the era of popular remote sensing. J 

Forestry Res 32:1-6  

Huilgol P (2020) Precision vs. Recall—An Intuitive Guide for Every Machine Learning Person. 

Available online: https://www.analyticsvidhya.com/blog/2020/09/precision-recall-

machine-learning/. Accessed: April 4, 2023 

Hussain N, Farooque AA, Schumann AW, Abbas F, Acharya B, McKenzie-Gopsill A, Barrett R, 

Afzaal H, Zaman QU, Cheema MJM (2021) Application of deep learning to detect lamb’s 

quarters (Chenopodium album L.) in potato fields of Atlantic Canada. Comput Electron 

Agric 182:106040  



19 

Hussain N, Farooque AA, Schumann AW, McKenzie-Gopsill A, Esau T, Abbas F, Acharya B, 

Zaman Q (2020) Design and development of a smart variable rate sprayer using deep 

learning. Remote Sens 12:4091  

Jiang Y, Li C, Paterson AH, Robertson JS (2019) DeepSeedling: deep convolutional network and 

Kalman filter for plant seedling detection and counting in the field. Plant Methods 15:141  

John Deere (2023) See & Spray TM Ultimate: Targeted, in-crop spraying. Available online: 

https://www.deere.com/en/sprayers/see-spray-ultimate/. Accessed: September 21, 2023 

John Deere (2023) See & SprayTM Ultimate: Targeted, in-crop spraying. Available online: 

https://www.deere.com/en/sprayers/see-spray-ultimate/. Accessed: March 30, 2023 

Jurado-Expósito M, López-Granados F, Jiménez-Brenes FM, Torres-Sánchez J (2021) 

Monitoring the spatial variability of knapweed (Centaurea diluta Aiton) in wheat crops 

using geostatistics and UAV imagery: probability maps for risk assessment in site-

specific control. Agronomy 11:880  

Kaggle (2013) Dogs vs cats. Available online: https://www.kaggle.com/c/dogs-vs-cats. Accessed: 

March 31, 2023 

Kalita D (2022) An overview and application of neural networks. Available online: 

https://www.analyticsvidhya.com/blog/2022/03/an-overview-and-applications-of-

artificial-neural-networks-ann/. Accessed: March 29, 2023 

Kaul V, Enslin S, Gross SA (2020) History of artificial intelligence in medicine. Gastrointest 

Endosc 92:807-812  

Kelly K (2023) What is artificial intelligence: Types, history, and future. Available online: 

https://www.simplilearn.com/tutorials/artificial-intelligence-tutorial/what-is-artificial-

intelligence. Accessed: March 29, 2023 



20 

Keras (2023a) ResNet and ResNetV2. Available online: 

https://keras.io/api/applications/resnet/#resnet50-function. Accessed: March 31, 2023 

Keras (2023b) VGG16 and VGG19. Available online: 

https://keras.io/api/applications/vgg/#vgg19-function. Accessed: March 31, 2023 

Kriegler FJ, Malila WA, Nalepka RF, Richardson W (1969) Preprocessing transformations and 

their effect on multispectral recognition. Remote Sens Environ VI:97-132 

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional 

neural networks. Adv Neur In 25:1097-1105 

Kumar P, Misra U (2024) Deep learning for weed detection: YOLO V8 algorithm’s performance 

in agricultural environments. Pages 255-258 in Proceedings of the 2024 2nd International 

Conference on Disruptive Tecchnologies (ICDT). Greater Noida, India: Institute of 

Electrical and Electronics Engineers 

Lin TY, Marie M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) 

Microsoft COCO: Common objects in context. Pages 740-755 in Fleet D, Pajdla T, 

Schiele B, Tuytelaars T, eds. Computer Vision – ECCV 2014. Springer, Cham  

Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: Single shot 

multibox detector. Pages 21-37 in Proceedings of the 14th European Conference on 

Computer Vision, Part 1. Amsterdam: European Conference on Computer Vision. 

Cheng T, Song L, Ge Y, Liu W, Wang X, Shan Y (2024) YOLO-World: Real-time open-

vocabulary object detection. arXiv 2401.17270 

McCarthy J (2007) What is artificial intelligence? Stanford, CA: Computer Science Department, 

Stanford University. 2 p 



21 

Meel V (2023) ANN and CNN: Analyzing differences and similarities. Available online: 

https://viso.ai/deep-learning/ann-and-cnn-analyzing-differences-and-similarities/. 

Accessed: March 29, 2023 

Mustafid MA, Subrata IDM, Pramuhadi G, Harahap IS (2022) Design and performance test of 

autonomous precision spraying robot for cabbage cultivation. IOP Conf. Ser: Earth 

Environ Sci 1038:012044  

Mwiti D (2022) Image classification with convolutional neural networks (CNNs). Available 

online: https://www.kdnuggets.com/2022/05/image-classification-convolutional-neural-

networks-cnns.html. Accessed: March 31, 2023 

Nassif AB, Shahin I, Attili I, Azzeh M, Shaalan K (2019) Speech recognition using deep neural 

networks: A systematic review. IEEE Access 7:19143-19165  

ONE SMART SPRAY (2023) Smart spraying solution. Available online: 

https://www.onesmartspray.com/. Accessed: September 18, 2023 

OpenAI (2023) ChatGPT. Available online: https://openai.com/blog/chatgpt. Accessed: March 

20, 2023 

Oracle (2022) The evolution of big data and the future of the data lakehouse. Available online: 

https://www.oracle.com/a/ocom/docs/big-data/big-data-evolution.pdf. Accessed: March 

29, 2023 

Osorio K, Puerto A, Pedraza C, Jamaica D, Rodríguez L (2020) A deep learning approach for 

weed detection in lettuce crops using multispectral images. AgriEngineering 2:471-488  

Pan Y (2016) Heading toward artificial intelligence 2.0. Engineering 2:409-413  



22 

Peteinatos GG, Reichel P, Karouta J, Andújar D, Gerhards R (2020) Weed identification in 

maize, sunflower, and potatoes with the aid of convolutional neural networks. Remote 

Sens 12:4185  

Pkulzc (2019) Release MobileNet V3 models and SSDLite models with MobileNet V3 

backbone. Github repository available online: 

https://github.com/tensorflow/models/blob/master/research/object_detection/samples/con

figs/ssdlite_mobilenet_v3_small_320x320_coco.config (Accessed: 18 September 2023) 

Rai N, Zhang Y, Ram BG, Schumacher L, Yellavajjala RK, Bajwa S, Sun X (2023) Applications 

of deep learning in precision weed management: A review. Comput Electron Agr 

206:107698  

Rasmussen J, Nielsen J, Streibig JC, Jensen JE, Pedersen KS, Olsen SI (2018) Pre-harvest weed 

mapping of Cirsium arvense in wheat and barley with off-the-shelf UAVs. Precis Agric 

20:983-999  

Raspberry Pi (2023) Raspberry Pi 4. Available online: 

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (Accessed: 18 September 

2023) 

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time 

object detection. Pages 779-788 in Proceedings from the IEEE Conference on Computer 

Vision and Pattern Recognition (CVPR). Las Vegas, NV: Institute of Electrical and 

Electronics Engineers 

Redmon J, Farhadi A (2018) YOLOv3: An incremental improvement. arXiv database 

1804.02767  



23 

Reinsel D, Gantz J, Rydning J (2018) The digitization of the world from edge to core. 

Framingham, MA: IDC White Paper #US44413318. 3 p 

Ren S, He K, Girshick R, Sun J (2016) Faste R-CNN: Towards real-time object detection with 

region proposed networks. arXiv database 1506.01497  

Rider TW, Vogel JW, Dille JA, Dhuyvetter KC, Kastens TL (2006) An economic evaluation of 

site-specific herbicide application. Precis Agric 7:379-392  

Roman V (2020) CNN transfer learning & fine tuning. Available online: 

https://towardsdatascience.com/cnn-transfer-learning-fine-tuning-9f3e7c5806b2. 

Accessed: March 31, 2023 

Rozenberg G, Kent R, Blank L (2021) Consumer-grade UAV utilized for detecting and analyzing 

late-season weed spatial distribution patterns in commercial onion fields. Precis Agric 

22:1317-1332  

Ruder S (2021) Recent advances in language model fine-tuning. Available online: 

https://www.ruder.io/recent-advances-lm-fine-tuning/. Accessed: March 31, 2023 

Ruigrok T, van Henten E, Booij J, van Boheemen K, Kootstra G (2020) Application-Specific 

Evaluation of a Weed-Detection Algorithm for Plant-Specific Spraying. Sensors 20:7262  

Schmidhuber J (2015) Deep learning in neural networks: An overview. Neural Networks 61:85-

117  

Sharpe SM, Schumann AW, Yu J, Boyd NS (2020) Vegetation detection and discrimination 

within vegetable plasticulture row-middles using a convolutional neural network. Precis 

Agric 21:264-277  

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image 

recognition. arXiv database 1409.1556  



24 

Sivakumar ANV, Li J, Scott S, Psota E, Jhala AJ, Luck JD, Shi Y (2020) Comparison of object 

detection and patch-based classification deep learning models on mid- to late-season 

weed detection in UAV imagery. Remote Sens 12:2136  

Soltani N, Dille JA, Burke IC, Everman WJ, VanGessel MJ, Davis VM, Sikkema PH (2016) 

Potential corn yield losses from weeds in North America. Weed Technol 30:979-984  

Soltani N, Dille JA, Burke IC, Everman WJ, VanGessel MJ, Davis VM, Sikkema PH (2017) 

Perspectives on potential soybean yield losses from weeds in North America. Weed 

Technol 31:148-154  

Stanford University (2020) ImageNet Large Scale Visual Recognition Challenge (ILSVRC). 

Available online: https://www.image-net.org/challenges/LSVRC/. Accessed: March 29, 

2023 

Subeesh A, Bhole S, Singh K, Chandel NS, Rajwade YA, Rao KVR, Kumar SP, Jat D (2022) 

Deep convolutional neural network models for weed detection in polyhouse grown bell 

peppers. Artif Intell Agr 6:47-54  

Swinton SM (2005) Economics of site-specific weed management. Weed Sci 53:259-263  

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A 

(2014) Going deeper with convolutions. arXiv database 1409.4842  

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wonja Z (2015) Rethinking the Inception 

architecture for computer vision. arXiv database 1512.00567  

Tao A, Barker J, Sarathy S (2016) DetectNet: Deep neural network for object detection in 

DIGITS. NVIDIA Developer Technical Blog. Available online: 

https://developer.nvidia.com/blog/detectnet-deep-neural-network-object-detection-digits/. 

Accessed: April 3, 2023 



25 

Tavanaei A, Ghodrati M, Kheradpisheh SR, Masquelier T, Maida A (2019) Deep learning in 

spiking neural networks. Neural Networks 111:47-63  

Thanh Le VN, Truong G, Alameh K (2021) Detecting weeds from crops under complex field 

environments based on Faster RCNN. Pages 350-355 in Proceedings of the IEEE Eighth 

International Conference on Communications and Electronics. Phu Quoc Island, 

Vietnam: Institute of Electrical and Electronics Engineers 

Turing A (1950) Computing Machinery and Intelligence. Mind LIX:433-460  

Ultralytics (2022) yolov5. Github repository, available online: 

https://github.com/ultralytics/yolov5. Accessed: April 4, 2023 

Ultralytics (2023) YOLOv8 docs. Available online: https://docs.ultralytics.com/. Accessed: April 

3, 2023 

Vadapalli P (2020) Using convolutional neural networks for image classification. Available 

online: https://www.upgrad.com/blog/using-convolutional-neural-network-for-image-

classification/. Accessed: March 31, 2023 

Vijayabhaskar J (2020) A coder’s guide to IoU, non-max suppression, and mean average 

precision. Available online: https://vijayabhaskar96.medium.com/practitioners-guide-to-

iou-non-max-suppression-and-mean-average-precision-e09de73a2bd8. Accessed: April 4, 

2023 

Wang T, Wu J, Coates A, Ng AY (2012) End-to-end text recognition with convolutional neural 

networks. Pages 3304-3308 in Proceedings of the 21st International Conference on 

Pattern Recognition. Tsukuba, Japan: ICPR2012 

Weed-It (2023) Our applications. Available online: https://www.weed-it.com/our-applications. 

Accessed: September 21, 2023 



26 

Weis M, Sökefeld M (2010) Detection and identification of weeds. Pages 119-134 in Oerke EC, 

Gerhards R, Menz G, Sikora R, eds. Precision Crop Protection - the Challenge and Use of 

Heterogeneity. Springer, Dordrecht  

Wiles LJ (2009) Beyond patch spraying: site-specific weed management with several herbicides. 

Precis Agric 10:277-290  

Wu B, Wan A, Iandola F, Jin PH, Keutzer K (2019) SqueezeDet: Unified, small, low power fully 

convolutional neural networks for real-time object detection for autonomous driving. 

arXiv database 1612.01051  

Xiao D, Shan F, Li Z, Le BT, Liu X, Li X (2019) A target detection model based on improved 

tiny-yolov3 under the environment of mining truck. IEEE Access 7:123757-123764  

Yu J, Schumann AW, Cao Z, Sharpe SM, Boyd NS (2019) Weed detection in perennial ryegrass 

with deep learning convolutional neural network. Front Plan Sci 10:1422  

Yu J, Schumann AW, Sharpe SM, Li X, Boyd NS (2020) Detection of grassy weeds in 

bermudagrass with deep convolutional neural networks. Weed Sci 68:545-552  

Yu J, Schumann AW, Sharpe SM, Li X, Boyd NS (2020) Detection of grassy weeds in 

bermudagrass with deep convolutional neural networks. Weed Sci 68:545-552  

Zhong L, Hu L, Zhou H (2019) Deep learning based multi-temporal crop classification. Remove 

Sens Environ 221:430-443  

[WSSA] Weed Science Society of America (2016) WSSA Survey Ranks Palmer Amaranth as the 

Most Troublesome Weed in the U.S., Galium as the Most Troublesome in Canada. 

https://wssa.net/2016/04/wssa-survey-ranks-palmer-amaranth-as-the-most-troublesome-

weed-in-the-u-s-galium-as-the-most-troublesome-in-canada. Accessed: September 21, 

2023  



27 

Chapter 2 - Use of open-source object detection algorithms to detect 

Palmer amaranth (Amaranthus palmeri) in soybean 

Note: This manuscript has been published in Weed Science and can be found with the following 

citation: Barnhart IH, Lancaster S, Goodin D, Spotanski J, Dille JA (2022) Use of open-source 

object detection algorithms to detect Palmer amaranth (Amaranthus palmeri) in soybean. Weed 

Sci 70:648-662 

 

 2.1 Abstract 

Site-specific weed management using open-source object detection algorithms could 

accurately detect weeds in cropping systems. We investigated object detection algorithms to 

detect Palmer amaranth (Amaranthus palmeri S. Watson, henceforth referred to as A. palmeri) in 

soybean [Glycine max (L.) Merr.]. The objectives were to (1) develop an annotated image 

database of A. palmeri and soybean to fine-tune object detection algorithms, (2) compare 

effectiveness of multiple open-source algorithms in detecting A. palmeri, and (3) evaluate the 

relationship between A. palmeri growth features and A. palmeri detection ability. Soybean field 

sites were established in Manhattan, KS, and Gypsum, KS, with natural populations of A. 

palmeri. Totals of 1,108 and 392 images were taken aerially and at ground level, respectively, 

between May 27 and July 27, 2021. After image annotation, 4,492 images were selected. 

Annotated images were used to fine-tune open-source faster regional convolutional (Faster R-

CNN) and single-shot detector (SSD) algorithms using a Resnet backbone, as well as the “You 

Only Look Once” (YOLO) series algorithms. Results demonstrated that YOLO v. 5 achieved the 

highest mean average precision score of 0.77. For both A. palmeri and soybean detections within 

this algorithm, the highest F1 score was 0.72 when using a confidence threshold of 0.298. A 

lower confidence threshold of 0.15 increased the likelihood of species detection, but also 

increased the likelihood of false-positive detections. The trained YOLOv5 data set was used to 
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identify A. palmeri in a data set paired with measured growth features. Linear regression models 

predicted that as A. palmeri densities increased and as A. palmeri height increased, precision, 

recall, and F1 scores of algorithms would decrease. We conclude that open-source algorithms 

such as YOLOv5 show great potential in detecting A. palmeri in soybean-cropping systems. 

 

Key words: Artificial intelligence, TensorFlow, YOLOv5, Faster R-CNN, Single Shot Detector, 

site-specific weed management. 
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 2.2 Introduction 

Site-specific weed management (SSWM) involves adapting weed management strategies 

to match weed variation within a given field (Fernández-Quintanilla et al. 2018). In agriculture, 

weeds often grow in distinct patches rather than uniformly across a field (Maxwell and Luschei 

2005); as a result, broadcast herbicide applications often treat areas of the field where no weeds 

are present. In theory, using SSWM could result in increased herbicide savings, decreased 

herbicide expenses, and decreased environmental contamination (Arsenijevic et al. 2021; 

Barroso et al. 2004; dos Santos Ferreira et al. 2019). An additional benefit is that SSWM could 

allow for the economical application of multiple herbicide mechanisms of action (MOAs) so that 

more expensive chemistries could be applied only where needed. Not only would this be less 

expensive for the farmer, but applications with diversified MOAs help to slow the development 

of herbicide-resistant weeds (Evans et al. 2015). In modern agriculture, successful weed control 

can be very difficult due to increases in herbicide-resistant weed cases, rising costs of herbicides, 

and shortages of crop protection products brought on by economic consequences of the COVID-

19 pandemic (Dayan 2021; Mordor Intelligence 2022). As such, strategies such as SSWM that 

aim to reduce input quantities and costs could potentially benefit farmers and contribute to the 

sustainability of cropping systems around the world (Bongiovanni and Lowenberg-Deboer 

2004). 

The key component to SSWM involves the accurate detection of weed positions within a 

given field, but the development of a robust and accurate detection system for field conditions 

remains a challenge (Gao et al. 2020). One of the ways this challenge is being addressed is by 

applying artificial intelligence using convolutional neural networks (CNNs). Convolutional 

neural networks are a type of deep neural network that excel at pattern recognition and can be 
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utilized in a variety of tasks ranging from image analysis to audio file analysis (Albawi et al. 

2017). The most common use of CNNs in the agricultural sector involves image analysis; CNNs 

analyze the textural, spectral, and spatial features of images and can extract features unseen by 

the human eye (Albawi et al. 2017; Sapkota et al. 2020). Fruit counting, weed detection, disease 

detection, and grain yield estimation are ways that CNNs have been used in agriculture (Biffi et 

al. 2021; Hussain et al. 2020, 2021; Sivakumar et al. 2020; Yang et al. 2019). 

Two approaches to documenting and treating weeds in the field are real-time in situ weed 

detection and herbicide application and scouting and developing weed maps to guide SSWM 

(Cardina et al. 1997; Somerville et al. 2020). In situ weed detection involves recognizing weeds 

in real time and can lead to plants being treated in a timelier manner. Platforms that have been 

developed to detect weeds in situ include “smart” sprayers, autonomous weeding robots, and 

unmanned aerial spraying vehicles (Sivakumar et al. 2020), most of which use some type of 

CNN technology. CNNs have been shown to be accurate in tasks such as segmentation (dividing 

images into regions based on pixel similarities), image classification (assigning a label to an 

image based on the objects present), and object detection (identifying objects within an image) 

(Biffi et al. 2021; Sivakumar et al. 2020; Stanford 2022; ThinkAutomation 2022). Object 

detection CNNs are typically at the forefront of in situ weed detection, as there is often greater 

value in detecting and localizing agricultural pests as opposed to assigning labels to images with 

pests located in them (Chen et al. 2021). 

 In recent years, open-source object detection algorithms have become available, such as 

those from the TensorFlow Object Detection API (Huang et al. 2017), the “You Only Look 

Once” (YOLO) algorithm series (first introduced by Redmon et al. 2016), and the Detectron 

algorithm series (Lin et al. 2018). These object detectors have been used to implement a variety 
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of computer vision tasks, including cancer cell detection (Al Zorgani et al. 2022), facial 

recognition (Mattman and Zhang 2019), underwater fish detection (Xu and Matzner 2018), and 

projects related to the development of self-driving vehicles (Kulkarni et al. 2018). Open-source 

algorithms are typically pretrained on very large data sets, such as the Microsoft COCO 

(Common Objects in Context) data set (Lin et al. 2014). Through utilizing a process called 

transfer learning, pretrained algorithm parameters can be fine-tuned to detect custom objects. 

Transfer learning involves using information learned from one object detection algorithm and 

applying this information to identify different, yet related, objects (Ghazi et al. 2017). This 

eliminates the need to train algorithms from scratch, which is a very computationally expensive 

and time-consuming process (Ruder 2021). Open-source algorithms fine-tuned to identify 

agricultural crops and weeds have been used in a variety of studies, including late-season species 

detection in soybean [Glycine max (L.) Merr.] of Palmer amaranth (Amaranthus palmeri S. 

Watson), waterhemp (Amaranthus tuberculatus (Moq.) Sauer], common lambsquarters 

(Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik.), and Setaria spp. (Sivakumar 

et al. 2020); detection of wild radish (Raphanus raphanistrum L.) and capeweed [Arctotheca 

calendula (L.) Levyns] in barley (Hordeum vulgare L.) (Thanh Le et al. 2021); and weed 

detection in a variety of crops, including lettuce (Lactuca sativa L.) (Osorio et al. 2020), carrots 

(Daucus carota L. var. sativus Hoffm.) (Ying et al. 2021), corn (Zea mays L.) (Ahmad et al. 

2021), and onions (Allium cepa L.) (Parico and Ahamed 2020). 

 For this study, we focused on detecting A. palmeri in soybean-cropping systems using 

open-source object detection algorithms. Amaranthus palmeri has been designated the most 

problematic weed in the United States (WSSA 2016), and it can reduce soybean yields by as 

much as 68% (Klingaman and Oliver 1994; Kumar et al. 2021). Therefore, controlling this weed 
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is very important for United States soybean producers. Large numbers of training images are 

necessary to train object detection algorithms to identify custom objects (Pokhrel 2020); 

however, nonproprietary image databases of A. palmeri are often unavailable. In addition, even 

though algorithms have been previously trained on A. palmeri in the midwestern United States 

(Sivakumar et al. 2020), we did not find many studies that investigated the relationship of model 

evaluation metrics as influenced by A. palmeri growth features, including canopy diameter, plant 

height, percent ground cover, and weed density. Understanding the relationship between 

algorithm evaluation metrics and A. palmeri growth features could benefit precision weed 

applications. For example, future databases could focus on collecting images of A. palmeri plants 

with growth features best detected by the algorithm. In addition, farmers and agricultural 

professionals could gain a better understanding of which field conditions would benefit the most 

from deploying these algorithms. For instance, A. palmeri infestations with large plants and high 

populations may not be the best environments to use this technology for site-specific 

applications. 

We hypothesized that as weed diameter and height increase, object detection algorithms 

will be better able to identify A. palmeri plants; however, as A. palmeri density and ground cover 

increases, ability to identify will decrease. Object detection algorithms can have difficulty 

detecting both small objects (Li et al. 2017) and detecting all object occurrences if objects are 

present in high densities in an image (Sun et al. 2022). The specific objectives of this study were 

(1) to develop an annotated image database of A. palmeri and soybean with multiple weed 

densities and soybean row spacings that can be used to fine-tune object detection algorithms, (2) 

compare multiple open-source algorithms’ effectiveness in detecting A. palmeri, and (3) evaluate 
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the relationship between A. palmeri growth features (diameter, height, density, and ground 

cover) and A. palmeri detection ability.  

 

 2.3 Materials and methods 

 2.3.1 Image acquisition 

To establish conditions representative of multiple A. palmeri densities and soybean-cropping 

systems, field locations were identified at the Kansas State University, Department of Agronomy 

Ashland Bottoms Research Farm near Manhattan, KS (39.122°N, 96.635°W) and at the Lund 

Research Farm near Gypsum, KS (38.797°N, 97.448°W) in 2021. At each location, 24 plots of 

soybeans were planted at a seeding rate of 331,000 seed ha−1: 12 plots were planted at 38-cm-

wide row spacing, and 12 plots were planted at 76-cm-wide row spacing; plot dimensions were 

3.1-m wide and 9.1-m long. Both field sites had a naturally occurring population of A. palmeri 

that was allowed to germinate and grow with the soybeans. These field locations allowed 

multiple densities of A. palmeri to be photographed while growing among soybean in different 

row spacings, providing a greater diversity of field situations to be “seen” by each algorithm. 

 The training database was built with 1,500 images taken of A. palmeri only, soybean 

only, or both species between May 27 and July 27 (Table 1). Imagery was taken both with a TG-

610 handheld camera (OM Digital Solutions, Hachioji-City, Tokyo, Japan), and with a DJI 

Inspire 1 unmanned aerial vehicle (UAV) equipped with a Zenmuse X5R RAW camera (DJI, 

Shenzhen, China). The TG-610 has a sensor size of 28 mm2, whereas the Zenmuse X5R has a 

larger sensor size of 225 mm2. To increase the variability of the photographed vegetation, 

aboveground altitudes at which the images were taken varied from 1.5 m to 8 m, often with the 

minimum height chosen on any given day determined by vegetation height. For example, as the 
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plants increased in height, it became necessary to increase the UAV flight altitude to prevent 

propeller downdraft from collapsing the plants. To add an additional source of variability, 

images were also collected under a variety of lighting conditions. 

 

2.3.2 Field-collected data 

To model algorithm evaluation metrics related to A. palmeri growth features, plant 

height, canopy diameter, and density were taken weekly between the middle rows of each plot 

from 1 to 4 wk after planting (WAP) and 1 to 5 WAP for the Manhattan and Gypsum plots, 

respectively. Amaranthus palmeri density was measured each week in a 0.25-m2 quadrat placed 

at random within these rows. A total of four height and diameter measurements were recorded 

from random plants within the quadrats. Within this study, A. palmeri height was defined as the 

tallest measurable structure, and diameter was defined as the widest portion of the plant within 

the top 20 cm. In plots with a total of fewer than four A. palmeri plants observed, height and 

diameter measurements corresponded to the total number of observable plants. Data were taken 

on A. palmeri plants after the formation of the first true leaf and any growth stage afterward, as 

cotyledons proved to be too difficult to annotate on the image data set. On these same dates, five 

photos were taken within the middle of each plot with the handheld camera, approximately 1.5 m 

above the canopy. Five photos were taken to provide a representative sample of the plot, as plots 

were 9.1 m in length. These images were kept separate from the training data set and were used 

to evaluate algorithm performance within each plot.  
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 2.3.3 Image processing and data annotation 

Raw image outputs from the handheld and the Zenmuse cameras produced images with 

dimensions that were too large and would exceed processor memory capacity. To begin, every 

input image was cropped to dimensions of 2,880 × 2,880 pixels to remove the “fish-eye” effect 

that often accompanies aerial imagery (Gurtner et al. 2007). Next, these images were tiled into 

smaller dimensions of 1,024 × 1,024 pixels using Python 3.9.7 (Python Software Foundation 

2022) and the Pillow module (Clark et al. 2022). This allowed images large enough to retain 

features necessary for labeling, but small enough so as to not exhaust processor memory during 

training. Each input image was tiled into 20 new images of 1,024 × 1,024 pixels for a total of 

30,000 images, which allowed for more images to be added to the training database. Images in 

which no plant features were visible or those of poor quality were simply discarded and not 

labeled; in all, 4,492 images were selected for labeling. 

 Images were labeled using the annotation tool LabelImg (Tzutalin 2015), which allows 

users to draw rectangular bounding boxes around objects within imagery and assign classes to 

each box. In many cases, the presence of multiple classes of objects can lead to better detection 

results due to the presence of multiple feature gradients (Oza and Patel 2019). Therefore, we 

chose to annotate two classes for this study: A. palmeri and soybean. Using the same methods 

described by Sivakumar et al. (2020), bounding boxes were drawn over both individual and 

patches of A. palmeri and soybean. In the event of irregularly shaped plants or patches of plants, 

multiple bounding boxes were drawn to encompass the entirety of the plant features. Labeling 

partial sections of irregularly shaped plants has been shown to be beneficial to object detectors 

(Sharpe et al. 2018, 2020a; Zhuang et al. 2022), so these irregular features were not ignored. In 

any given image, both plant species could be present, so they were labeled accordingly. 
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Amaranthus palmeri plants were labeled at all growth stages ranging from the formation of the 

first true leaf through inflorescence, and soybeans were labeled from the VE-VC stage through 

the R2 stage (Fehr et al. 1971) (Figure 1). Amaranthus palmeri plants visible within each labeled 

image ranged from no plants (only soybean labeled) to roughly 115 labeled specimens. 

Throughout the image data set, soybean growth stage was homogeneous on each plant date, but 

A. palmeri could have multiple growth stages visible due to its ability to emerge throughout the 

growing season (Jha and Norsworthy 2009; Shyam et al. 2021). Figure 2 illustrates the image 

labeling process. 

The images that were selected for labeling contained a total of 10,494 and 10,312 A. 

palmeri and soybean annotations across all growth stages, respectively. The data set was then 

divided into 90% training and 10% test images, used to train and evaluate the algorithms, 

respectively. The training and test data sets consisted of 4,042 and 450 images, respectively. The 

aforementioned images taken over the plots for analysis of A. palmeri growth features and 

algorithm evaluation metrics were not included in the training or testing data sets but were kept 

separate for further analysis. 

 

 2.3.4 Algorithm selection 

Three open-source algorithm architectures were used in this study: faster regional 

convolutional neural network (Faster R-CNN), single-shot detector (SSD), and two YOLO 

algorithms. Faster R-CNN algorithms are a modern development of what are called regional-

based CNNs, first proposed by Girshick et al. (2014). This approach was revolutionary, in that it 

was one of the first large-scale successful approaches to addressing the task of object localization 

and detection (Balasubramanian 2021). As input images are fed into the algorithm, areas of 
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interest based on groups of pixels are extracted from the image and fed into the neural network 

(Oinar 2021). The architecture has been updated with the development of Fast R-CNN in 2015 

(Girshick 2015) and finally with Faster R-CNN in 2016 (Ren et al. 2017), with each version 

being faster in detection speed than the previous. Faster R-CNN is known as a two-stage object 

detector, in that it first extracts regions of interest where it is likely that the objects will be and 

then classifies these regions of interest (Du et al. 2020). Consequently, Faster R-CNN is known 

to perform better in terms of detection accuracy but has slower detection speeds (Sivakumar et 

al. 2020). 

 SSD and YOLO algorithms were proposed by Liu et al. (2016) and Redmon et al. (2016), 

respectively. Considered single-stage object detectors, they are generally faster and less 

computationally expensive than Faster R-CNN algorithms (Liu et al. 2016), allowing for faster 

detection and suitable for real-time detection applications. Instead of extracting regions of 

interest as R-CNN algorithms do, they accomplish object localization and classification in one 

forward pass of the neural network (Forson 2017). As in Sivakumar et al. (2020), Faster R-CNN 

was chosen for this project due to its detection performance, whereas SSD and YOLO algorithms 

were chosen due to their inference speeds.  

The backbone models refer to the specific neural networks behind the architectures and 

allow for feature extraction from the input image (Shimao 2019). These networks are 

interchangeable, with multiple networks able to be used as backbone models (Li et al. 2020). For 

this study, the Faster R-CNN architecture backed with the ResNet (He et al. 2016) network was 

chosen with multiple layers, including ResNet-50, ResNet-101, ResNet-152, and Inception 

ResNet-V2 (Szegedy et al. 2017). Additionally, ResNet-50 and ResNet-152 were also chosen as 

backbone models for the SSD architecture.  
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For the YOLO algorithms, YOLOv4 (Bochkovskiy et al. 2020) and YOLOv5 (Jocher et 

al. 2020) were used, both running on the Cross Stage Partial (CSP) Darknet53 (Bochkovskiy et 

al. 2020) network. YOLOv5 also implements a Path Aggregation Network, allowing for both 

increased propagation of lower-level features and improvements in using localization signals 

(Carlos and Ulson 2021). This allows for an increase in accuracy when localizing an object 

(Carlos and Ulson 2021). Additionally, the YOLOv5 algorithm consists of four releases: 

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x (ultralytics 2022b). YOLOv5x was chosen for 

this experiment, as it is considered the most accurate object detector of the four (Carlos and 

Ulson 2021). Both YOLO algorithms were obtained from their respective GitHub repositories 

(Alexey 2022; Jocher 2022a). YOLO algorithms down-sample input images by a factor of 32 

when training (Hui 2018), so input images with width and height dimensions divisible by 32 are 

necessary. Our input image dimensions of 1,024 × 1,024 pixels fit this criterion. All Faster R-

CNN and SSD algorithms were obtained from the TensorFlow 2 Detection Model Zoo 

(TensorFlow 2021); the respective algorithms with input dimension requirements of 1,024 × 

1,024 pixels were chosen. All YOLO and TensorFlow models selected were pretrained, thus 

eliminating the need to train from scratch (Ruder 2021). 

 

 2.3.5 Training 

All algorithms were trained on a virtual Ubuntu 18.04 computer available on Paperspace, 

a virtual machine learning platform (Paperspace Cloud Computing, 

https://www.paperspace.com). The computer was equipped with an Intel® Xeon® E5-2623 v4 

processor (Intel Technologies, Santa Clara, California, United States) equipped with 16 CPU 
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cores and 60 GB of RAM. To increase training speed, training was done utilizing a NVIDIA 

P6000 Graphics Processing Unit (GPU) with 24 GB of RAM (NVIDIA, Santa Clara, CA, USA). 

For all algorithms, the default training hyperparameters were accepted, except for the 

learning rates for both the TensorFlow algorithms and batch sizes for all algorithms. As 

algorithm loss was monitored during training, learning rate had to be lowered below default 

settings for most Faster R-CNN and SSD algorithms due to an issue with exploding gradients. 

When doing so, we also lowered the warm-up learning rate to a value below the learning rate to 

avoid errors during training. As input images were large, batch sizes were reduced to prevent 

exhausting the GPU’s memory capacity. Larger batch sizes were possible with smaller 

algorithms (i.e., Faster R-CNN ResNet-52 and Faster R-CNN ResNet-101), but batch sizes had 

to be reduced for larger algorithms (i.e., Faster R-CNN Inception ResNet-V2) to avoid the 

“Resource Exhausted Error:” (TensorFlow 2017) indicating that the GPU was out of memory. 

Because batch size has been said to not be a significant factor in affecting algorithm performance 

(Ghazi et al. 2017), we did not expect this to affect the outcome of our algorithms. Algorithm 

training information is presented in Table 2. 

 During the image annotation process, all annotations were saved in Pascal VOC format. 

Pascal VOC format is compatible with TensorFlow algorithms, but not with YOLO algorithms. 

Therefore, before training the YOLO algorithms, copies of the annotations were saved in a 

separate folder and converted to YOLO format using Python 3.9.7. The script that was used can 

be obtained on the Convert PascalVOC Annotations to YOLO GitHub website (vdalv 2017). 

All algorithms were trained for the default 100,000 steps, except for the Faster R-CNN 

Inception Resnet-V2, YOLOv4, and YOLOv5 algorithms. The default number of training steps 

for the Faster R-CNN Inception ResNet-V2 algorithm is 200,000, but upon monitoring the loss, 
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it was determined that no further increases in algorithm training were being made, and training 

was terminated early. YOLOv4 training involves iterations, thereby defining a batch size before 

training and an iteration completing when the algorithm has processed the number of images 

specified in the batch size. Finally, YOLOv5 output metrics were reported after each completed 

epoch, which is defined as one iteration through the entire training data set (Brownlee 2018). 

Upon viewing an output of the evaluation metrics for each epoch, we terminated algorithm 

training after 41 epochs, and the best weights were automatically saved for analysis. 

Image augmentation is an important aspect of model training, as it allows for a more 

comprehensive set of images to be passed through the algorithm and reduce overfitting (Shorten 

and Khoshgoftaar 2019). Each of the algorithms contained code to automatically augment 

images during algorithm training, according to each algorithm’s default settings. The Faster R-

CNN architecture augmentations included random horizontal flips, hue adjustments, contrast 

adjustments, saturation adjustments, and random image cropping. The SSD architectures used 

random horizontal flips and random image cropping augmentations. For the YOLO algorithms, 

the YOLOv4 augmentations included random image saturation, exposure, and hue adjustments 

(Alexey 2020). Finally, the YOLOv5 model used random mosaicking. This process involves 

combining an input image with three random images from the training data set. The new mosaic 

is then passed through the algorithm for training (Jocher 2022b). 

 

 2.3.6 Algorithm evaluation and statistical analysis 

To measure overall performance of the algorithms, the metrics of precision, recall, and F1 score 

were computed for the test data set (Shung 2018). Using an intersect over union (IoU) threshold 

of 0.5 (50%) between the annotated objects and the predicted bounding boxes (Henderson and 
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Ferrari 2017), true-positive (TP) and false-positive (FP) detections are determined. IoU is 

defined as the overlap between the ground truth bounding boxes drawn during annotation and the 

predicted bounding box determined by the computer (Jin et al. 2022), divided by the total area of 

each bounding box (Figure 3). IoU values greater than or equal to 0.5 were considered TP, and 

values less than 0.5 were considered FP predictions (Henderson and Ferrari 2017). 

Precision is the ratio between the number of TP predictions and the total number of 

positive predictions, with the lowest value being 0 and the highest value being 1 (Hussain et al. 

2021). Precision is reduced when an algorithm makes many incorrectly positive, or FP, 

predictions or a low number of TP predictions but is increased by larger numbers of correct 

predictions and low FP detections (Gad 2021). Precision was computed with the following 

equation: 

Precision = 
TP

TP + FP
        [1] 

 Recall, also referred to as the TP rate (Hussain et al. 2021), is a measure of how well a 

given algorithm identifies TP predictions (Huilgol 2020). Also ranging from 0 to 1, a higher 

recall indicates better TP predictions. Recall was computed as follows: 

Recall = 
TP

TP + FN
      [2] 

where FN denotes false-negative detections. 

  The F1 score is the harmonic mean between precision and recall (Zhong et al. 2019), 

with the best score being 1 and the worst being 0 (Hussain et al. 2021). It was calculated as: 

F1 = 2 × 
Precision × recall

Precision + recall
       [3] 

 The average precision (AP) for each class is determined by graphing a precision–recall 

curve for each test image for both classes and computing the area beneath each curve (Henderson 

and Ferrari 2017). The AP is then used to find the mean AP (mAP) of the algorithm, which was 
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calculated from an IoU threshold of 0.5 in this study using the following equation (Jin et al. 

2022): 

mAP = 
∑ AP𝑖𝑁

i = 1

𝑁
      [4] 

where N corresponds to the total number of object classes. Values for mAP range from 0 to 1, 

with higher values corresponding to larger areas beneath the curve. For this study, the algorithm 

with the largest mAP was selected to analyze the model evaluation metrics for the photos taken 

above the individual plots. 

 For each measurement date, an average for each plot was determined for all field-

collected data (A. palmeri height, diameter, and density). Amaranthus palmeri coverage was 

computed by multiplying the average canopy area by the average density per plot, assuming a 

circular shape: 

T = π𝑟2𝑛       [5] 

where T is the average total A. palmeri coverage (m2), r is the average A. palmeri radius (m), and 

n is the average weed density (plants m−2).  

Each test image taken over the plots was passed through the best-performing algorithm, 

and precision, recall, and F1 scores were generated. Each evaluation metric was averaged within 

its respective plot. Statistical analysis was done using R v. 4.1.2 (R Core Team 2021). 

Regression models (see “Results and Discussion” section) were used to test whether field-

measured data (A. palmeri density, height, and coverage) significantly predicted algorithm 

evaluation metrics. Data were combined over all collection dates and locations for this analysis, 

as regression assumptions were checked visually for each location and were determined to meet 

all assumptions (data not shown) (Osborne and Waters 2002). Best regression models were 

selected based on the Akaike information criterion (AIC) values, such that the model with the 
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lowest AIC value was selected for each evaluation metric. AIC values and weights (indicating 

the total predicative power among all tested models) were found using the AICCMODAVG 

package in R (Mazerolle 2020). Density and coverage were found to be highly collinear (data not 

shown), so these variables were never included in the same model together. 

 

 2.4 Results and Discussion 

 2.4.1 Algorithm comparison 

The results of algorithm training are presented in Figure 4. After training, it was shown 

that YOLOv5 achieved the highest overall mAP value of 0.77. YOLOv4 and Faster R-CNN 

ResNet50 both achieved acceptable results with mAP values of 0.70, followed by SSD 

ResNet152 and Faster R-CNN Inception ResNet(v2) with values of 0.68. In most cases, the mAP 

values for the single-stage detectors (YOLO and SSD) on this data set were equal or superior to 

those of the two-stage detectors. Faster R-CNN models are generally considered accurate object 

detectors (Sivakumar et al. 2020), but they can be sensitive to background noise and often have 

difficulty detecting small objects (Amin and Galasso 2017; Roh and Lee 2017). Our test data set 

contained images of multiple A. palmeri and soybean growth stages, including very small plants 

of both species. This could explain why the single-stage object detectors often outperformed the 

Faster R-CNN models in this study. Additionally, we were not surprised to see the higher 

performances of YOLOv4 and YOLOv5 algorithms, as previous versions of YOLO have been 

reported to detect weeds faster than Faster R-CNN algorithms and with greater accuracy than 

SSD algorithms (Ahmad et al. 2021). Given these results, YOLOv5 was selected for further 

analysis.  
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  The YOLOv5 algorithm in this study was trained for 41 epochs (Figure 5), taking 

approximately 15 h to complete. Training was monitored based on the changes in mAP per 

epoch. Algorithm training was terminated after mAP values were seen to “plateau,” thus 

indicating no further meaningful gains in algorithm performance were expected. During training, 

YOLOv5 saved the best-performing weights, which were used to compute all further algorithm 

evaluations.  In the precision–recall curve for YOLOv5 (Figure 6), the AP of A. palmeri (0.788) 

is greater than that of soybean (0.756), indicating that detection was slightly better for A. palmeri 

than for soybean. This could be related to differences in the way that the species were annotated. 

As soybean increased in size, larger bounding boxes were drawn over multiple plants, as there 

was a high level of overlap between individual plants (Figure 7). Separating out the individual 

plants would have been both difficult and time-consuming. On the other hand, although there 

were some overlaps observed with A. palmeri, these were much less pronounced and allowed for 

more individual weed plants to be annotated. Therefore, individual A. palmeri plants were 

presumably easier for the YOLOv5 algorithm to identify. 

When using YOLOv5 for detection, users can specify a confidence threshold as an input 

parameter to the detection script (ultralytics 2022a). This confidence threshold acts to limit the 

number of FP scores displayed in the final prediction (Wenkel et al. 2021). In our algorithm, 

lower confidence thresholds increased the likelihood of detecting either an A. palmeri or soybean 

plant, but the FP detection rates increased as a result. Figure 8 illustrates the F1 scores calculated 

on the test image data set. Interpretation of Figure 8 indicates that at a confidence threshold of 

0.298, the highest F1 score (0.72) was achieved for both classes. This indicates that at this 

threshold, both precision and recall will be optimized for best detection results. As this 
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confidence threshold is a recommended value, users still have the option to set the threshold to a 

value of their choosing. 

There were differences between detections using lower (0.15) and higher (0.70) 

confidence thresholds (Figure 9). With multiple objects present in this image, YOLOv5 

confidence in object detections ranged from low (0.36) to high (0.86); values are displayed 

immediately following the class prediction on each box. If this algorithm were to be used by a 

precision ground sprayer or a similar platform, we propose that using a lower confidence 

threshold would result in more A. palmeri plants being identified and treated. Consequently, the 

likelihood of soybean being incorrectly detected as A. palmeri would increase, but in soybean-

cropping systems with herbicide-tolerant traits, this would not result in crop damage, assuming 

all current labels for such applications were followed. An increase in A. palmeri FP detections 

would likely lead to more herbicide being applied to the field. Interestingly, A. palmeri FP 

detections were not just limited to soybean; other broadleaf weeds such as carpetweed (Mollugo 

verticillata L.) and A. theophrasti were sometimes detected as A. palmeri with lower confidence 

intervals (Figure 10). This suggests that some weeds with features similar to A. palmeri plants 

would be sprayed if confidence intervals were lowered upon deployment. Regardless, further 

research is needed to determine which threshold would be optimal to reduce the volume of 

herbicides applied, while still achieving acceptable weed control.  

 

 2.4.2 Modeling YOLOv5 evaluation metrics 

 

Only data for the A. palmeri class were used to model A. palmeri physical characteristics in 

relation to YOLOv5 evaluation metrics. For all regression models analyzed, the model P-values 
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were significant, indicating that all ground-measured variables affected the evaluation metrics 

(Table 3). However, it was determined that model 5, which included the main effects and 

interaction effect of A. palmeri density and height, was the model that best fit the data. For 

precision, recall, and the F1 score, the model carried 72%, 86%, and 91% of the weights from the 

models that were compared, respectively. Therefore, this model was selected to describe the 

relationship between model evaluation metrics for density and height. 

 For all evaluation metrics analyzed with model 5, the interaction coefficient for density 

and height was significant (P = 0.049, 0.016, and 0.010 for precision, recall, and F1 score, 

respectively) (Table 4). As smaller weeds are generally more susceptible to control (Kieloch and 

Domaradzki 2011), we chose to model our results with four heights representing A. palmeri 

plants at early growth stages. The results of these predictions by the YOLOv5 algorithm 

indicated that smaller, younger A. palmeri plants growing at lower densities were detected better 

than taller plants (Figure 11). The results were as anticipated for density, but the prediction 

suggesting that YOLOv5 detection ability was greater for smaller plants was surprising, as 

species identification is often easier on larger plants with distinctive features. This may have 

been because there were a greater number of A. palmeri annotations of younger, smaller plants as 

opposed to larger, more mature plants. Additionally, larger plants have canopies that overlap 

with each other, making it difficult to distinguish and label large individual plants. Regardless, 

these predictions were encouraging, as algorithms that can detect smaller weeds are of more 

practical use, because weeds can be controlled much more easily when they are younger and 

smaller in size (Naghashzadeh and Beyranvand 2015). 

 In relation to weed density affecting algorithm performance, our study conflicts with Yu 

et al. (2020), in that they found that images with higher weed densities generally led to better 
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algorithm detection results than those with lower weed densities. However, the study by Yu et al. 

(2020) utilizes image classification rather than object detection. Rather than localizing the weeds 

within the image, the entire input image was classified with the weed species that were visible. 

Image classification for weed detection comes with some disadvantages, however, as the location 

of individual weeds was not provided, and multiple weed species within an image were not able 

to be detected (Ahmad et al. 2021). With object detection algorithms, object localization within 

the image allows for weeds to be located and controlled where they occur. However, we 

hypothesize that this application is best suited for postemergence applications (in the case of 

using precision herbicide application technology) where weed density is relatively low. Fields 

with very high weed densities would likely not benefit from a site-specific herbicide application, 

as the volume of herbicide needed for control would likely not be statistically different from a 

whole-field broadcast application. Further research is needed to determine the optimum weed 

density beyond which precision weed control has no economic or environmental benefits. 

 The overall precision, recall, and F1 scores computed for the 450 images in the test data 

set were 0.71, 0.70, and 0.71, respectively (data not shown). A precision of 0.71 indicates that 

the YOLOv5 algorithm was 71% accurate in successfully predicting A. palmeri and soybeans. 

Likewise, a recall of 0.70 indicates that the algorithm correctly predicted 70% of the plants 

belonging to either class (Jin et al. 2022). These results were lower than previously reported by 

other YOLO weed detectors (Jin et al. 2022; Zhuang et al. 2022). However, our “test” data set 

consisted of images randomly selected from the large-input database and had a variety of A. 

palmeri growth stages and population densities. When evaluating YOLOv5 evaluation metrics 

on images taken within the plots with lower A. palmeri densities and shorter plant heights, the 

algorithm precision, recall, and F1 scores greatly improved. Based on the regression model fit to 
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the data, A. palmeri plants 2-cm tall and growing at a density of 1 plant m−2 would be detected 

with precision, recall, and F1 scores of 0.87, 0.93, and 0.89, respectively. 

YOLO algorithms have been used previously for weed detection. Ahmad et al. (2021) 

achieved an overall mAP score of 0.543 when using YOLOv3 (Redmon and Farhadi 2018) to 

detect redroot pigweed (Amaranthus retroflexus L.), giant ragweed (Ambrosia trifida L.), 

common cocklebur (Xanthium strumarium L.), and green foxtail [Setaria viridis (L.) P. Beauv.]. 

Hussain et al. (2020) developed an in situ sprayer using both YOLOv3 and YOLOv3-tiny 

(Adarsh et al. 2020) as backbone algorithms to detect C. album, achieving mAP scores of 0.932 

and 0.782, respectively. Sharpe et al. (2020b) achieved good detection results when training the 

YOLOv3 algorithm to identify general classes of grasses, broadleaves, and sedge species; 

further, they found that including multiple classes (as opposed to a single class) in their 

algorithm increased precision, recall, and F1 metrics. Hu et al. (2021) used YOLOv3 and 

YOLOv4 to detect 12 different weed species common to rice (Oryza sativa L.) and found that 

YOLOv4 achieved a mAP score that was 0.116 higher than YOLOv3. Our best mAP score was 

slightly lower than some of these YOLO weed detectors; however, it must be mentioned that this 

data set was collected with multiple cameras covering a variety of A. palmeri densities and 

growth stages. Data sets such as those collected by Jin et al. (2022) and Zhuang et al. (2022) 

consisted of a handheld camera taking multiple images at a consistent height. In this study, we 

collected imagery ranging from 1.5 m to 8 m above ground level.  While many data sets 

collected consist of “ideal” specimens including plants grown in greenhouses or photos of 

individual plants, our data set was based on what a field sprayer or application UAV would 

observe in the field. As a result, during the labeling process, several overlapping bounding boxes 

had to be drawn, and it was impossible for each image to contain labels for individual plants.  
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In conclusion, this research demonstrated that YOLOv5, a free and open-source object 

detection algorithm, can detect A. palmeri in soybean-cropping systems. As site-specific 

herbicide applications become more widespread due to the potential for herbicide savings and 

environmental benefits, open-source algorithms such as YOLOv5 could enable increased 

development and adoption of precision weed detectors. Furthermore, this research suggests that 

our algorithm may be better at detecting smaller as opposed to larger A. palmeri plants. Upon 

further refinement and training of the algorithm, it may be of great use to growers, as smaller 

weeds are much more susceptible to control than larger ones. 

Future research and improvements to our model will include adding more images to the 

data set. We included different imagery heights in this study to create a data set that could be 

utilized by multiple precision agriculture platforms such as precision ground sprayers and 

pesticide application UAVs. In the future, construction of specialized data sets that consist of 

imagery for each type of platform would be collected. For instance, imagery collected to train an 

algorithm for a precision ground sprayer should be at a height consistent with the sensors on the 

sprayer itself, that is, 60 cm above the target canopy. In this experiment, we trained the object 

detectors to identify two species (A. palmeri and soybean), and a future goal is to expand the 

number of weed species that can be detected by the YOLOv5 model. An increase in both the 

number of images and number of annotated weed species in these specialized data sets would 

increase the mAP of the YOLOv5 algorithm and reduce errors in object detection (Linn et al. 

2019). Equal distribution of annotations among species is important when collecting these 

images. With further improvements to the algorithm, field tests will need to be carried out to 

both optimize weed detection and to treat weeds in real time using a precision ground sprayer 

with high-resolution cameras oriented close to plant canopies. 
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 2.7 Figures 

 

  

Figure 2.1 Examples of images collected for soybean in the VE - VC (A) and R2 (B) growth 

stages. 
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Figure 2.2 Illustration of the annotation process. Amaranthus palmeri and soybean plants are 

labeled in this figure with orange and white boxes, respectively. Bounding boxes overlap with 

neighboring bounding boxes when plant features are irregular. In cases where a single bounding 

box could not encompass a plant without including a plant of another species, multiple irregular 

bounding boxes were drawn on a single specimen. 
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Figure 2.3 Intersection over union (IoU) equation, defined as the overlap between the ground 

truth annotation and the computer prediction bounding box, divided by the total area of the two 

bounding boxes. IoU overlaps greater than 0.5 were considered true-positive predictions, 

whereas overlaps less than 0.5 were considered false-positive predictions. 
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Figure 2.4 Mean average precision (mAP) results of each model after training. YOLOv5 was 

considered the best-performing algorithm of each tested model with a mAP of 0.77. 
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Figure 2.5 Change in mean average precision (mAP) @ 0.5 over each epoch during training. 

mAP was reported after the completion of each epoch. Training was terminated after visual 

inspection of curve and when mAP @ 0.5 curve was seen to “plateau.” 
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Figure 2.6 Precision–recall curve for YOLOv5. Amaranthus palmeri achieved a slightly higher 

average precision (AP) (0.788) than soybean. Solid blue line represents mean average precision 

(mAP) computed on the test data set. The AP for each class and the mAP for the overall 

algorithm were representative of the area of the graph under each respective curve. 
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Figure 2.7 Image annotation of soybean at the R2 growth stage. As soybean populations were 

much higher than Amaranthus palmeri populations, there was a high level of soybean overlap. 

Therefore, it was necessary to include multiple soybean plants in each image. However, A. 

palmeri plants typically did not have as much overlap, and in most cases, it was much easier to 

identify and label individual plants. 
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Figure 2.8 F1 scores for YOLOv5 indicating the harmonic mean between precision and recall 

scores. Data indicated that detection results for both species would be best at a confidence 

threshold of 0.298. 
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Figure 2.9 YOLOv5 detection results for Amaranthus palmeri and soybean using confidence 

thresholds of 0.15 (A) and 0.70 (B). The likelihood of false-negative (FN) detections increases as 

confidence thresholds increase, as can be seen in B. Objects assigned a confidence interval of 

less than 0.70 are not detected in B. FN A. palmeri and soybean detections in B are indicated by 

the orange and white arrows, respectively. 
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Figure 2.10 Detection results for YOLOv5 with a confidence interval of 0.15. False-positive 

detections of Mollugo verticillata and Abutilon theophrasti as Amaranthus palmeri are denoted 

by arrows pointing from “A” and “B,” respectively. 
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Figure 2.11 YOLOv5 precision (A), recall (B), and F1 score (C) changes as a function of 

Amaranthus palmeri density (plants m−2). 
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 2.7 Tables 

Table 2.1 Dates, number of images, platform used, and height above ground for image collection 

at Manhattan and Gypsum, KS, field locations in 2021. 

Manhattan 

Date Images Platforma Height above ground Image dimensionsb 

 (no.)  (m)  

May 27, 2021 35 UAV 1.5 A 

June 1, 2021 90 UAV 0.5–1.5 A 

June 9, 2021 17 UAV 2.8 A 

June 14, 2021 44 UAV 2.0–3.0 A 

June 15, 2021 14 HH 2 B 

June 17, 2021 72 HH 1.2–1.5 B 

June 22, 2021 150 HH 1.2–1.5 B 

July 1, 2021 125 HH 1.2–1.8 B 

July 8, 2021 80 HH 1.2–2.3 B 

July 9, 2021 33 UAV 3.0–8.0 A 

July 19, 2021 80 HH 2.3 B 

July 19, 2021 61 UAV 7.0–8.0 A 

July 26, 2021 40 HH 2.3 B 

Gypsum 

June 21, 2021 80 HH 1.2–1.5 B 

June 29, 2021 135 HH 1.2–1.5 B 
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July 5, 2021 80 HH 1.2–1.8 B 

July 12, 2021 90 HH 1.2–1.5 B 

July 12, 2021 68 UAV 6.0–7.0 A 

July 20, 2021 80 HH 1.8 B 

July 27, 2021 82 HH 2.3 B 

July 27, 2021 44 UAV 7.0–8.0  A 

a HH, handheld Olympus TG-510 digital camera; UAV, unmanned aerial vehicle 

with Zenmuse camera. 

b Total pixel dimensions per image: A = 4,608 × 3,456; B = 4,288 × 3,216. 
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Table 2.2 Training information and hyperparameters used in this study. 

Architecturea Backbone model Batch size Training interval Initial learning rate Learning rate policy 

Faster R-CNN ResNet-50 2 100,000 steps 0.01 Cosine decay 

Faster R-CNN ResNet-101 2 100,000 steps 0.0001 Cosine decay 

Faster R-CNN ResNet-152 1 100,000 steps 0.0001 Cosine decay 

Faster R-CNN Inception ResNet-V2 1 182,500 steps 0.001 Cosine decay 

SSD ResNet-50 4 100,000 steps 0.001 Cosine decay 

SSD ResNet-152 1 100,000 steps 0.0001 Cosine decay 

YOLOv4 CSPDarknet53 1 6,000 iterations 0.001 Cosine decay 

YOLOv5 CSPDarknet53 4 41 epochs 0.01 Cosine decay 

a Faster R-CNN, faster regional convolutional neural network; SSD, single-shot detector; YOLO, “You Only Look Once.” 
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Table 2.3 Regression models used to evaluate the effect of Amaranthus palmeri morphological parameters on model evaluation 

metrics and Akaike information criterion (AIC) used for model selection to detect A. palmeri. Bold type indicates that model 5 best fit 

the data. 

Modela 

Precision Recall F1 score 

AIC AIC Wtb P-value AIC AIC Wtb P-value AIC AIC Wtb P-value 

yem = β0 +  β1x1 1 −259.20 0 <0.0001 −304.63 0 <0.0001 −288.34 0 <0.0001 

yem = β0 + β2x2 2 −302.64 0 <0.0001 −247.97 0 <0.0001 −292.20 0 <0.0001 

yem = β0 + β3x3 3 −263.21 0 <0.0001 −268.37 0 <0.0001 −278.33 0 <0.0001 

yem = β0 +  β1x1 + β2x2 4 −337 0.28 <0.0001 −331.98 0.12 <0.0001 −349.93 0.09 <0.0001 

yem = β0 +  β1x1 + β2x2 + β4x1x2 5 −338.9 0.72 <0.0001 −335.9 0.86 <0.0001 −354.57 0.91 <0.0001 

yem = β0 +  β2x2 + β3x3 6 −315.60 0 <0.0001 −275.43 0 <0.0001 −311.39 0 <0.0001 

yem = β0 +  β2x2 + β3x3 + β5x2x3 7 −316.5 0 <0.0001 −274.68 0 <0.0001 −312.58 0 <0.0001 

yem = β0 + β1x1 + β6x1
2 8 −260.90 0 <0.0001 −327.38 0.01 <0.0001 −296.14 0 <0.0001 

yem = β0 + β2x2 + β7x2
2 9 −301.82 0 <0.0001 −246.06 0 0.0001 −291.60 0 <0.0001 

yem = β0 + β3x3 + β8x3
2 10 −286.87 0 <0.0001 −283.37 0 <0.0001 −298.05 0 <0.0001 

yem = β0 + β9log(x1) 11 −256.02 0 <0.0001 −285.07 0 <0.0001 −278.61 0 <0.0001 
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yem = β0 + β10log(x2) 12 −256.03 0 <0.0001 −241.07 0 0.0009 −264.51 0 <0.0001 

yem = β0 + β11log(x3) 13 −262.75 0 <0.0001 −269.19 0 <0.0001 −281.14 0 <0.0001 

a yem = evaluation metric (precision, recall, F1 score), x1 denotes density (plants m−2), x2 denotes height (cm), and x3 denotes coverage (m2). β0, 

intercept; β1, coefficient for A. palmeri density (plants m−2); β2, coefficient for height (cm); β3, coefficient for coverage (m2); β4, interaction 

coefficient for density and height; β5, interaction coefficient for height and coverage; β6, coefficient for the square of density; β7, coefficient for 

the square of height; β8, coefficient for the square of coverage; β9, coefficient for the log of density; β10,  coefficient for the log of height; β11, 

coefficient for the log of coverage. 
b AIC weight, indicating the total predictive power among all tested models. 
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Table 2.4 Linear regression results (model 5) for Amaranthus palmeri density (plants m−2) and 

height (cm) regressed against model evaluation metrics. 

Evaluation metric 

Parameter estimatesa R2 RMSEb P-value 

Density Height Density × height    

Precision  −8.6 x 10-4***  −3.4 x 10-3*** 1.1 x 10-5* 0.42 0.10 <0.0001 

Recall −1.3 x 10-3*** −2.2 x 10-3*** 1.4 x 10-5* 0.43 0.10 <0.0001 

F1 score −1.1 x 10-3*** −3.0 x 10-3*** 1.4 x 10-5* 0.44 0.10 <0.0001 

a Significant at: *P < 0.05, *** P < 0.001 
b RMSE, root mean square error 
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Chapter 3 - Evaluating ONE SMART SPRAY for weed control in 

Midwestern United States corn and soybean crops 

Note: This manuscript is currently being edited and formatted for submission to Weed Science 

journal. 

 3.1 Abstract 

Precision sprayers use artificial intelligence to enable on-the-go weed detection and application, 

thereby reducing the need to spray entire fields. A precision sprayer was evaluated for treating 

weeds in corn (Zea mays L.) and soybean (Glycine max [L.] Merr.) cropping systems in the 

Midwestern United States. Using a ONE SMART SPRAY sprayer, our objectives were to (1) 

evaluate the efficacy of different herbicide application programs, including one-pass versus two-

pass programs, spot-spray (SS) only, and simultaneous broadcast (BCST) residual and SS foliar 

herbicides; (2) determine if sensor weed detection thresholds influenced weed control; and (3) 

determine the seasonal cost for each herbicide program compared to a traditional broadcast 

application. Field experiments were conducted in 2022 and 2023 near Manhattan, KS and in 

2023 at Seymour, IL. Both green-on-brown (GOB; burndown applications) and green-on-green 

(GOG; in-crop applications) were evaluated. Main plot treatments consisted of five herbicide 

programs and the split-plot consisted of four weed detection thresholds: herbicide efficacy, 

balanced, savings, and a broadcast application. The percentage of weed-free area within each 

plot was estimated visually on a scale of 0 to 100, with 0 indicating complete weed infestation 

and 100 indicating zero weed pressure. As-applied maps were constructed using raw sprayer data 

collected during applications and used to compare the percentage of each plot sprayed to 

determine program costs. Results indicated that herbicide programs with simultaneous BCST and 

SS components, in many cases, resulted in weed-free area equal to or not different than broadcast 
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applications with the same herbicides. SS herbicide applications were less expensive than 

broadcast applications. Precision sprayers such as ONE SMART SPRAY demonstrated great 

potential to reduce herbicide input costs without compromising weed control. 

Key words:  

Artificial Intelligence, precision spraying, site-specific weed management, ONE SMART 

SPRAY 
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 3.2 Introduction 

Weeds often grow in distinct patches rather than uniformly across an entire agricultural 

field (Maxwell and Luschei 2005). Despite this reality, herbicides are traditionally broadcast-

applied instead of only where the weeds occur (Huang et al. 2018). To address this, site-specific 

weed management (SSWM) has been proposed, defined as the process of adapting weed 

management strategies within a field to match the location of the weed infestations (Fernández-

Quintanilla et al. 2018; Wiles 2009). SSWM provides opportunities for farmers to reduce total 

herbicide applied, reduce input costs, and minimize environmental contamination while 

maintaining weed control (Barroso et al. 2004; Bongiovanni and Lowenberg-DeBoer 2004; 

Ferreira et al. 2019). In terms of chemical weed control, this would result in herbicides being 

sprayed only where they are needed (Rozenberg et al. 2021). However, a major challenge to 

SSWM is developing a reliable and accurate method of weed detection that is robust to a 

multitude of field conditions (Gao et al. 2020). 

 In the last decade, artificial intelligence (AI) has become a major part of modern-day life 

and is defined as the science behind producing and creating intelligent machines (McCarthy 

2007). First described by Alan Turing in a 1950 paper entitled “Computing Machinery and 

Intelligence” (Turing 1950), AI has evolved from a simple series of “if-then” statements to 

complicated algorithms that make decisions like how the human brain does (Kaul et al. 2020). A 

subset of AI known as deep learning is most often used for SSWM; more specifically, 

convolutional neural networks (CNNs) are used because they can analyze and extract features 

within imagery that cannot be seen with the human eye (Albawi et al. 2017; Sapkota et al. 2020). 

With advances in graphics processing units and computer processors, weed detection using 

CNNs has become more feasible. Artificial intelligence algorithms have been used to detect 
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weeds in many different crops including corn (Zea mays L.), soybean (Glycine max [L.] Merr.) 

(Ahmad et al. 2021), rice (Oryza sativa L.) (Yang et al. 2021), bermudagrass (Cynodon dactylon 

[L.] Pers.) turf (Xie et al. 2021), sugar beet (Beta vulgaris L.) (Gao et al. 2020), lettuce (Lactuca 

sativa L.) (Osorio et al. 2020), and wheat (Triticum aestivum L.) (Jabir and Falih 2022). 

 Even though AI can be used to detect weeds, the challenge is accomplishing this in real 

time and simultaneously delivering effective weed control. Two common types of real-time 

weed detection platforms are self-propelled weeding robots and field sprayers (Gerhards et al. 

2022). Machines such as the Tertill® weeding robot (Tertill® Corporation, North Billerica, 

Massachusetts, USA) can locate weeds and use either herbicides or a mechanical string trimmer 

to control them. Research has shown that the Tertill® led to an 18 to 41% improvement in weed 

control when compared to standard cultivation (Sanchez and Gallandt 2020). Additionally, 

Ruigrok et al. (2020) trained the AI object detection algorithm You Only Look Once (YOLOv3) 

(Redmon and Farhadi 2018) to detect volunteer potatoes (Solanum tuberosum L.) in sugar beet 

crops and uploaded the trained model to an autonomous spraying robot. The authors reported 

that 96% of the volunteer potatoes were effectively controlled, while only 3% of the sugar beets 

were incorrectly sprayed.  

A major drawback of current robotic weed control technology is that several robots 

working together are required to cover large acreage fields in a reasonable time frame (Gerhards 

et al. 2022); for this reason, many have turned to AI-powered field sprayers to increase 

efficiency and speed of weed control applications. Hussain et al. (2020) designed a sprayer to 

detect common lambsquarters (Chenopodium album L.) for herbicide applications and diseased 

potato plants for fungicide applications, respectively. The authors reported that chemical savings 

were between 42 and 43% for herbicide and fungicide applications, respectively. Jin et al. (2023) 
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constructed an intelligent sprayer to control weeds in bermudagrass turf and reported no 

differences in control of broadleaf weed species between plots receiving conventional broadcast 

and precision spot-spray applications. In addition to these prototype sprayers developed by 

research groups, commercial intelligent sprayers are becoming available on the market. 

Examples of such sprayer systems, both available and soon to be available in the United States, 

include the John Deere® See & SprayTM Ultimate (John Deere, One John Deere Place, Moline, 

IL, USA), Greeneye TechnologyTM (Greeneye Technology, Shocken Street 13, Tel Aviv-Yafo, 

Israel), and ONE SMART SPRAY (Bosch BASF Smart Farming, Cologne, Germany).  

Because these sprayers are equipped with AI weed detection algorithms, different 

approaches to herbicide applications can be taken. Artificial intelligence AI algorithms usually 

allow for different settings known as confidence intervals, or thresholds, when detecting objects 

within imagery (Barnhart et al. 2022). When objects are correctly detected, they are known as 

true positives, whereas incorrectly detected objects or a misplaced detection are known as false 

positives (Ralašić 2021). Thresholds regulate the number of false positives in the final detection 

pass (Wenkel et al. 2021) and are often expressed as confidence intervals between 0 and 1. Based 

on how the algorithm was trained, object detection algorithms assign a series of confidences to 

objects within each image/video frame when deployed for detections. When a detection 

threshold is specified by users, algorithms will detect all objects with confidences equal to and 

greater than the specified threshold. Lower thresholds result in more false positives and thus, 

would maximize the chances of more weeds being detected. Conversely, higher thresholds would 

result in more confident detections, but would likely result in missed weed detections because 

some objects would have confidence values less than the specified threshold (Barnhart et al. 

2022 In terms of precision spraying, these confidence intervals can translate to an efficacy 



86 

(lower) threshold with more herbicide applied or a savings (higher) threshold approach resulting 

in less herbicide being applied. 

In addition to SS, many of these AI-enabled commercial sprayers are equipped to 

simultaneously broadcast soil residual herbicides and SS foliar herbicides whenever weeds are 

detected (Greeneye Technology 2023; John Deere 2023). Such sprayer technology becoming 

available in the market opens new opportunities to understand how they can be best utilized to 

control weeds in agronomic cropping systems. Therefore, the objectives of this study were to (1) 

evaluate the weed control efficacy of different commercial AI sprayer herbicide treatment 

programs, including One-pass versus two-pass programs, spot-sprayed treatments only, and 

simultaneous broadcasted residual and spot-sprayed foliar herbicides compared to traditional 

broadcast applications; (2) determine if sensor weed detection threshold settings influence weed 

control; and (3) determine the seasonal cost for each herbicide program, comparing each with a 

traditional broadcast treatment. 

 

 3.3 Materials and Methods 

 3.3.1 Description of field sites 

Field experiments were established both in 2022 and 2023 in Kansas and in 2023 in 

Illinois. The Kansas experiments were established in rainfed corn/soybean no-till crop rotation 

production fields at the Kansas State University, Department of Agronomy Research Farm near 

Manhattan, KS. In 2022, two locations were initiated and will be referred to as MAN 1 

(39.125°N, 96.648°W) and MAN 2 (39.130°N, 96.644°W). MAN 1 and MAN 2 were planted 

with corn and soybean in 2022, respectively, and were rotated to the subsequent crop in 2023. In 

2023, additional corn and soybean field experiments were established south of the BASF 
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Midwest Research Farm near Seymour, IL (40.039°N, 88.403°W) (SEY Corn and SEY Soy for 

corn and soybean trials, respectively). Locations in IL were conventionally tilled and rainfed. For 

all locations, crops were planted in rows spaced 76 cm apart (Table 3.1). 

 Both MAN 1 and MAN 2 were located on a Smolan silty clay loam with 3 to 7% slope 

(Web Soil Survey 2023). MAN 1 had natural infestations of Palmer amaranth (Amaranthus 

palmeri S. Watson), shattercane (Sorghum bicolor [L.] Moench), common waterhemp 

(Amaranthus tuberculatus [Moq.] Sauer), smooth groundcherry (Physalis longifolia Nutt. Var. 

subglabrata [Mack. & Bush] Cronquist), honeyvine milkweed (Cynanchum laeve [Michx.] 

Pers.), and yellow foxtail (Setaria pumila [Poir.] Roem. & Schult.). In both years, MAN 1 had 

relatively low overall weed infestations; MAN 2, however, had greater infestations of yellow 

foxtail, Palmer amaranth, common waterhemp, common cocklebur (Xanthium strumarium L.), 

fall panicum (Panicum dichotomiflorum Michx.), and common pokeweed (Phytolacca 

americana L.). The SEY Corn and SEY Soy experiments were established in a field with 

Drummer silty clay loam with 0 to 2% slope (Web Soil Survey 2023). Due to drought early in 

the season, weed infestations in Illinois were much less than the Kansas fields, and consisted 

primarily of common purslane (Portulaca oleracea L.), velvetleaf (Abutilon theophrasti Medik.), 

common waterhemp, and morningglory (Ipomoea) species. 

 

 3.3.2 Field sprayer 

A ONE SMART SPRAY research sprayer was used for this study. The sprayer had the 

same external hardware as a commercial ONE SMART SPRAY sprayer but was custom-built for 

small plot research. The spray apparatus consisted of an aluminum frame mounted to the front of 

a John Deere® 6125RTM tractor (Figure 3.1a). The sprayer was equipped with two booms (Figure 
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3.1b) with the front boom reserved for SS, while the rear boom was used for broadcast 

applications. Within each meter of boom, a camera was mounted between two red and infrared 

(IR) Light Emitting Diode (LED) lights to provide consistent lighting across diverse field 

conditions (Spaeth et al. 2024). Red-Green-Blue cameras were equipped with R/NIR filters, 

allowing the sprayer to distinguish between plants and other objects (Spaeth et al. 2024). Both 

the cameras and LED lights were mounted at a 25° angle relative to the ground. The system can 

detect weeds as small as 5 mm.  

The front and rear boom nozzle bodies were spaced at 25.4 cm and 50.8 cm intervals, 

respectively, and spray swaths were 3.05 m wide for both booms. Spray pressure was provided 

with CO2 pressurized tanks mounted at the rear of the spray apparatus, and pressure was 

manually adjusted prior to spraying. The ONE SMART SPRAY system is capable of two types 

of applications: green-on-brown (GOB) and green-on-green (GOG) (Quigley 2023). Green-on-

brown applications refer to burndown/pre-emergence applications where no crops are present; 

the system does not use AI for these applications because green vegetation can be easily detected 

with IR and NIR light (Nguyen et al. 2012). On the other hand, GOG applications are made in-

crop and therefore use AI to distinguish weeds from crops. The GOG applications with ONE 

SMART SPRAY currently use AI to recognize crop rows and spray green vegetation detected 

outside of the rows (Spaeth et al. 2024). 

 

 3.3.3 Field experiments 

At each location, experiments were set up in a split-plot arrangement of treatments in a 

randomized complete block design with five replications. The main plot factor was herbicide 

application program, and the split-plot factor was sprayer threshold. For the MAN 1, SEY Corn, 
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and SEY Soy locations, plot dimensions were 3 m (4 crop rows) wide by 30.5 m long, whereas 

plot dimensions for the MAN 2 location were 3 m wide by 35.1 m long.  

 The five herbicide application programs were designated as 1 to 5 for explanatory 

purposes (Table 3.2). Program 1 consisted of a GOB application including simultaneous 

broadcast (BCST) residual and spot-spray (SS) foliar herbicides followed by a GOG application 

with only SS foliar herbicides (approximately 21 to 28 days after the GOB treatment, or 

DAGBT), identified as Residual Program. Program 2 consisted of a SS GOB and SS GOG, with 

no residual herbicides applied. Program 3 was a One-pass approach with a single GOB BCST + 

SS application. Program 4 was a two-pass approach and introduced a novel concept known as a 

“Spike” treatment, in that a minimal recommended rate of foliar herbicide was BCST at both 

GOB and GOG superimposed by a SS application to increase the rate of herbicide applied when 

weeds were detected. The minimal rate was included for general control and was increased when 

weeds were detected to increase likelihood of control. Finally, Program 5 was a two-pass 

approach with a split and overlapping application of residual herbicides for both GOB and GOG. 

For interpretability, programs 1 to 5 will henceforth be referred to as the ‘Residual at-plant’, ‘SS 

only’, ‘One-pass’, ‘Spike’, and ‘Overlapping residual’ programs, respectively. 

 The split-plot factor included four SS application detection thresholds randomized within 

each main treatment: Herbicide Efficacy, herbicide Savings, a Balanced setting, and a traditional 

Broadcast application. Although exact settings are proprietary in nature, an herbicide efficacy 

approach corresponds to AI algorithm thresholds that include the potential for more false 

positive detections; that is, in theory ensuring that all detected weeds are sprayed but may result 

in some crop plants being sprayed when classified as weeds. We refer to this threshold as an 

“Efficacy” threshold in that the intent was to ensure that all weeds were sprayed, not to be 
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confused with when “efficacy” is used to describe the effectiveness of a given herbicide. 

Conversely, an herbicide Savings approach would have the potential for more false negative 

detections; that is, correctly detecting most weeds but missing some. To investigate a threshold 

level between these two, the selected setting was chosen as a Balanced approach. Finally, a no-

threshold (traditional Broadcast) treatment was included to compare to SS thresholds. In 2022, 

ONE SMART SPRAY thresholds were not available for GOB applications; as a result, the One-

pass program had no threshold treatments applied and in 2023, the same treatment was applied . 

Herbicides, adjuvants, and application rates were specific for corn (Table 3.3) and 

soybean programs (Table 3.4). For all corn and soybean locations, BCST applications were 

sprayed at a carrier rate of 93.5 l ha-1 and SS applications were sprayed at 140.3 l ha-1. Sprayer 

application speed was 8 km hr-1 in 2022 and, due to software upgrades, application speed was 

increased to 9.7 km hr-1 in 2023. In 2022, BCST applications were made with TTI11002 flat-fan 

nozzles and SS applications with TP6502 even fan nozzles (TeeJet Spraying Systems Co., 

Wheaton, IL), pressurized at 195 and 117 kPa, respectively. With the software upgrades and 

speed changes made for the 2023 season, the same nozzles were used but BCST and SS boom 

pressures were increased to 276 and 159 kPa, respectively. All application dates and crop stages 

for GOG applications are in Table 3.5. 

 

 3.3.4 Data collection 

Visual estimation of the percentage of weed-free area in each plot was determined from 

the middle two crop rows of each plot using a scale of 0 to 100%, with 0% indicating a plot 

completely infested with weeds and 100% indicating no weeds. For each plot, data were not 

taken in the first or last 1.5 m of each plot length. These assessments were taken 21 days after the 
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GOB treatment (DAGBT) in 2022 and 14 DAGBT in 2023, and 42 days after the GOG treatment 

(DAGT) at all locations and years. Weed density was determined from two randomly placed 1-

m2 quadrats within each plot at the same DAGBT, and at 14 DAGT. Total weed density across 

all species was collected rather than by individual weed species because ONE SMART SPRAY 

does not identify by weed species.  

End-of-season weed biomass and final grain yield were determined at harvest at the 

MAN 1 and MAN 2 locations in both 2022 and 2023. Drought and lack of field space delayed 

planting of crops at SEY Corn and SEY Soy, and therefore did not mature for harvest. End-of-

season weed biomass combined across species was sampled just prior to crop harvest from two 

randomly placed 0.5 m-by-1 m quadrats within each plot. Samples were oven-dried at 58 C until 

constant biomass was achieved. Grain was harvested from the middle two rows of each plot with 

a small-plot combine at physiological maturity and grain yield determined at 15.5% moisture for 

corn and 13% for soybean. The MAN 1 location was not harvested in 2023 due to combine 

mechanical issues. 

 

 3.3.5 As-applied map generation 

As-applied maps were generated to determine the percentage of each plot that was 

sprayed. The ONE SMART SPRAY system collected geospatial data points for each nozzle on 

the SS boom and automatically labeled each point as “TRUE” when a nozzle was spraying or 

“FALSE” when not spraying. These data points were collected at a density of approximately 10 

points m-2 (Figure 3.2). Data points were geotagged with GPS coordinates and stored as a CSV 

file within the machine. After each application, raw data files were imported into Jupyter Lab 

(Kluvyer et al. 2016) and as-applied spray maps were generated using the Python 3.9 (Python 
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2023) packages Geopandas (Jordahl et al. 2020), Shapely (Gillies et al. 2023), and SciPy 

(Virtanen et al. 2020). A grid of 0.2 m-by-0.2 m cells was overlaid across each experimental 

location to ensure high resolution within the resulting map. A nearest neighbor interpolation 

(SciPy docs 2023) was used to generate the as-applied map. A nearest neighbor interpolation 

assigns the value nearest to a corresponding grid cell to be the estimated value (Varella et al. 

2015), with the goal of producing a binary map of 0 and 1 indicating when each nozzle was not 

spraying or spraying, respectively. With the high density of data points collected by the machine, 

a nearest neighbor interpolation method requires considerably less computational power than 

alternative methods such as kriging (van Stein et al. 2019). Maps were exported to QGIS 3.22.7 

(QGIS 2023) where the percentage of sprayed area within each sub-plot was computed. The 

percentage of area sprayed within each sub-plot was multiplied by the cost ($US) ha-1 of a 

broadcast application for each herbicide tank mixture, obtaining a cost ha-1 for each treatment. 

The amounts of herbicides and adjuvants applied were computed based on the percentage of the 

plot where the sprayer nozzles were turned on; different herbicides and rates were accounted for 

in these calculations depending on the program. Herbicide costs were taken from the 2023 

Kansas State University Chemical Weed Control Guide (Lancaster et al. 2023). 

 

 3.3.6 Statistical analysis 

All statistical analyses were done using R 4.3.1 (R Core Team 2023). For this study, corn 

and soybean experiments were analyzed separately. Linear mixed effects models were used to 

analyze all data. Because of the absence of thresholds for GOB applications, the experiments 

were therefore analyzed two ways: First as a randomized complete block design to analyze 

overall herbicide program performance (objective 1), and secondly as a split-plot design, after 
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removing the One-pass program, to analyze the effect of thresholds (objective 2). To meet 

assumptions of the analysis, data were analyzed using a beta distribution with the glmmTMB 

(Brooks et al. 2017) package in R. Data were logit transformed and automatically back 

transformed by the package after building the model. Model residuals were checked for 

normality and homogeneity of variance using the DHARMa (Hartig 2022) package. ANOVA 

models were conducted with Type III Wald chi-square tests (as described in Miranda et al. 

2022), which was the test used by the glmmTMB package. For significant models, Tukey’s 

Honest Significant Difference post-hoc test was used to determine differences among main effect 

means and a confidence level of p < 0.05 was used. Post hoc tests were conducted with the 

emmeans (Lenth 2023) package. 

For overall program evaluation, the response variables were percent weed-free area, weed 

density counts, end-of-season weed biomass measurements, and grain yield, the fixed effects 

were location and herbicide program, and the random effect was replication for overall program 

evaluation. To analyze thresholds, the fixed effects were the interaction of herbicide program and 

threshold, with the random effects were replication and replication by herbicide program. When 

conducting an additional analysis, locations often interacted with herbicide program (data not 

shown), because of differences in overall weed infestation levels, locations were analyzed 

separately. Whole-season herbicide costs (based on the percentage of each sub-plot sprayed) 

were limited to 2023 data because the 2022 GOB application data were lost due to a machine 

data decoder error. Fixed and random effects for the herbicide cost data were the same as 

previously described for overall program and threshold analyses. In this analysis, we did not 

consider the operating costs of the sprayer, but only input costs for herbicides and adjuvants.  
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 3.4 Results and Discussion 

 3.4.1 Herbicide program evaluation 

3.4.1.1 Green-on-brown weed-free area 

Herbicide programs resulted in different amounts of weed-free area observed after the 

GOB application in both soybean and corn experiments. In soybean at 21 DAGBT in 2022 or 14 

DAGBT in 2023, herbicide program resulted in different weed-free area observed for each 

location (p < 0.0001 for both Manhattan 2022 and Manhattan 2023, and p = 0.01 for Seymour 

2023) (Table 3.6). Within each location, the weed-free area of all programs with residual 

herbicides (Residual at-plant, One-pass, and Overlapping residual) and the Spike program were 

not different from one another. The SS only program had no residual herbicides applied by this 

observation time in soybean and had less weed-free area than the One-pass program in 

Manhattan 2022, all other programs in Manhattan 2023, and the Residual at-plant and One-pass 

programs in Seymour 2023. Overall, Manhattan 2023 and Seymour 2023 had more weed-free 

area compared with the Manhattan 2022 location. This was likely because the MAN 2 field 

(Manhattan 2022 study) contained a greater weed infestation compared to the other fields.  

In corn at 21 DAGBT in 2022 and at 14 DAGBT in 2023, herbicide program was 

significant (p < 0.0001) for all locations (Table 3.7). Similar to the soybean results, the SS only 

program resulted in the least weed-free area in Manhattan 2022 and Manhattan 2023 and was not 

different from only one program (“Spike”) in Seymour 2023. The Residual at-plant program 

contained either the most weed-free area or was not different than the highest weed-free area 

within each location. Both Manhattan fields had less weed-free area than the Seymour location, 

which experienced drought and had lower weed pressure compared to the Manhattan KS fields in 

2023 (data not shown). 
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At this point in the season, the SS only program (the only program with no broadcasted 

residual or foliar herbicide) always contained less weed-free area than at least one program with 

a uniform broadcast application at each experiment. These results are consistent with Genna et 

al. (2021), as the authors found that herbicide efficacy (reduction in weed density) was often 

greater with broadcast applications compared to GOB SS applications. Thus far, these results 

suggest that including a broadcast component to ONE SMART SPRAY GOB applications could 

increase weed-free area compared to SS only approaches. 

 

3.4.1.2 Green-on-green weed-free area 

 Like the GOB application, herbicide programs resulted in different weed-free areas 

observed by 42 DAGT in both soybean and corn experiments. In the soybean studies, herbicide 

program significantly affected weed-free area (p < 0.0001) at each location (Table 3.8). At 

Manhattan 2023 in the MAN 1 field, all programs performed well with 89 to 98% weed-free area 

by 42 DAGT. In general, this field (MAN 1) had less weed occurrence. The One-pass program 

had the least weed-free area at 42 DAGT at each location. The One-pass program at both 

Manhattan 2022 and at Seymour 2023 became very weedy by 42 DAGT, because no in-crop 

herbicide was applied. Differences between the 2023 Manhattan and Seymour locations were 

likely due to rainfall patterns: the Manhattan fields received rainfall early on (89 mm between 

planting and GOG application; Kansas Mesonet 2024), while the SEY Soy field was very dry at 

time of planting (35 mm between June 1 and planting; CoCoRaHS 2024) but did receive rain 

later in the season (111 mm between GOG application and August 31, 2023; CoCoRaHS 2024) 

allowing for more weeds to emerge and grow after the herbicide programs were applied.  
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In the corn studies, herbicide program was not significant in both the Manhattan 2022 

and Seymour 2023 studies (p = 0.08 and p = 0.97, respectively), but was significant for the 

Manhattan 2023 study (p < 0.0001) (Figure 3.3). Each of the weed-free areas for the overlapping 

residual, Residual at-plant, and Spike programs were not different from one another. However, 

the One-pass herbicide program had the least weed-free area.  

Multiple application passes that include residual herbicides are still recommended when 

using intelligent sprayer technology such as ONE SMART SPRAY. The One-pass program, 

which included residual herbicides applied at crop planting, resulted in the smallest percent of 

weed-free area in soybean at 42 DAGT across locations: 48% at Manhattan 2022, 86% at 

Manhattan 2023, and 33% Seymour 2023. These results are supported by other studies, in that 

One-pass herbicide programs led to increased weed infestations or allowed more weed escapes 

compared to two-pass programs (Craigmyle et al. 2013; Johnson et al. 2007; Mobli et al. 2023; 

Soltani et al. 2009). Interestingly, this wasn’t always the case in the corn studies. Among all 

herbicide programs, there were no differences by 42 DAGT in percent weed-free area in both the 

Manhattan 2022 and Seymour 2023 studies. These results were not surprising, because corn has 

been shown to be more competitive against weeds compared to soybeans (Moolani et al. 1964). 

It is worth mentioning, however, that when differences were detected in the Manhattan 2023 

study, the One-pass program had the smallest weed-free area compared with the two-pass 

programs. For the Manhattan fields, MAN 1 had less overall weed pressure compared to MAN 2, 

and corn and soybean experiments planted on MAN 2 and sprayed with the One-pass program 

had less weed-free area (were weedier) than the other programs. The amount of herbicide needed 

for precision applications is governed by overall weed pressure in each field (Melland et al. 

2015), in that more weed pressure will require more herbicide for effective control than less 
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weedy fields. Based on our results, we suggest that in fields with lighter weed infestations, a 

One-pass GOB treatment could result in 89% or better weed-free area, but more weed-free area 

could be achieved by including both a GOB and GOG application. Two-pass applications with 

multiple herbicide sites of action (SOA) are generally regarded as an important part of an 

integrated weed management (IWM) strategy (Norsworthy et al. 2012; Smith et al. 2019). 

If a farmer were interested in a complete SS only program, with both GOB and GOG 

applications, the weed-free area results in our study indicate that this two-pass SS only program 

would not provide acceptable weed control compared to programs with residual herbicide 

applications. This suggests that BCST residual applications are still advantageous to GOG SS 

technology, and that the technology does not eliminate the importance and benefit of residual 

herbicides. Because soil residual herbicides continue to be an important part of IWM (Owen et 

al. 2015), we recommend that residual applications be included in herbicide programs for 

intelligent sprayers.  

The Spike program was used to test the effectiveness of broadcasting a base foliar 

herbicide rate and increasing the rate applied when weeds were detected using the SS boom. For 

soybean, this approach resulted in the greatest percent weed-free area at all locations and in corn 

this approach resulted in no differences from the treatment with the greatest percent weed-free 

area. Furthermore, it is likely that some weeds were not detected and thus were sprayed with the 

broadcast-applied minimum labeled rate of herbicides. Consistently exposing weeds to less 

herbicide has been shown to facilitate herbicide resistance (Manalil et al. 2011); thus, extreme 

caution must be exercised if Spike-spray application programs are used in the future. In this 

study, simultaneous BCST applications of residual herbicides and SS applications of foliar 
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herbicides, in most cases, provided better weed control (measured as weed-free area) compared 

to programs using no residual herbicides or SS only components.  

 

3.4.1.3 Weed density 

 Overall weed densities measured after the GOB application were relatively low. For the 

corn studies, there was no effect of herbicide program on weed density in Manhattan 2022 (p = 

0.84), but herbicide programs affected weed density in both Manhattan 2023 and Seymour 2023 

(Table 3.9). Overall weed density at the Manhattan 2023 field (MAN 2) was more than at the 

Seymour IL field, which matches previously described weed infestations. The SS only program 

had the highest weed densities at 21 DAGBT in 2022 and 14 DAGBT in 2023 in both the 

Manhattan 2023 and Seymour 2023 locations. At the Manhattan 2023 location, weed densities in 

the Residual at-plant and One-pass programs were not different from each other (these treatments 

were the exact same at this point in the season), and at Seymour 2023, weed densities in the 

Residual at-plant, One-pass, overlapping residual, and Spike treatments were not different.  

The effect of soybean herbicide programs on weed densities after the GOB application 

was not significant at the Manhattan 2022 field site (p = 0.61), was significant for Manhattan 

2023 (p = 0.003) and not significant for the Seymour 2023 location (p = 0.16). Post hoc tests 

revealed that for the Manhattan 2023 location, mean (± SE) weed densities in the residual at-

plant (1.7 ± 0.28), SS only (2.6 ± 0.35), one-pass (1.8 ± 0.29), and Overlapping residual (2.0 ± 

0.31 weeds m-2) programs were not different from one another. The only differences were weed 

densities in the SS only and Spike (1.3 ± 0.23) programs. 

Herbicide programs resulted in different and very low weed densities after the GOG 

application in both soybean and corn experiments. Herbicide program in soybean at 14 DAGT 
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had a significant effect on weed density (p < 0.0001) at all locations (Table 3.10). The One-pass 

program had the highest weed densities at all locations. However, weed density for the SS only 

program was not different than the One-pass program in Manhattan 2023 and in Seymour 2023. 

In Seymour 2023, the Spike program was not different than both the One-pass and SS only 

programs. On the other hand, the Residual at-plant program was either not different from or had 

the lowest weed density at every location. Herbicide program had a significant effect on weed 

densities in corn by 14 DAGT (p < 0.0001) at each location (Table 3.11). Similar to soybean, 

weed densities were greatest in the One-pass program in Manhattan 2022 and Manhattan 2023. 

At Seymour, the SS only and Spike programs were not different from one another. For the corn, 

the overlapping residual program was either not different or had the lowest weed density in each 

study location. Overall greater densities were observed at Manhattan 2023 as the field had a 

naturally occurring higher weed population. Seymour 2023 had the lowest weed densities, likely 

due to late crop seeding and dry conditions.  

The One-pass program had the greatest weed densities followed by the SS only program 

at 14 DAGT across all locations. The only exception was for the Seymour 2023 corn study, 

where the One-pass program was not statistically different than the programs with the lowest 

weed density at 14 DAGT. For both crops, programs with residual herbicides had the lowest 

weed densities at each location or were not different from the lowest. More information on weed 

density analysis will be presented in the “threshold weed density analyses” section below. 

 

3.4.1.4 End-of-season weed dry biomass and grain yield 

Herbicide program impacted end-of-season weed biomass in soybean at Manhattan 2022 

(p < 0.0001), and in corn in Manhattan 2022 (p = 0.04) and Manhattan 2023 (p < 0.0001). The 
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One-pass program had the greatest weed biomass in the Manhattan 2022 soybean (Figure 3.4) 

and in the Manhattan 2023 corn (Figure 3.5). These were both in the MAN 2 field that had 

greater weed pressure overall. For the Manhattan 2022 corn, only the SS only and Spike 

programs were different from one another. No end-of-season data were obtained from Seymour 

soybean or corn studies. The least end-of-season biomass observed in soybean was in the Spike 

program in Manhattan 2022 and in corn, it was in the S Spike program in Manhattan 2023.  

Soybean yields were only obtained from Manhattan 2022 and herbicide program 

impacted soybean yield (Figure 6). The spike program had the greatest soybean yield (3100 ± 70 

kg ha-1) but was not different from residual at plant, SS only, and overlapping residual programs. 

Soybean yield from the spike program was different from the one-pass program (2820 ± 70 kg 

ha-1). All soybean plots yielded more than the 2022 average soybean yield for Riley County, KS 

(2370 kg ha-1; USDA 2023a). Corn grain for yield was harvested from both Manhattan locations, 

but there were no differences among herbicide programs. Overall, Manhattan 2023 had more 

corn yield (7020 ± 300 kg ha-1) than Manhattan 2022 (6370 ± 300 kg ha-1), but yields in both 

years were below the 2022 average corn yield for Riley County KS (9360 kg ha-1; USDA 

2023b). The field conditions of the two locations differed in that MAN 1 was on a hilltop and 

rainfall would easily runoff, while MAN 2 was situated at the bottom of a slope and would retain 

rainfall more easily. Overall, 2022 was a wetter year with a total rainfall of 829 mm, compared to 

2023 which only received a total rainfall of 624 mm (Kansas Mesonet 2024). Both years’ rainfall 

amounts were below the 30-year average of 848 mm (Kansas State University 2024). 

 

 3.4.2 Weed detection threshold evaluation 

3.4.2.1 Weed-free area 
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Green-on-green SS application thresholds were Broadcast (no threshold), Efficacy (detect 

all weeds and maybe some crops too), Savings (ensure only weeds are detected), and the 

Balanced threshold between the two, as set up in the sprayer. The thresholds were applied only in 

the GOG application and tested in four of the five herbicide programs, excluding the One-pass 

program because no GOG applications were made. Differences in weed-free area due to 

thresholds were observed in both Manhattan 2022 and Manhattan 2023. In Manhattan 2022, the 

interaction between herbicide program and threshold was significant (p = 0.02); post hoc test 

results can be seen in Table 3.12. In Manhattan 2023, the interaction between herbicide program 

and threshold was not significant (p = 0.99), but main effects were (p < 0.0001 and p = 0.002 for 

herbicide program and threshold, respectively). In Manhattan 2022, the greatest weed-free area 

was observed with the Spike program for Efficacy and Savings thresholds, but not different from 

any of the herbicide programs applied with the traditional Broadcast application (Table 3.12). 

The smallest weed-free area was observed with the Residual at-plant program and the Savings 

threshold and were not different from SS only or Overlapping residual programs applied with the 

Savings threshold. Overall, the Broadcast comparison within each program consistently had 

more than 86 to 97% weed-free area across the four herbicide programs, Efficacy ranged from 77 

to 98% and Balanced from 77 to 92%. In Manhattan 2023, no differences in weed-free area were 

observed between the Broadcast (98% ± 0.5) and Efficacy (97% ± 0.9) thresholds but both had 

greater weed-free area than the balanced (95% ± 1.1) and savings (96% ± 0.9) thresholds. 

For the corn, there was no interaction between herbicide program and threshold in 

Manhattan 2022, but the main effects were significant (p = 0.007 and 0.03 for herbicide program 

and threshold, respectively). At Manhattan 2023 there was a significant main effect for herbicide 

program, but not for threshold, and at Seymour 2023, no effect of herbicide program or threshold 
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was observed (data not shown). At Manhattan in 2022 (Figure 3.7), the Balanced and Efficacy 

thresholds did not differ from Broadcast comparison, but the Savings threshold was significantly 

weedier. The Residual at-pant, Spike, and Overlapping residual programs did not have different 

weed-free areas, but the SS only program was different than the Residual at-plant and Spike 

program. In Manhattan 2023, there were no differences within thresholds; the Overlapping 

residual (95% (±1.1) and Spike (93% ±1.3) programs did not have different weed-free areas 

although both had more weed-free area than the SS only (85% ±1.9) program. The Residual at-

plant program weed-free area was 89% (±1.6) and was not different than the SS only or Spike 

programs.  

Overall, traditional Broadcast applications resulted in the greatest weed-free area. 

However, for the locations discussed above, the herbicide Efficacy threshold was never different 

than the broadcast applications in terms of weed-free area. Fewer differences observed in 2023 

may be because of proprietary software updates installed before the 2023 growing season. In 

general, when using intelligent sprayers such as the ONE SMART SPRAY, we would 

recommend that an herbicide Efficacy threshold be used, because this would decrease the 

likelihood that weeds are missed. Such an approach increases the likelihood of false positive 

detections (i.e. detecting crop plants as weeds), but in herbicide-tolerant cropping systems, this 

would not affect crop safety provided all product labels are followed correctly (Barnhart et al. 

2022).  

 

3.4.2.2 Weed density 

Observed weed densities at 14 DAGT were influenced by main effects of weed detection 

thresholds and herbicide program in soybean at each location (Table 3.13). For Manhattan 2022, 



103 

there were no differences detected among any thresholds, but there were differences between 

thresholds detected at Manhattan 2023 and Seymour 2023. Overall, the weed densities observed 

in the broadcast and Efficacy thresholds were least and not different from each other in soybean. 

Observed weed densities at 14 DAGT were influenced by main effects of weed detection 

thresholds and herbicide program in corn at each location (Table 3.14). The Broadcast 

comparison consistently had the fewest weeds at each location; however, the Efficacy threshold 

was not different from broadcast at Manhattan 2022 and Manhattan 2023 weeds m-2. At Seymour 

2023, all SS thresholds resulted in higher weed densities when compared to Broadcast 

applications across herbicide programs. In Tables 3.13 and 3.14, only the threshold results are 

displayed, as herbicide program results have been previously discussed. 

The threshold analyses revealed that in all locations except the Seymour 2023 corn, 

although the Broadcast applications always contained the lowest weed densities, the Efficacy 

threshold was not different. Although some thresholds contained lower weed densities than the 

Efficacy threshold at some locations (i.e. ‘Savings’ at Manhattan 2022 corn and ‘Balanced’ at 

Manhattan 2023 corn), it was the most consistent throughout all study locations. These results 

further support our recommendation that Efficacy weed detection thresholds should be used with 

SS applications. In addition, residual herbicides should be included in SS application programs, 

as they have been shown to significantly reduce weed densities (Bell et al. 2015; Nurse et al. 

2006; Nunes et al. 2018). 

 

 3.4.3 Cost of herbicide programs and thresholds 

This section focuses on the amount of herbicide applied in the different herbicide 

programs with each weed detection threshold. We are only able to report 2023 results because 
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the 2022 data were lost to the ONE SMART SPRAY raw data decoder. Furthermore, these costs 

were calculated based solely on geospatial data collected by the sprayer and were not validated 

by ground-truth measurements. This is a topic that could be expounded upon in future research. 

Differences in total herbicide cost were affected by the interaction of weed detection 

thresholds and herbicide program for soybean at Manhattan 2023 and Seymour 2023, and for 

corn at Manhattan 2023 (Table 3.15). At Manhattan 2023 for both soybean and corn, all SS 

thresholds cost less than the equivalent Broadcast application across all herbicide programs, with 

thresholds in the SS only program costing less than in the Residual at-plant, Spike, and 

Overlapping residual programs. Seymour 2023 soybean costs were similar to the Manhattan 

results, with all thresholds costing less than their respective Broadcast applications. Regarding 

the Spike program in the Manhattan and Seymour soybean experiments, the Efficacy, Balanced, 

and Savings thresholds were more expensive than the other herbicide programs using the same 

thresholds. The calculated savings averaged across SS thresholds (i.e., cost difference between 

average SS threshold cost and broadcast threshold cost) was $123 ha-1 for soybean and only $43 

ha-1 for corn. There are several reasons for this difference in savings between soybean and corn 

experiments: The MAN 2 field (corn in 2023) had greater weed pressure than MAN 1 field 

(soybean in 2023); timing of GOG application in corn was on taller plants at the V5 growth stage 

than the timing of the GOG application in soybean at the V2 to V4 growth stage. As a result, the 

taller corn plants had established more of a canopy making less of the row space visible, and the 

sprayer defaulted to a broadcast application (vs. SS threshold) when interrow space could not be 

seen.  

At Seymour 2023, total corn herbicide cost differed by main effects of weed detection 

thresholds and herbicide program. Herbicide cost for the Efficacy ($129 ha-1), Balanced ($158 
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ha-1), and Savings ($128 ha-1) weed detection thresholds were less than the Broadcast application 

($188 ha-1). Cost of the overlapping residual ($181 ha-1), Residual at-plant ($172 ha-1), and Spike 

($161 ha-1) herbicide programs were not different from one another, while the SS only program 

cost less ($90 ha-1) than any of the other programs. Overall costs for corn at Seymour 2023 were 

greater, likely due to a late GOG application corn was late V5, making it difficult for the sprayer 

to see interrow space and thus, defaulting to a broadcast application more frequently compared to 

soybean. 

Herbicide cost reductions are possible using ONE SMART SPRAY compared to 

traditional broadcast applications. In both soybean and corn, each SS weed detection threshold 

cost less than corresponding broadcast application for each herbicide program. The Efficacy  

weed detection threshold (could spray more due to false positive detections) was never different 

from the balanced or savings thresholds (Table 3.15). Total herbicide cost reductions are 

attainable even when simultaneously broadcasting residual herbicides and spot-spraying foliar 

herbicides, with the two-boom two-tank system. These results further support our 

recommendations of using herbicide efficacy thresholds for SS applications and continued use of 

residual herbicides in intelligent sprayer applications. 

 This research demonstrates that with intelligent sprayers, significant herbicide reductions 

are possible compared to broadcast applications without sacrificing weed-free area. Residual 

herbicides and multiple passes are still important when using this technology. In both corn and 

soybean trials, significant herbicide cost reductions were observed when simultaneously 

broadcasting residual and spot-spraying foliar herbicides. Growers would benefit greatly from 

the use of two-tank and two-boom intelligent sprayers for these simultaneous applications, as 

they become available on the market. Furthermore, the One-pass programs were consistently the 
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weediest in almost every trial, signifying that multiple passes are still necessary for weed control. 

It is still important to incorporate IWM principles when using this technology, which includes 

the use of residual herbicides, multiple herbicide SOA, and multiple sprayer passes. 

 In addition to these findings, there are some future research needs for intelligent sprayer 

applications. Currently, most intelligent sprayers are focused on weed control in crops planted in 

rows spaced 50 and 76 cm apart. All crops were planted in rows 76-cm apart for this research. 

Many crops are planted in narrower rows and are known to establish their crop canopy more 

rapidly than those planted in wider rows, making them more competitive against weeds (Bradley 

2006), it remains to be seen how intelligent sprayer programs would best fit into these situations. 

In this study, weed infestations were relatively light and did not infest the entire field. We 

hypothesize that there will be less benefit of intelligent sprayers in fields with more weed 

pressure, but the “optimum” density above which the benefit of herbicide reduction ceases is 

unknown. Finally, especially for corn applications, earlier timing of GOG applications would 

likely allow the sensors to detect more weeds and would prevent the intelligent system from 

defaulting to broadcast applications caused by larger corn plants. Optimum POST application 

timing should be determined for future uses. 
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 3.6 Figures 

 

 

Figure 3.1 A) Front view of the ONE SMART SPRAY research sprayer used in this study. B) 

Dual boom system for simultaneous broadcasting and spot spraying. The left-most boom is the 

spot-spray boom linked to the infrared and near infrared sensors, whereas the right-most boom is 

the broadcast boom. 
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Figure 3.2 Illustration of nozzle data collected by the ONE SMART SPRAY research sprayer. 

(A) Whole plot view of Manhattan, KS (MAN 2) field location and (B) closeup view of the plots 

to illustrate number of data points recorded to create as-applied herbicide maps 

. 
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Figure 3.3 Percentage of weed-free area after the green-on-green applications for the Manhattan 2023 corn study at 42 DAGT. Corn 

herbicide information can be found in Table 3.3. 
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Figure 3.4 End-of-season weed biomass in soybean for the Manhattan KS 2022 field. Soybean herbicide program information can be 

found in Table 3.4. 
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Figure 3.5 End-of-season weed biomass in corn for the A) Manhattan 2022 and B) Manhattan 2023 fields. Corn herbicide information 

can be found in Table 3.3. 
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Figure 3.6 Grain yield for the soybean Manhattan KS 2022 field. Herbicide program information 

can be found in Table 3.4. 
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Figure 3.7  Percent weed-free area in corn at 42 DAGT for main effect of A) herbicide program and B) threshold for Manhattan, KS 

2022. Herbicide programs are detailed in Table 3.3. 
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3.7 Tables 

Table 3.1 Planting information for corn and soybean experiments evaluating ONE SMART SPRAY herbicide programs and 

thresholds. 

 

a Illinois trials were planted later than usual due to drought conditions and limited space at the research farm 
b Corteva Agriscience, 974 Center Road, Wilmington, Delaware, United States 
c Wyffles Hybrids, 13344 US Highway 6, Geneseo, Illinois, United States 
d Xitavio Soybean Seed, BASF Corporation, 2 TW Alexander Drive, Durham, North Carolina, United States 

 

  Manhattan, KS 2022 Manhattan, KS 2023 Seymour, IL 2023 

Crop Corn Soybean Corn Soybean Corn Soybean 

Planting date May 16 May 17 May 19 May 19 July 3a July 3a 

Planting population (seeds ha-1) 59,300 331,000 59,300 331,000 88,900 346,000 

Seed hybrid/variety Pioneerb P1089AM Pioneer P39T61SE Pioneer P0995AM Pioneer P42A84E Wyfflesc 7878RIB Xitaviod 3651E 
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Table 3.2 Summary of herbicide programs used in this study. Broadcast (BCST) and spot spray 

(SS) applications were applied with either the broadcast boom or spot spray boom, respectively. 

Applications combined with a “+” sign indicate simultaneous applications. Green-on-brown 

(GOB) and green-on-green (GOG) applications were sprayed at-plant and 21 to 28 days after 

planting, respectively. 

 

 

 

 

 

Herbicide Program Description GOB Application GOG Application 

1 Residual at plant BCST + SS SS 

2 SS only SS only SS only 

3 One-pass BCST + SS -------- 

4 Spike Base-rate BCST + SS Spike Base-rate BCST + SS Spike 

5 Overlapping residual BCST + SS BCST + SS 
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Table 3.3 Herbicide information for corn experiments. Abbreviations: GOB, green-on-brown application; GOG, green-on-green 

application; BCST, broadcast; SS, spot spray. 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

a OutlookTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 
bAtrazine 4LTM, Makhteshim Agan of North America (ADAMA), 3120 Highwoods Blvd., Suite 100, Raleigh, North Carolina, United 

States 
cTreatments containing atrazine were applied with 10 ml crop oil concentrate L-1 solution  
dRoundup PowerMax 3TM, Bayer Crop Science, 800 N Lindbergh Blvd., St. Louis, Missouri, United States 
eTreatments containing glyphosate were applied with 120 g dry ammonium sulfate L-1 solution  
fArmezonTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 
gTreatments containing topramezone were applied with 2.5 ml crop oil concentrate L-1 solution  

 

Program GOB BCST GOB SS GOG BCST GOG SS 

 --------------------------------------------------- g ai or ae ha-1--------------------------------------------------- 

Residual at-plant 
dimethenamid-Pa: 841 

atrazineb,c: 2244 

glyphosated,e: 840 

topramezonef,g: 12.3 
------ 

glyphosate: 840 

topramezone: 12.3 

SS only 
------ 

glyphosate: 840 

topramezone: 12.3 
------ 

glyphosate: 840 

topramezone: 12.3 

One-pass 

dimethenamid-P: 841 

atrazine: 2244 

glyphosate: 840 

topramezone: 24.6 
------ ------ 

Spike 

glyphosate: 578 

topramezone: 12.3 
glyphosate: 578 glyphosate: 578 

topramezone: 12.3 
glyphosate: 578 

Overlapping residual 
dimethenamid-P: 841 

atrazine: 1122 

glyphosate: 840 

topramezone: 12.3 

dimethenamid-P: 420 

atrazine: 1122 

glyphosate: 840 

topramezone: 12.3 
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Table 3.4 Herbicide information for soybean experiments. Abbreviations: GOB, green-on-brown application; GOG, green-on-green 

application; BCST, broadcast; SS. 

 

 

a 

ZiduaTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 
b Enlist OneTM, Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, Indiana, United States 
c Roundup PowerMax 3TM, Bayer Crop Science, 800 N Lindbergh Blvd., St. Louis, Missouri, United States 
d Treatments containing glyphosate were applied with 120 g dry ammonium sulfate L-1 solution 

Program GOB BCST GOB SS GOG BCST GOG SS 
 --------------------------------------------- g ai or ae ha-1 --------------------------------------------- 

Residual at-plant pyroxasulfonea: 109 
2,4-Db: 1067 

glyphosatec,d: 840 
------ 

2,4-D: 1067 

glyphosate: 840 

SS only ------ 
2,4-D: 1067 

glyphosate: 840 
------ 

2,4-D: 1067 

glyphosate: 840 

One-pass pyroxasulfone: 109 
2,4-D: 1067 

glyphosate: 840 
------ ------ 

Spike 
2,4-D: 799 

glyphosate: 578 

2,4-D: 266 

glyphosate: 578 

2,4-D: 799 

glyphosate: 578 

2,4-D: 266 

glyphosate: 578 

Overlapping residual  pyroxasulfone: 55 
2,4-D: 1067 

glyphosate: 840 
pyroxasulfone: 55 

2,4-D: 1067 

glyphosate: 1346 
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Table 3.5 Application dates for green-on-brown (GOB) and green-on-green (GOG) in both corn and soybean at all location-years. 

Crop stages for the GOG are provided. 

 

 

 

Location Year Crop GOB GOG Crop stage - GOG 

Manhattan KS  2022 corn May 19 June 17 V5 

soybean May 20 June 17 V2 

2023 corn May 23 June 13 V5 

soybean May 23 June 20 V4 

Seymour IL 2023 corn July 5 July 27 V5 

soybean July 7 July 31 V2 
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Table 3.6 Percent weed-free area in soybean using the program analysis for main effect of  

herbicide program for the green-on-brown (GOB) treatments. Ratings were taken 21 DAGBT in 

2022 and 14 DAGBT 2023. Soybean herbicide programs are described in Table 3.4. 

Abbreviations: DAGBT, days after GOB treatment; SS, spot-spray. 

 

aNumbers in parentheses indicate standard error of the mean 
bLetters indicate Tukey Honest Significant Difference mean separation results within a given 

location 

 

 

Herbicide program Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 

  ------------------------------ %  ------------------------------ 

Residual at-plant 81 (2.7)a abb 97 (1.0) a 96 (1.5) a 

SS only 73 (3.2) b 92 (2.0) b 90 (3.0) b 

One-pass 88 (2.1) a 97 (0.8) a 96 (1.6) a 

Spike 79 (2.9) ab 98 (0.6) a 92 (2.5) ab 

Overlapping residual 79 (2.8) ab 96 (1.1) a 93 (2.2) ab 
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Table 3.7 Percentage of weed-free area for the green-on-brown application for each herbicide 

program and three locations. Ratings were taken 21 DAGBT in 2022 and 14 DAGBT in 2023. 

Abbreviations: DAGBT, days after the green-on-brown treatment. 

 

a Numbers in parentheses indicate standard error of the mean 
b Letters indicate Tukey Honest Significant Difference mean separation results within a given 

location 

  

Herbicide program Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 

  ------------------------------ %  ------------------------------ 

Residual at-plant 89 (1.9)a ab 98 (0.5) a 96 (1.2) a 

SS only 74 (3.1) c 73 (2.4) d 88 (2.6) b 

One-pass 89 (1.8) a 94 (1.1) b 96 (1.0) a 

Spike 90 (1.8) a 85 (1.9) c 94 (1.6) ab 

Overlapping residual 82 (2.5) b 88 (1.70) c 96 (1.1) a 
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Table 3.8 Percentage of weed-free area at 42 days after green-on-green application in soybean 

for each herbicide program and three locations. Herbicide programs are described in Table 3.4. 

Abbreviations: SS, spot spray; DAGT, days after the green-on-green treatment. 

 

aNumbers in parentheses indicate standard error of the mean  
bLetters indicate Tukey Honest Significant Difference mean separation results within a given 

location 

  

Herbicide program Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 

  ------------------------------ %  ------------------------------ 

Residual at-plant 80 (3.1)a bb 97 (0.8) a 82 (4.6) a 

SS only 77 (3.4) b 93 (1.5) b 79 (5.2) a 

One-pass 48 (4.3) c 89 (1.9) c 38 (6.5) b 

Spike 95 (1.3) a 98 (0.6) a 82 (4.7) a 

Overlapping residual 84 (3.1) a 93 (1.4) b 81 (4.9) a 
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Table 3.9 Weed densities across herbicide programs (herbicide program analysis) for each corn 

location at 14 DAGBT in 2023. Herbicide programs described in Table 3.3. Abbreviations: SS, 

spot spray; DAGBT, days after the green-on-brown treatment. 

 

 

 

 

 

aNumbers in parentheses indicate standard error of the mean 
bLetters indicate Tukey Honest Significant Difference mean separation results within a given 

location 
 

Herbicide program 

Weed density 

Manhattan KS 2023 Seymour IL 2023 

--------------- number m-2 --------------- 

Residual at-plant 6.3 (1.1)a cb 1.1 (0.2) b 

SS only 17.4 (2.1) a 1.8 (0.3) a 

One-pass 10.1 (1.2) bc 0.9 (0.2) b 

Spike 11.5 (1.6) ab 1.3 (0.2) ab 

Overlapping residual 12.0 (1.8) ab 0.9 (0.2) b 
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Table 3.10 Observed weed densities in soybean at 14 DAGT for main effects of herbicide 

program within three locations. Herbicide programs are described in Table 3.4. Abbreviations: 

DAGT, days after green-on-green treatment; SS, spot spray. 

 
aNumbers in parentheses indicate standard error of the mean 
bLetters indicate Tukey Honest Significant Difference mean separation results within a given 

location

Herbicide program 

Weed-free area 

Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 

------------------------------ weeds m-2  ------------------------------ 

Residual at-plant 1.5 (0.24)a bcb 0.5 (0.10) cd 0.8 (0.19) b 

SS only 1.9 (0.26) b 1.1 (0.16) ab 1.3 (0.28) ab 

One-pass 3.1 (0.36) a 1.4 (0.20) a 1.5 (0.32) a 

Spike 0.9 (0.16) c 0.4 (0.08) d 1.3 (0.23) ab 

Overlapping residual 1.4 (0.24) bc 0.8 (0.13) bc 0.8 (0.19) b 
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Table 3.11 Weed densities in corn for each herbicide program and location (herbicide program 

analysis) at 14 DAGT. Herbicide programs described in Table 3.3. Abbreviations: SS, spot-spray; 

DAGT, days after the green-on-green treatment. 

 
aNumbers in parentheses indicate standard error of the mean 
bLetters indicate Tukey Honest Significant Difference mean separation results within a given 

location 

  

Herbicide program Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 

  ------------------------------ number m-2 ------------------------------ 

Residual at-plant 0.9 (1.6)a cb 2.9 (3.3) bc 0.8 (1.7) b 

SS only 1.5 (2.3) b 3.3 (4.2) b 2.2 (3.4) a 

One-pass 2.5 (3.5) a 5.8 (6.7) a 0.9 (1.8) b 

Spike 0.7 (1.4) c 1.6 (2.6) cd 1.4 (2.8) ab 

Overlapping residual 0.8 (1.5) c 1.1 (1.9) d 0.8 (1.7) b 
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Table 3.12 Percent weed-free area across the four threshold levels in soybean at 42 DAGT for 

the Manhattan, KS 2022 location. Herbicide programs described in Table 3.4. Abbreviations: SS, 

spot spray; DAGT, days after the green-on-green treatment. 

 
aNumbers in parentheses indicate standard error values 
bLetters indicate Tukey Honest Significant Difference mean separation results 

 

  

Herbicide program 

Weed-free area 

Broadcast Balanced Efficacy Savings 

------------------------------------- %  ------------------------------------- 
 Residual at-plant 92 (3.3)a abcb 87 (4.7) abcd 81 (6.1) abcde 71 (7.7) e 
 SS only 86 (4.8) abcd 77 (6.7) cde 77 (7.2) cde 74 (7.6) de 
 Spike 97 (1.6) ab 98 (1.2) a 92 (3.4) abc 98 (1.0) a 

  Overlapping residual 95 (2.4) ab 83 (6.4) abcde 84 (6.0) abcde 79 (7.2) abcde 
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Table 3.13 Threshold analysis for weed density at 14 DAGT in soybean at each location for the 

split plot effect of threshold. Thresholds were analyzed separately for each location. 

Abbreviations: DAGT, days after the green-on-green treatment. 

 

 

 

 

 

aNumbers in parentheses indicate standard error of the mean 
b No significant difference 
c Letters within a main effect and location indicate Tukey Honest Significant Difference mean 

separation results 

 

Weed density 

Threshold 
Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 

------------------------------ number m-2 ------------------------------ 

Broadcast 1.54 (0.3a) nsb 0.40 (0.1) bc 0.52 (0.1) b 

Efficacy 1.35 (0.2) ns 0.68 (0.1) ab 0.57 (0.1) b 

Balanced 1.18 (0.2) ns 0.78 (0.1) a 0.76 (0.2) ab 

Savings 1.40 (0.3) ns 0.96 (0.2) a 1.00 (0.2) a 
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Table 3.14 Threshold analysis for weed density at 14 DAGT in corn at each location for split plot of threshold. Thresholds were 

analyzed separately for each location. Abbreviations: DAGT, days after the green-on-green treatment. 

 
 

 

 

 

 

aNumbers in parentheses indicate standard error of the mean 
bLetters indicate Tukey Honest Significant Difference mean separation results for a given main effect within each location 
 

 Threshold Weed Density   

 Manhattan KS 2022 Manhattan KS 2023 Seymour IL 2023 
 ------------------------------ number m-2 ------------------------------ 

Broadcast 0.57 (0.1a) bb 1.10 (0.2) b 0.61 (0.2) b 

Efficacy 0.89 (0.2) ab 1.60 (0.3) ab 1.17 (0.3) a 

Balanced 1.09 (0.2) a 1.55 (0.2) ab 1.42 (0.3) a 

Savings 0.87 (0.2) ab 2.23 (0.3) a 1.54 (0.3) a 
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Table 3.15 ONE SMART SPRAY herbicide program and threshold cost analysis for soybean (Manhattan KS 2023 and Seymour IL 

2023) and corn (Manhattan KS 2023). Abbreviations: SS, spot-spray 

 

 

 

 

 

 

 

 

 

 

 

aNumbers in parentheses indicate standard error of the mean 
bLetters indicate Tukey Honest Significant Difference mean separation results for all threshold prices within a given location 
 

 

  Herbicide Program Cost 

 Broadcast Efficacy Balanced Savings 

Manhattan KS 2023 - Soybean -------------------------------------- $ ha-1 -------------------------------------- 

Residual at-plant 217 (0)a ab 72 (7) d 68 (7) d 63 (6) d 

SS only 168 (0) b 44 (6) de 50 (6) de 32 (5) e 

Spike 211 (0) a 134 (7) bc 134 (7) bc 127 (7) c 

Overlapping residual 217 (0) a 74 (8) d 76 (8) d 73 (7) d 

 
 

       
Seymour IL 2023 - Soybean  

       
Residual at-plant 217 (0) a 64 (7) cde 80 (8) c 71 (7) c 

SS only 168 (0) b 35 (6) de 56 (8) cde 34 (5) e 

Spike 209 (0) a 135 (9) b 145 (9) b 133 (9) b 

Overlapping residual 217 (0) a 72 (7) c 67 (7) cd 75 (7) c 

 
 

       
Manhattan KS 2023 - Corn  

       
Residual at-plant 212 (0) a 172 (3) bc 157 (3) cd 157 (3) c 

SS only 137 (0) e 107 (4) f 105 (4) f 93 (4) f 

Spike 210 (0) a 176 (4) bc 181 (3) b 178 (4) b 

Overlapping residual 214 (0) a 170 (4) bcd 157 (4) c 157 (4) c 
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Chapter 4 - On-farm evaluation of a commercial ONE SMART 

SPRAY in Midwestern United States corn and soybean cropping 

systems 

Note: This manuscript is formatted to submit to Pest Management Science and is currently being 

edited to submit. 

 

 4.1 Abstract 

Background: Herbicides are traditionally broadcast applied throughout the entire field, even 

where weeds are not growing. Recently, sprayers utilizing artificial intelligence have become 

available on the commercial market, which would allow users to simultaneously detect and spray 

weeds. Furthermore, some sprayers are equipped with two-tank/two-boom systems that would 

allow simultaneous broadcast and spot spray applications. Currently, no scientific research 

evaluating how these sprayers best fit within Midwestern United States corn (Zea mays L.) and 

soybean (Glycine Max [L.] Merr.) cropping systems has been conducted. The objectives were to 

investigate how spot spraying treatments compare to simulated broadcast + spot spraying 

approaches, and to evaluate how spot spraying applications influence herbicide costs. 

Results: Simulated two-boom applications, broadcasting a base rate of foliar herbicides and spot 

spraying additional doses had more weed-free area than spot spray applications only. Cost of 

high rate broadcast + low rate spot spray applications were not different from broadcast 

applications, but low rate broadcast + high rate spot spray applications were always less 

expensive than corresponding broadcast applications. 

Conclusion: Two-tank/two-boom precision sprayers show potential to provide weed control not 

different than broadcast applications, while costing less . Future research should also compare 
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simultaneous applications of broadcast soil residual herbicides and spot spraying foliar 

herbicides when weeds are detected.  

 

Key words: Site specific weed control, ONE SMART SPRAY, herbicide cost, artificial 

intelligence, weed control 
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 4.2 Introduction 

Weed infestations are a major problem in crop production. Worldwide crop losses due to 

uncontrolled weeds were estimated to range between 20 and 90% when compared to weed-free 

crop production (Gianessi and Williams 2011; Oerke 2006; Pacanoski and Mehmeti 2021). In the 

United States, weed cause yield losses to average 52% in soybean (Glycine max [L.] Merr.) 

(Soltani et al. 2017), 50% in corn (Zea mays L.) (Soltani et al. 2016), 34% and 47% for winter 

and spring wheat (Triticum aestivum L.), respectively (Flessner et al. 2021), and 47% in grain 

sorghum (Sorghum bicolor [L.] Moench) (Dille et al. 2020). Chemical applications remain the 

most common method of agronomic weed control, with more than 95% of corn, soybean, cotton 

(Gossypium hirsutum L.), and sugarbeet (Beta vulgaris L.) fields treated with herbicides 

(Gianessi 2005). As input prices, including seed, pesticides, and fertilizers, have risen about 6 to 

7% annually since the year 2000 (Paulson et al. 2023), the costs of herbicide applications are 

only expected to increase in future years. Although weeds are often distributed non-uniformly 

within fields (Thompson et al. 1991), herbicides are typically broadcast across entire fields, 

leading to increased herbicide waste, environmental contamination, and increased costs for 

farmers (Barroso et al. 2004; Laini et al. 2012). 

 Site-specific weed management (SSWM), defined as the process of adapting weed 

control methods to match the location of weed infestations (Fernández-Quintanilla et al. 2018), 

has been proposed to help reduce drawbacks associated with herbicide applications. A major 

challenge is creating a method reliable and accurate enough to detect and control weeds in a 

multitude of field conditions (Gao et al. 2020). Recently, precision sprayers using artificial 

intelligence (AI) for weed detection have become commercially available. These sprayers use a 

combination of cameras, sensors, and convolutional neural networks to locate and spray weeds 
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both in fallow and in-crop fields (Spaeth et al. 2024). Although these AI sprayers are relatively 

new, there are some reports in the literature indicating that significant amounts of herbicides can 

be saved compared to traditional broadcast applications. Partel et al. (2021) developed a tree fan 

sprayer capable of recognizing fruit trees and spraying with crop protection products as needed. 

The authors used a combination of LiDAR and AI algorithms to determine the need to spray 

based on tree leaf density and fruit count. Buzanini et al. (2023) developed a research sprayer 

using two sprayer nozzles to identify weeds in jalapeño pepper (Caspicum annuum L.) 

production. The sprayer was trained to identify weeds using the open source You Only Look 

Once v3 (Redmon and Farhadi 2018) algorithm and reported reduction in herbicide volumes by 

26% and 42% for fall and spring applications, respectively. Farooque et al. (2023) developed a 

smart variable rate research sprayer to recognize and spray common lambsquarters 

(Chenopodium album L.) and corn spurry (Spergula arvensis L.) weeds with herbicides in potato 

(Solanum tuberosum L.) production, and to spray potato plants with fungicide for early blight 

potato diseases (caused by Alternaria solani Sorauer). The authors reported reduced spray 

volumes of 47% and 51% for herbicide and fungicide applications, respectively. This same 

sprayer was used by Hussain et al. (2020) and was reported to reduce spray volumes by 42% and 

43% when spraying weeds and simulated diseased potato plants, respectively. 

 Although these studies have demonstrated real-time weed detection with precision 

sprayers, commercial-grade sprayers must be significantly larger and be able to spray many more 

acres than what can be covered by research sprayers. In the United States and Europe, examples 

of sprayers currently available include the John Deere® See & SprayTM Ultimate (John Deere 

2024), Greeneye TechnologyTM (Greeneye Technology 2024), and the ONE SMART SPRAY 

smart sprayer (ONE SMART SPRAY 2024). More sprayers are coming equipped with features 
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such as two-tank/two-boom systems for simultaneous broadcast (BCST) and spot-spraying (SS) 

applications (i.e. the two-tank option described by John Deere (2024)). This technology allows 

applicators to broadcast base rates of herbicides with one boom and “spike” additional doses of 

same herbicide or spray other herbicides when weeds are detected. When used for targeted 

spraying, two-tank spray systems can increase herbicide savings over single-tank systems 

(Gutjahr et al. 2012). At this time, there are no other published reports evaluating commercial AI 

field sprayers in terms of weed control and herbicide cost savings compared to traditional 

broadcast applications. Therefore, the objectives are to 1) evaluate weed control of a commercial 

AI field sprayer using a two-tank simulated approach versus a traditional BCST approach and a 

SS only approach, and 2) determine herbicide cost savings with SS applications. 

 

 4.3 Materials and Methods 

 4.3.1 Overview of field sites 

Field sites were established in 2022 at the University of Nebraska-Lincoln Research Farm 

southeast of Mead, NE. In 2022, NE 1 (41.170°N, 96.462°W) and NE 2 (41.170°N, 96.456°W) 

were planted with soybean and corn, respectively, and were rotated to the subsequent crop in 

2023. Both fields were part of a no-till corn-soybean rotation and were irrigated; the exception 

being that NE 2 was inadvertently tilled at the beginning of the 2023 season. The NE 1 field was 

located on a Yutan silty clay loam (2-6% slope) and a Tomek silt loam (0-2% slope), whereas 

NE 2 field was located on a Yutan silty clay loam (2-6% slope) and a Filbert silt loam (0-1% 

slope) (Web Soil Survey 2024). Both fields contained moderate to dense infestations of 

waterhemp (Amaranthus tuberculatus [Moq.] Sauer), velvetleaf (Abutilon theophrasti Medik.), 
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and yellow foxtail (Setaria pumila [Poir.] Roem. & Schult.). All fields were planted with rows 

spaced 76-cm apart. Table 4.1 describes planting information. 

 

4.3.2 Field sprayers 

5 Due to equipment availability, different sprayers were used in 2022 and in 2023, although 

the ONE SMART SPRAY sensors and camera hardware were the same. In 2022, trials 

were conducted using a Fendt® RoGatorTM 665 (AGCO® International GmbH, Neuhausen 

am Rheinfall, Switzerland) with a 36-m boom width and 2023 trials were conducted with a 

Hagie® STS12TM (Hagie Manufacturing, Clarion, IA, United States) with an 18.3-m boom 

width (Figure 4.1). Nozzles were spaced at intervals of 50 cm on both sprayers. Each 

sprayer was equipped with light-emitting diode (LED) lights emitting infrared (IR) and 

near infrared (NIR) light to provide for a consistent image across a multitude of lighting 

conditions (Spaeth et al. 2024). Cameras were fixed between each set of two lights and 

were angled approximately 25° forward from the ground so that weeds could be detected 

before the booms passed over them (Figure 4.2). Specific model numbers for cameras and 

sensors are not available because they are still considered prototypes by Bosch® (Bosch 

GmbH, Stuttgart, Germany).  

6 The ONE SMART SPRAY system is capable of both green-on-brown (GOB) and green-

on-green (GOG) applications. Green-on-brown applications are used in burndown, fallow, 

and/or pre-emergence situations where the sprayer detects all green vegetation and 

activates nozzles to spray them (Booker 2021). For GOB applications, AI is not used 

because vegetation can be detected effectively with IR and NIR (Knipling 1970), which 
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requires much less computing power. However, AI is used for GOG applications to 

facilitate distinguishing weeds from crop plants. This study focused on GOG applications. 

 

 4.3.3 Field studies 

In 2022, treatments were established in a randomized complete block design with three 

replications in both NE 1 and NE 2 fields. Plot dimensions were 36 m wide by 286 m long for 

NE 1 (soybean) and were 36 m wide by 320 m long for NE 2 (corn), as determined by space 

available in each field. The main treatment factor was application program, where a SS only 

treatment was compared to two different “Spike” approaches where a base rate of herbicide was 

broadcast (BCST) and rate was “Spiked” up to the labeled herbicide rate when the ONE SMART 

SPRAY sensors detected weeds (Table 4.2). Treatment 1 (T1) consisted of a low BCST rate + a 

high SS rate, Treatment 2 (T2) consisted of a high BCST rate + a low SS rate, and Treatment 3 

(T3) was a SS only treatment. In the corn experiment, only the glyphosate rates were changed for 

the T1 and T2 treatments, whereas an equal rate of diflufenzopyr and dicamba were applied with 

both BCST and SS booms. In the soybean experiment, only the glufosinate rate was changed for 

the T1 and T2 treatments, and an equal rate of glyphosate was applied with the BCST and SS 

booms. The SS only applications in T3 were the sum of the total rates applied in T1 and T2 for 

both corn and soybean. 

 In 2023, treatments were arranged in a split-plot design with four replications. The design 

was changed due to field space availability, a smaller boom width, and the addition of SS weed 

detection thresholds into the experiment (not yet available in 2022). The main treatment factor 

was three application programs as in 2022, and the split-plot factor was five ONE SMART 

SPRAY detection thresholds. Each subplot was 18.3 m wide by 31 m long. AI spraying systems 
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allow for different confidence intervals, or detection thresholds, to be used when making 

detections (Barnhart et al. 2022). Correct detections are labeled true positives, whereas incorrect 

(or misplaced) detections are known as false positives (Ralašić 2021). Thresholds set to smaller 

confidence intervals allow for more false positives, but the likelihood of correct detections is 

greater. On the other hand, larger thresholds result in missed detections (Barnhart et al. 2022). 

These thresholds represent different application philosophies; smaller thresholds would 

correspond to an herbicide efficacy (EFF) approach in that more herbicide would be sprayed than 

necessary due to false positive detections. Larger thresholds would result in an herbicide savings 

(SAV) approach. The ONE SMART SPRAY makes detection determinations based on weed 

size; although exact settings are proprietary in nature, four threshold levels were selected 

(presented here from smallest to largest weed detection size): Herbicide efficacy (EFF), two 

intermediate thresholds (INT 1, INT 2), and an herbicide savings (SAV) threshold. A broadcast 

(BRD) treatment was included for comparison as a traditional approach.  

 Applications in 2022 were made on June 21 to V5-V6 corn and on June 22 to R1 

soybean. In 2023 applications were made on June 9 to V5 corn and on June 7 to V4 soybean. . 

Problems with the sprayer in 2022 resulted in soybean experiments being sprayed at a later 

growth stage. In 2022, both BCST and SS applications were made with a carrier volume of 168.4 

L ha-1 at a pressure of 186 kPa and an application speed of 10.6 km hr-1. In 2023, BCST 

applications were made with a carrier volume, pressure, and application speed of 140.3 L ha-1, 

207 kPa, and 11.1 km hr-1, respectively. SS applications were made with a carrier volume, 

pressure, and application speed of 187 L ha-1, 207 kPa, and 8.4 km hr-1, respectively. For both 

years, T1 and T2 BCST and SS applications were sprayed separately since two-boom sprayers 

were unavailable. Wilger® MR110-04 flat-fan (Wilger® Inc., Lexington, TN, United States) and 



146 

a TeeJet® TP50-04 even-fan nozzles (TeeJet® Technologies, Inc., Wheaton, IL, United States) 

were used for 2022 and 2023, respectively. Herbicides used and application rates can be found in 

Tables 4.2 and 4.3 for 2022 and 2023 studies, respectively. All applications were made with dry 

ammonium sulfate (S-SULTM, American Plant Food Corp., Galena Park, Texas, United States) at 

a rate of 20.4 g L-1 of spray solution. 

 

 4.3.4 Field measurements 

Within each plot, the percentage of weed-free area was estimated visually within an area 

excluding 1.5 m from the front and back of each plot. Estimations were taken 14, 28, and 42 days 

after treatment (DAT) using a scale of 0to 100% where a rating of 0 indicated a plot completely 

infested with weeds, while a rating of 100 indicated no weeds observed. In 2022 as plots spanned 

the entire length of the field, six random locations were selected in each plot. In 2023, as plot 

lengths were only 31 m, these data were collected by walking the center of each plot and 

estimating the weed-free area in the soybeans. For the corn, as whole-plot analysis was 

prohibited due to crop height, five random locations were selected throughout the crop for 

estimating weed-free area. Weed-free check plots were not permitted due to the farm wanting to 

minimize weed growth in a commercial field. 

 To determine herbicide application costs, as-applied maps were generated after the ONE 

SMART SPRAY applications (Barnhart IH, unpublished). Raw nozzle data were collected 

during each application documenting when each nozzle was “on” or “off.” Each point was 

geotagged with GPS coordinates and each point was labeled as either “TRUE” or “FALSE” to 

indicate whether the nozzles were spraying or not spraying, respectively. Maps were generated 

using a nearest neighbor interpolation, allowing for a binary map of “0” (no spraying) and “1” 



147 

(spraying) values to be produced (Fadnavis 2014). These maps were generated only for 2023 

data, because the 2022 data were lost due to issues with the data decoder. Raw data files were 

imported into Jupyter Lab (Kluvyer et al. 2016), where the Python 3.9 (Python 3.9.17 2023) 

packages Geopandas (Jordahl et al. 2020), Shapely (Gillies et al. 2023), and SciPy (Scipy docs, 

2023) were used to generate the maps. A 0.2m-by-0.2m grid was overlaid onto each field site, 

and on/off values were generated with the interpolation. After generation, maps were exported to 

QGIS 3.22.7 (QGIS, https://qgis.org/en/site/), where the percentage of each plot sprayed with the 

SS application were determined. An herbicide cost $US ha-1 was determined for each application 

using herbicide prices found in the 2023 Kansas State University Chemical Weed Control Guide 

(Lancaster et al. 2023). 

 

 4.3.5 Statistical analysis 

All analyses were conducted using R 4.3.1 (R Core Team 2023). Linear mixed effects 

models were used for all data analyses; to meet all ANOVA model assumptions, data were 

analyzed with the ‘glmmTMB’ package (Brooks et al. 2017) using a beta distribution. Data were 

transformed using the logit transformation and were automatically back transformed for data 

visualization by the package. Using the ‘DHARMa’ package (Hartig 2022), models were 

checked for normality and homogeneity of variance. The Type III Wald chi-square test was used 

to determine significances of models (Miranda et al. 2022), and means were separated using 

Tukey’s Honest Significant Difference post-hoc test using the ‘emmeans’ package (Lenth 2023) 

and a confidence level of p < 0.05. 

Due to the differences in study design, 2022 and 2023 were analyzed separately. For each 

year, each crop was analyzed separately. For the 2022 data, response variables of weed-free plot 
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area and herbicide costs were analyzed using a fixed effect of application program and a random 

effect of replication. In 2023, however, response variables were analyzed with fixed effects being 

application program and detection threshold and their interaction and random effects being 

replication and replication by application program. 

 

 4.4 Results 

 4.4.1 Weed-free area in 2022 

For soybean, percent weed-free area across application programs was not different by 14 

DAT (p = 0.08) but were different at 28 and 42 DAT (p < 0.0001 for both timings). The two 

“Spike” programs, T1 and T2, were not different from each other with both having weed-free 

areas of 98% and 100% by 28 and 42 DAT, respectively (Figure 4.3). The SS only treatment had 

74% and 69% weed-free area by 28 and 42 DAT, respectively. Figure 4.4 illustrates the 

differences in weed infestation for each soybean treatment. For corn, no differences were 

detected in 2022 due to both sprayer malfunctions and an application of Acuron® (Syngenta Crop 

Protection LLC., Greensboro, North Carolina, USA) herbicide applied prior to corn emergence. 

 

 4.4.2 Weed-free area in 2023 

Significant interaction between application programs and thresholds were found for each 

measurement date in the 2023 soybean study (p = 0.01, p = 0.0006, and p = 0.002 for 14, 28, and 

42 DAT, respectively). Data from 42 DAT will be presented because differences were clearly 

observed at this time. (Figure 4.5). No differences in weed-free area were detected among all 

thresholds within an application program, although the greatest weed-free area was the EFF 

threshold in T2 (96% weed-free area). Interestingly, the EFF threshold in T1 had 91% weed-free 
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area and was not different than the results obtained for all thresholds with T2. In both T1 and T2, 

EFF outperformed the traditional BCST treatment. For T3, only INT 1 and INT 2 weed-free area 

were not different than the broadcast treatment.  

 In corn, there were no interactions between application programs and thresholds across 

all measurement dates (p = 0.41, p = 0.07, and p = 0.39 for 14, 28, and 42 DAT, respectively). 

Weed-free area for each application program was different at 14, 28 and 42 DAT (p = 0.004, p = 

0.0003, and p = 0.0004, respectively). T1 and T2 were not different from each other but T3 

always had less weed-free area across all measurement dates (Figure 4.6). The greatest weed-free 

area was observed for T2 with 96, 97 and 97% for 14, 28, and 42 DAT, respectively, though not 

different from T1. Conversely, the least weed-free areas were observed for the T3 treatment and 

were 89, 88, and 90% for 14, 28, and 42 DAT, respectively. 

 

 

 4.4.3 Herbicide cost 

A significant interaction for total herbicide cost was observed between application 

programs and thresholds (p < 0.0001) (Figure 4.7) for soybean. Data were only collected for T2 

and T3 due to an application error preventing data collection for T1. For both T2 and T3, the 

BRD treatment was the most expensive at $148 ha-1 in both application programs. Although T2 

program SS thresholds cost less than the BRD treatment, they were not different. Costs for the 

thresholds in the T2 program ranged from $116 to $127 ha-1 and in the T3 program ranged from 

$34 to $78 ha-1. In general for T2, EFF was the most expensive ($126 ha-1), whereas SAV was 

the least expensive ($116 ha-1). Conversely, all thresholds in T3 program (SS only) cost much 
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less than the BRD threshold, with the EFF being the most expensive ($78 ha-1) and SAV being 

the least ($34 ha-1) 

 A significant interaction was also found between corn application programs and 

thresholds (p < 0.0001) (Figure 4.8). Like the soybean price results, the BRD treatments were the 

most expensive within each application program ($173, $173, and $164 ha-1 for T1, T2, and T3, 

respectively). All thresholds in T2 application program were less expensive than a BRD 

treatment but were not different. All thresholds cost less than the BRD treatments for T2 and T3. 

The EFF threshold was the most expensive threshold in T1 ($125 ha-1) and T2 ($155 ha-1 ), but 

each EFF threshold was not different than the INT 1 threshold for T3 ($103 and $107 for EFF 

and INT 1, respectively).  

 

 4.5 Discussion 

A novel concept of a “Spike” approach in that a base rate of foliar herbicides can be 

broadcast applied when no weeds are detected and doses are increased to a predetermined rate 

and target applied when weeds are detected. For both years, treatments containing a broadcast 

base rate + a SS “Spike” application had higher weed-free area than the SS only treatments. As 

can be seen in the 2023 cost analyses, the T1 and T2 treatments were almost always more 

expensive than SS only treatments, but also resulted in better weed control. For example, 2023 

soybean weed-free data, all SS thresholds provided levels of weed control similar to the 

broadcast applications for T2, but there were no differences in weed-free area when comparing 

the EFF threshold in T1 to all thresholds in T2. Utilizing an EFF threshold with a low BCST + 

high SS program would result in more herbicides being applied relative to other thresholds but 

would likely still result in significant herbicide reductions compared to broadcast applications. 
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Further research is needed to confirm this approach, as soybean herbicide cost data for T1 

program were not available due to a data collection error.  

Threshold differences were not observed in the 2023 corn likely due to absence of weed 

pressure and ONE SMART SPRAY application approach. Despite being irrigated, less than 76 

mm of irrigation water was applied because the area was in extreme drought (data not shown), 

and water conservation practices were in place at that time. Therefore, weeds were not in 

abundance at application time. Additionally, the application was sprayed when the corn was at 

V5 stage (approximately 30.5 cm tall). As corn can often start to establish canopy at this stage 

(Curran et al. 2016), it was likely difficult for the ONE SMART SPRAY sensors to “see” 

between corn rows; when this occurs, the system defaults to a broadcast application to minimize 

chances of missing weeds (Kalvin Miller, personal communication). Although weed pressure 

was minimal, across all 2023 SS treatments, soybean herbicide savings compared to traditional 

broadcast applications were 64% but corn herbicide savings were only 43% (analysis not 

shown). The defaulting to broadcast applications combined with a minimal weed pressure were 

the likely reasons that no differences were observed among thresholds. Further research should 

focus on GOG applications at an earlier corn growth stage to allow ONE SMART SPRAY 

sensors to “see” between corn rows. 

Herbicide costs for SS thresholds in T2 application program (low BCST rate + high SS 

rate) in both corn and soybean were not different from BRD treatment. However, herbicide costs 

for SS thresholds in T1 program (high BCST rate + low SS rate) in corn were cheaper than BRD 

treatments, but the percent weed free areas were not different. These data suggest that a low 

BCST + high SS rate approach using the EFF threshold may cost less (compared to the BRD 

applications as well as commercially acceptable weed control. Weed community was not very 
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dense in the corn studies, so the default broadcast application was triggered for most of the SS 

applications by the ONE SMART SPRAY when the cameras sensors were blocked because of 

tall corn. To better understand how weed densities affect ONE SMART SPRAY performance 

and herbicide savings, both corn and soybean studies should be established in a wide range of 

weed densities.  

When determining base rate BCST treatments, it is worth noting that sublethal herbicide 

doses could increase the risk of evolution of herbicide-resistant weeds (Vila-Aiub and Ghersa 

2005). The base-rate BCST treatment may have resulted in more weed-free area because 

undetected weeds were sprayed with the BCST application. In these experiments, the sprayer 

detected crop rows an eliminated them from the images, thus spraying every detectable plant not 

included in the crop rows, and missing weeds growing within the crop rows . Furthermore, 

because detecting small objects is challenging for AI systems (Li et al. 2017), it is also possible 

that some weeds were small enough to avoid ONE SMART SPRAY detection. Just as the 

repeated use of glyphosate without rotation to other herbicide modes of action helped to 

perpetuate the problem of glyphosate resistance (Johnson et al. 2009), it stands to reason that 

repeated sublethal doses of herbicides may, over time, lead to more frequent herbicide resistance 

cases. A proposed solution to this issue would be to rotate ONE SMART SPRAY uses, just as 

rotating herbicide modes of action is recommended to slow herbicide resistance in weeds 

(Beckie and Reboud 2009; Owen et al. 2014). For example, a proposed use of the ONE SMART 

SPRAY is to use two-boom/two-tank sprayers to simultaneously broadcast soil residual 

herbicides and SS foliar herbicides when weeds are detected. Such approaches have been shown 

to provide weed control not different from broadcast applications of the same herbicides but 

costing less (Chapter 3,). Therefore, we hypothesize that rotating between ONE SMART 
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SPRAY uses (i.e. rotating the “spike” treatment concept with simultaneously broadcasting 

residual and SS foliar herbicide treatments) may lead to significant herbicide cost savings while 

helping to slow the evolution of weed resistance. A dual-boom/dual-tank ONE SMART SPRAY 

system would allow for this versatility, but a single boom sprayer retrofitted with sensors would 

likely be limited to the Spike-spraying approach. We propose that the ONE SMART SPRAY be 

used as a tool for integrated weed management and used as diversely as possible, and not be 

treated as a “silver bullet” (Edwards and Hannah 2014) just to save herbicide costs. Further 

research is needed to understand how ONE SMART SPRAY use impacts herbicide resistance 

evolution. In addition, these results open opportunities to study how both weed control and weed 

resistance are impacted by the frequency of ONE SMART SPRAY program rotation, as well as 

how different herbicide combinations can influence these factors as well.  

 

 4.6 Conclusion 

This study compared a novel BCST + SS “Spike” approach to both a traditional BCST and to 

SS only application program using a simulated two-tank/two-boom ONE SMART SPRAY. 

Additionally, based on 2023 data, herbicide costs were compared when using applications with 

SS components. Specific findings are as follows: 

1. Treatments with broadcast applications (T1 and T2) often performed better than SS only 

(T3) applications in terms of more weed-free area. When a interaction was found between 

application program and thresholds in 2023, the EFF threshold with T1 program 

performed better than other thresholds with T1 program, and showed comparable weed-

free area results to all thresholds with T2 program.  
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2. For both 2023 corn and soybean, cost of SS-only thresholds with T2 program were not 

different than BRD treatment. For corn, costs for SS components of T1 programs were 

less than respective BCST applications (no data available for T1 in soybean). Results 

suggest that using an EFF threshold with T1 program for corn will result in the greatest 

cost savings without sacrificing acceptable weed control. Further work should verify 

these findings with soybean and other crops. 
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 4.9 Figures 

Figure 4.1 a) Fendt® RoGatorTM 665 used for 2022 field study and b) Hagie® STS12TM used for 

the 2023 field study at Mead, NE. 
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Figure 4.2 Close up view of the ONE SMART SPRAY system mounted onto the Hagie® STS12TM sprayer used in the 2023 studies. 

a) LED lights were attached to an aluminum rail running parallel to each boom, allowing the b) sensors to detect weeds in a variety of 

lighting conditions. 

 

 

  

a) 

b) 
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Figure 4.3 Mean percentage of weed-free area for each soybean herbicide application program at a) 28 DAT and b) 42 DAT. Weed-

free areas for each plot were collected using visual estimations between 0 and 100%; ratings of 0 being completely infested with 

weeds, whereas ratings of 100 indicated no weed presence. A one-way ANOVA analysis was used to determine the main effect of 

application program on the weed-free area, and a Tukey Honest Significant Difference post hoc test (p < 0.05) was used for mean 

separation. Results indicated that T1 and T2 were not different but had more weed-free area than T3 on both measurement dates. No 

differences were observed between treatments with the same alphabetic letter above each bar and error bars are the standard error of 
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the mean for three independent replications. No error bars are above T1 and T2 for 42 DAT because the plots were completely free of 

observable weeds. Abbreviations: BCST, broadcast; SS, spot spray; T1, treatment 1; T2, treatment 2, T3, treatment 3, DAT, days after 

treatment. 
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Figure 4.4 Differences in weed infestations for the 2022 soybean study by 28 DAT for a) Low BCST rate + High SS rate (T1) 

application program, b) High BCST rate + Low SS rate (T2) application program, and c) SS Only (T3) application program. The SS 

only program (T3) was characterized by denser infestations of velvetleaf (Abutilon theophrasti Medik.) and waterhemp (Amaranthus 

tuberculatus [Moq]. Saur) than T1 and T2 (waterhemp infestations not pictured). 
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Figure 4.5 Application programs and thresholds interacted for weed-free area in 2023 soybean 

study by 42 DAT. Means visual weed-free area estimates of each plot, with 0 being completely 

infested with weeds and 100 being completely weed-free, and were analyzed with a two-way 

ANOVA followed by a Tukey Honest Significant Difference post-hoc test (p < 0.05) for mean 

separation. No differences were observed among n any of the thresholds in the T2 program, 

whereas the most weed-free area was observed for EFF threshold in T1 but was not different 

than the T2 results. There were no differences among observations with the same alphabetic 

letter above each bar. Error bars represent the standard error of the mean calculated from four 

independent replicates. Abbreviations: BCST, broadcast; BRD, broadcast (threshold 

comparison); SS, spot spray; EFF, efficacy threshold; INT 1, intermediate 1 threshold; INT 2, 
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intermediate 2 threshold; SAV, savings threshold; DAT, days after treatment; T1, treatment 1; 

T2, treatment 2; T3, treatment 3. 
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Figure 4.6 Percent weed-free area in the 2023 corn plots at a) 14, b) 28, and c) 42 DAT. Results 

are the average visual weed-free area estimates of each plot, with measurements of 0 indicating 

complete weed infestation and 100 indicating no weeds . These data were analyzed with a two-

way ANOVA (main herbicide treatment and thresholds), where no significant interactions were 
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detected and only herbicide treatments were significant. A Tukey Honest Significant Difference 

post-hoc test (p < 0.05) was used to determine differences among means. Treatment T2 always 

contained the highest weed-free ratings, but T1 was never statistically different from T2. 

However, T1 and T2 had statistically higher weed-free area than T3 at each observation date. No 

statistical differences were observed between treatments with the same alphabetic letter on top of 

their respective bars, and error bars indicate the standard error of the mean among four 

independent treatment replicates. Abbreviations: BCST, broadcast; SS, spot spray, DAT, days 

after treatment. 
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Figure 4.7 Results of the cost analysis of the 2023 soybean application programs and thresholds. Data were obtained by computing 

the percentage of each plot that was sprayed using the as-applied map, and includes all broadcast component costs. Data from the Low 

BCST rate + High SS rate (T1) were not available due to a sprayer error. A two-way ANOVA was used to determine the effect of all 

treatments on the cost in US$ ha-1, and means were separated with a Tukey Honest Significant Difference post-hoc test (p < 0.05). 

Results indicated that, although always lower, the T2 thresholds were same cost as the BCST applications. However, T3 treatments 

were always cheaper than the BCST applications. No differences were observed with treatments with the same alphabetic letter over 
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each bar , and error bars indicate the standard error of the mean for four independent replications. Abbreviations: BCST, broadcast; 

BRD, broadcast (threshold comparison); SS, spot spray; EFF, efficacy threshold; INT 1, intermediate 1 threshold; INT 2, intermediate 

2 threshold; SAV, savings threshold; DAT, days after treatment; T2, treatment 2; T3, treatment 3.
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Figure 4.8 Results of the cost analysis of the 2023 corn treatments and thresholds. The percentage of each plot sprayed was computed 

using the as-applied maps generated using the raw sprayer data, and all broadcast treatments were included. A two-way ANOVA was 

used to determine the effect of corn herbicide treatment and sprayer threshold on the cost ha-1, and the means were separated with a 

Tukey Honest Significant Difference post hoc test (p < 0.05). Results indicated that T2 thresholds, although lower than the BCST 

treatment, were not significantly lower than the BCST treatment cost, but all thresholds were significantly cheaper than the respective 
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BCST treatment for T1. No differences were detected among treatments with the same alphabetic letter over each respective graph, 

and error bars indicate the standard error of the mean for four independent replications. Abbreviations: BCST, broadcast; BRD, 

broadcast (threshold comparison); SS, spot spray; EFF, efficacy threshold; INT 1, intermediate 1 threshold; INT 2, intermediate 2 

threshold; SAV, savings threshold; DAT, days after treatment; ha, hectare; T1; treatment 1; T2, treatment 2; T3, treatment 3. 
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 4.10 Tables 

Table 4.1 Planting information for corn and soybean trials for both 2022 and 2023 experiments. 

 

† Channel® Seed, Bayer Crop Science, 800 N. Lindbergh Blvd., St. Louis, MO, 63167, USA 
‡ DEKALB® Seed, Bayer Crop Science, 800 N. Lindbergh Blvd., St. Louis, MO, 63167, USA 
§ Beck’s Hybrids, 6767 E. 276th Street, Atlanta, IN, 46031, USA. “E3” is a trademark of EnlistTM soybeans, Corteva 

Agriscience LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA 

 

Planting Information 

2022 2023 

Corn Soybean Corn Soybean 

Planting Date April 19 May 16 May 3 May 2 

Seeding population (seeds ha-1) 78,300 331,000 78,300 331,000 

Hybrid/Variety 210-79DGVT2†  2622RXF† 59-81 RIB‡ 2830-E3§ 
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Table 4.2 Herbicide and rate information for all 2022 treatments. Abbreviations: BCST, broadcast; SS, spot spray; ai, active 

ingredient; ae, acid equivalent. 

 

† Roundup PowerMax 3TM, Bayer Crop Science, 800 N Lindbergh Blvd., St. Louis, Missouri, United States 
‡ StatusTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 
§ Liberty 280 SLTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 

 

Corn - 2022 Soybean 2022 

Herbicide Program Application Method Herbicide Rate (g ai or ae ha-1) Herbicide Rate (g ai or ae ha-1) 

Low BCST + High SS (T1) BCST glyphosate† + diflufenzopyr‡ + dicamba‡ 505 + 31 + 76 glufosinate§ + glyphosate 246 + 631 

SS glyphosate + diflufenzopyr + dicamba 1346 + 31 + 76 glufosinate + glyphosate 636 + 631 

High BCST + Low SS (T2) BCST glyphosate + diflufenzopyr + dicamba 1346 + 31 + 76 glufosinate + glyphosate 636 + 631 

SS glyphosate + diflufenzopyr + dicamba 505 + 31 + 76 glufosinate + glyphosate 246 + 631 

SS Only (T3) SS glyphosate + diflufenzopyr + dicamba 1851 + 62 + 152 glufosinate + glyphosate 882 + 1262 
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Table 4.3 Herbicide and rate information for 2023 trials. Abbreviations: BCST, broadcast; SS, spot spray; ai, active ingredient; ae, 

acid equivalent. 

Corn - 2023 

Herbicide Program Application Method Herbicide Rate (g ai or ae ha-1) 

Low BCST + High SS (T1) BCST glufosinate† + diflufenzopyr‡ + dicamba‡ + glyphosate§ 226 + 17 + 42 + 337 

SS glufosinate + diflufenzopyr + dicamba + glyphosate 656 + 51 + 126 + 673 

High BCST + Low SS (T2) BCST glufosinate + diflufenzopyr + dicamba + glyphosate 656 + 51 + 126 + 673 

SS glufosinate + diflufenzopyr + dicamba + glyphosate 226 + 17 + 42 + 337 

SS Only (T3) SS glufosinate + diflufenzopyr + dicamba + glyphosate 882 + 67 + 168 + 1010 
  

Soybean 2023 

Low BCST + High SS (T1) BCST glufosinate + glyphosate + 2,4-D¶ 226 + 337 + 266 

SS glufosinate + glyphosate + 2,4-D 656 + 673 + 799 

High BCST + Low SS (T2) BCST glufosinate + glyphosate + 2,4-D 656 + 673 + 799 

SS glufosinate + glyphosate + 2,4-D 226 + 337 + 266 

SS Only (T3) SS glufosinate + glyphosate + 2,4-D 882 + 1010 + 1065 
 

† Liberty 280 SLTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 
‡ StatusTM, BASF Corporation, 26 Davis Drive, Research Triangle Park, North Carolina, United States 
§ Roundup PowerMax 3TM, Bayer Crop Science, 800 N Lindbergh Blvd., St. Louis, Missouri, United States  

¶ Enlist OneTM, Corteva Agriscience LLC, 9330 Zionsville Road, Indianapolis, Indiana, United States 
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Chapter 5 - Final Thoughts, Conclusions, and Further Direction 

 5.1 Introduction 

Site specific weed management (SSWM) is a topic of interest due to an ability to reduce 

herbicide costs, environmental contamination, and reduce input costs for farmers. With the 

recent commercialization of artificial intelligence (AI) field sprayers, it is becoming increasingly 

feasible for farmers to use these sprayers to simultaneously detect weeds and spray them where 

they are growing and avoid spraying where they are not. These sprayers are a major step towards 

sustainability and SSWM, because AI has been shown to outperform traditional machine 

learning methods (i.e. support vector machines and k-means clustering algorithms) in terms of 

weed detection accuracy (Saini 2022). Overall, these studies demonstrate that weed detection and 

herbicide savings are possible and practical using AI. 

 

 5.2 Chapter 2 

We determined that free and open-sourced algorithms can be trained to identify weeds 

without making large changes to algorithms’ original code. It was found that the You Only Look 

Once version 5 (YOLOv5; Ultralytics 2023a) performed better than other algorithms that were 

tested in terms of mean average precision (mAP) (0.77), so it was chosen for further evaluation. 

These results revealed that the overall precision, recall, and F1 scores for 450 test images were 

0.71, 0.70, and 0.71, respectively. Although these results were lower than other reported YOLO 

weed detectors (Jin et al. 2022; Zhuang et al. 2022), this was most likely because we had 

imagery from heights ranging from 1.5 m to 8 m above the ground. Studies such as Jin et al. 

(2022) and Zhuang et al. (2022) usually contain imagery taken at consistent heights. However, 
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our goal in this research was to include images that either a field sprayer or UAV would observe; 

we hypothesized that training algorithms for more specific detection purposes (i.e. deployments 

on either UAV or “smart” sprayers and not both) would lead to higher mAP, precision, recall, 

and F1 scores. For example, when training an object detection algorithm for an intelligent 

sprayer, training images should be collected from the same camera height, resolution, angle, and 

cameras that would be mounted on the sprayers themselves. We suggest that taking this approach 

would maximize the likelihood of correct weed detections.  

 To improve upon this study, we suggest not only tailoring algorithm training to specific 

objects, but collecting more imagery and increasing the number of weed species able to be 

detected would be beneficial. Species identification is challenging and would require a lot of 

data, but precise weed species identification is important because they vary in competitive 

ability, physical characteristics, growth habits, and even susceptibility to evolving herbicide 

resistance (Vasileiou et al. 2024). When collecting species data, it is important that the number of 

training samples for each species be balanced, as an imbalance in the number of object detection 

training samples often limits algorithm detection performance (Pang et al. 2019). It may also be 

beneficial to train newer algorithms as they are released. For example, at the time of this 

research, YOLOv5 was the most advanced YOLO-series model that had been released, but at the 

present time algorithms such as YOLO-WORLD (Ultralytics 2023b) is now available in the 

YOLO family (anonymous 2023). We hypothesize that object detection models will continue to 

improve in speed and detection accuracy as time progresses. 

 Additionally, we found that when deploying object detection algorithms, users can select 

detection confidence intervals. In our study, we found that a lower confidence interval resulted in 

more detections but increased the likelihood of false positives (i.e. soybean plants identified as 
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Palmer amaranth plants. Conversely, higher confidence intervals would result in more accurate 

detections, but would increase the likelihood of false negative detections (i.e. failing to detect a 

Palmer amaranth plant when it is, in fact, present within an image). Our recommendation is that, 

when deploying these weed detection algorithms, lower confidence intervals are used. In this 

research, the confidence interval that maximized true positive and minimized false positive 

detections was 0.298; this was determined automatically during model training. If deployed in an 

intelligent sprayer, it is currently unknown as to whether this algorithm would make detections 

that would provide the greatest identification and treatment of weeds. As models are trained for 

specific deployments, are trained on more images, and more weed species are added to the 

model, this optimum confidence interval may change. Further research should be conducted to 

understand the optimum confidence interval(s) for weed control after model deployment. 

 

 5.3 Chapter 3 

We investigated different application approaches for the ONE SMART SPRAY research 

sprayer in corn (Zea mays L.) and soybean crops. The research sprayer used for this chapter was 

a two-tank/two-boom sprayer that was used to test spot-spray (SS) only treatments, simultaneous 

broadcasting (BCST) residual herbicides and SS foliar herbicides, and Spike applications in that 

a base rate of foliar herbicides were broadcast and “Spiked” up to a predetermined rate when 

weeds were detected. As discussed in chapter 2, multiple confidence intervals (referred to as 

thresholds from this point forward) were tested for the SS applications, and all treatments were 

compared with traditional broadcast applications. For this study, response variables included 

visual weed-free plot area estimations, weed density, end-of-season weed biomass, and grain 

yield.  
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Overall, our results indicated that two-pass approaches utilizing a broadcast application 

(either simultaneous broadcasting residual herbicides and spot-spraying foliar herbicides or using 

the Spike program) provided the most consistent weed-free area and lowest weed density. Also, 

the herbicide Efficacy threshold frequently provided weed control that was not statistically 

different than the broadcast treatments. The Spike programs were cheaper than broadcast 

treatments, but simultaneous BCST + SS treatments were, on average, cheaper than these 

programs. The SS only treatment was consistently the cheapest treatment across all thresholds 

but was almost always weedier than treatments with BCST components. Based on these data, we 

concluded that simultaneous BCST residual and SS foliar herbicides using the EFF threshold 

was the approach that provided weed control comparable to traditional BCST applications but 

cost significantly less. 

For future research, efforts should continue to look at the BCST + SS treatments in 

different crops and should especially focus on narrow-row crops as the machine upgrades allow. 

At the present time, the ONE SMART SPRAY system is only able to spray crops planted in 76 

cm apart. When machine upgrades are made so that narrower rows can be sprayed, this opens 

additional research questions as to how the machine can be best used. For example, soybeans can 

be planted in row widths including 19, 38, and 50 cm. We hypothesize that, because narrow rows 

establish canopy faster and are more competitive against weeds (Puricelli et al. 2003), there may 

be more benefits to SS only herbicide treatments compared to in 76 cm rows.  

In this experiment, the Spike program included glyphosate base-rate BCST and SS rates 

were both 578 g ae ha-1. This totals up to 1156 g ae ha-1 applied when weeds were detected, 

which is not currently labeled for glyphosate applications. The idea here was that, because these 

higher applications were not broadcast throughout the entire field, but only where weeds are 
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present, this may be a way to responsibly spray weeds with higher doses and ensure that the 

weeds are killed. Spot-spraying higher herbicide rates to improve SS efficacy has been suggested 

previously (Genna et al. 2021), although it may reduce cost savings. Herbicide labels are 

currently written for broadcast applications because SS technology is not as widely adopted as 

broadcast sprayers. However, we hypothesize that as ONE SMART SPRAY technology is 

increasingly adopted, there may be label changes to accommodate these new systems. 

Furthermore, it would be advantageous to test glyphosate application rates up to the 840 g ae ha-1 

rate instead of the 1156 g ae ha-1 to understand how that would affect herbicide costs, because 

some of the cost savings were negated in this study due to the higher application rates. 

 

 5.4 Chapter 4 

The last chapter built upon the “Spike” spray protocol but used a commercial ONE 

SMART SPRAY instead of a research sprayer. Due to machine availability, two different 

sprayers were used in 2022 and 2023, but the ONE SMART SPRAY cameras and sensors were 

the same for both years. For both years, Low BCST base rate + High SS (T1), High BCST base 

rate + Low SS (T2), and SS only (T3) applications. In 2022, we found that results were 

inconsistent in the corn trials (due to a strong PRE herbicide program and machine errors), but in 

the soybeans, both BCST + SS plots contained significantly more weed-free area than SS only 

plots. In 2023, these same results were observed for the corn trials, but only soybean trials saw a 

significant interaction between thresholds and herbicide treatments. All the thresholds used in the 

2023 soybean trials were not statistically different than the broadcast application 6 weeks after 

application for the T2 treatments. This same weed control was not observed in the T1 treatments; 

however, the EFF threshold outperformed even the BCST application threshold for the T1 
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treatment, and the weed-free area was not statistically different from the T2 threshold results. For 

both crops in 2023, the T2 thresholds were not statistically cheaper than a broadcast application, 

but the T1 EFF threshold was cheaper than the T1 BCST application in each crop. Given that 

there is one year of data, these results suggest that broadcasting a low rate of foliar herbicides 

(i.e. glufosniate) and followed by a high “Spike” rate may provide the best weed control while 

allowing for significant herbicide cost savings compared to broadcast applications. Further 

research is needed to confirm this, as thresholds were not available in the 2022 season; 

consequently, we only have one year of data on these studies. Additionally, it was a very dry 

year, which 1) delayed canopy closure in the soybeans and 2) resulted in low weed pressure in 

the corn. Additional research is needed to confirm these results when adequate precipitation is 

available. 

Especially in the soybeans, the best weed control was observed when a T2 approach was 

used. However, the danger of exposing weeds to sub-lethal doses of herbicide cannot be 

overstated. As highlighted in the chapter 4 “Discussion” section, exposing weeds to sublethal 

doses of herbicides has been shown to increase the likelihood of herbicide resistance 

development (Vila-Aiub and Ghersa 2005). The current ONE SMART SPRAY philosophy is to 

detect and eliminate crop rows and spray plants not within the rows. It is possible that some 

weeds will either be small enough to avoid detection or will be hidden by the crop rows and not 

sprayed with the full labeled rate. Therefore, if this method is relied upon continuously, herbicide 

resistance could develop at a faster rate than previously. It is worth noting that at the time of 

writing this chapter, the ONE SMART SPRAY will be transitioning from a crop row removal 

approach to an object detection approach, which will allow weed detection and future species 

identification (Bruno Canella-Vieira and Kalvin Miller, personal communication). 
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 5.5 Additional Thoughts 

The topic of resistance is a good opportunity to bring up the versatility of dual-tank/dual-

boom sprayers. In chapter 3, we saw that the sprayers could be used in one of three ways: As a 

SS only, simultaneously broadcasting residual herbicides and SS foliar herbicides, and spiking an 

additional rate to a base-rate of foliar herbicide(s) when weeds are detected. One of the principles 

of integrated weed management (IWM) involves the principle of rotation (Swanton and Weise 

1991). Rotating crops and herbicide modes of action have been shown to delay weed resistance 

development (Boerboom 1999; Beckie and Reboud 2009). We propose that to avoid 

development of resistance, the ONE SMART SPRAY should be rotated in terms of these use 

philosophies. For example, in chapter 3, the “Spike” treatment often provided the highest 

percentage of weed-free area. Rotating this application approach with the other treatments, 

coupled with rotating herbicide modes of action and crops, would likely give growers another 

tool for delaying weed resistance. Further research is needed to understand how these sprayers 

affect IWM and herbicide resistance evolution.  

One of the goals of both chapters 3 and 4 was to simulate PWM applications. Although 

this technology could potentially turn single-boom sprayers into intelligent sprayers, we 

observed in chapter 3 that this approach resulted in less herbicide savings than simultaneous 

BCST + SS approaches. In many cases, the BCST + SS approaches provided weed-free area 

equal to or not statistically different than PWM “Spike” treatments. Although sprayers retrofitted 

with intelligent technology and PWM nozzles would, in theory, prevent farmers from having to 

purchase new sprayers, we would like to point out that the dual-tank/dual-boom sprayer we used 

was shown to be more versatile compared to single-boom sprayers. Therefore, to reap maximum 
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benefits from these sprayers, we suggest dual-tank/dual-boom sprayers be used when they come 

to market. 

Finally, a topic of further research should be discovering the weed densities in which the 

ONE SMART SPRAY is best suited. We suggest that, at some density threshold, weed 

infestations will be heavy enough that a SS application will not provide cost savings compared to 

a traditional BCST application. While it is true that weeds often grow in non-uniform spatial 

distributions (Cardina et al. 1997), some fields will likely be completely infested with weeds and 

would require a broadcast application. In our studies, most of our fields contained light to very 

light weed infestations, which provided substantial herbicide savings. In chapter 3, the 

Manhattan KS Field 2 site had the highest weed densities, and significant savings were still 

observed. More studies across a variety of weed densities should be carried out to better 

understand the weed density at which SS herbicide savings are no longer statistically different 

than traditional BCST applications.  

In closing, the future is bright for AI and weed control. As computing power, graphics 

processing units, and object detection algorithms improve over time, we suggest that further 

opportunities will emerge for on-the-go precision weed management tools to be created. As long 

as intelligent sprayers remain on the market, software upgrades are expected to improve 

performance and enable further improvements in precision weed management. This research 

demonstrates that there is tremendous potential for AI and intelligent sprayers to continue to be 

adapted to Midwestern United States’ cropping systems and demonstrates that it is possible to 

significantly reduce herbicide costs and quantity applied while achieving weed control 

comparable to traditional BCST applications. 

  



184 

 5.6 References 

Anonymous (2023) YOLOv8 vs. YOLOv5: Choosing the best object detection model. Available 

online: https://www.augmentedstartups.com/blog/yolov8-vs-yolov5-choosing-the-best-

object-detection-model. Accessed: November 21, 2023 

Barnhart IH, Lancaster S, Goodin D, Spotanski J, Dille JA (2022) Use of open-source object 

detection algorithms to detect Palmer amaranth (Amaranthus palmeri) in soybean. Weed 

Sci 70:648-662 

Beckie HJ, Reboud X (2009) Selecting for weed resistance: herbicide rotation and mixture. 

Weed Technol 23:363-370 

Boerboom CM (1999) Nonchemical options for delaying weed resistance to herbicides in 

Midwest cropping systems. Weed Technol 13:636-642 

Cardina J, Johnson GA, Sparrow DH (1997) The nature and consequence of weed spatial 

distribution. Weed Sci 45:364-373 

Cheng T, Song L, Ge Y, Liu W, Wang X, Shan Y (2024) YOLO-World: Real-time open-

vocabulary object detection. arXiv 2401.17270 

Gao J, French AP, Pound MP, He Y, Pridmore TP, Pieters JG (2022) Deep convolutional neural 

networks for image-based Convolvulus sepium detection in sugar beet fields. Plant 

Methods 16:29 

Genna NG, Gourlie JA, Barroso J (2021) Herbicide efficacy of spot spraying systems in fallow 

and postharvest in the Pacific Northwest dryland wheat production region. Plants 10:2725 

Jin Z, Sun Y, Che J, Bagavathiannan M, Yu J, Chen Y (2022) A novel deep learning-based 

method for detection of weeds in vegetables. Pest Manag Sci 78:1861–1869 



185 

Pang J, Chen K, Shi J, Feng H, Ouyang W, Lin D (2019) Libra r-cnn: Towards balanced learning 

for object detection. Pages 821-830 in Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition. Long Beach, California, United States: Institute 

of Electrical and Electronics Engineers 

Puricelli EC, Faccini DE, Orioli GA, Sabbatini MR (2003) Spurred anoda (Anoda cristata) 

competition in narrow- and wide-row soybean (Glycine max). Weed Technol 17:446-451 

Saini P (2022) Recent advancement of weed detection in crops using artificial intelligence and 

deep learning: A review. Advances in Energy Technology: Select Proceedings of 

EMSME 2020, 631-640 

Swanton CJ, Weise SF (1991) Integrated weed management: the rationale and approach. Weed 

Technol 5:657-663 

Ultralytics (2023a) Comprehensive Guide to Ultralytics YOLOv5. Available online: 

https://docs.ultralytics.com/yolov5/. Accessed: November 21, 2023 

Vasileiou M, Kyrgiakos LS, Kleisiari C, Kleftodimos G, Vlontzos G, Belhouchette H, Pardalos 

PM (2024) Transforming weed management in sustainable agriculture with artificial 

intelligence: A systematic literature review towards weed identification and deep 

learning. Crop Protec 176:106522 

Vila-Aiub MM, Ghersa CM, Building up resistance by recurrently exposing target plants to 

sublethal doses of herbicide. Eur J Agron 22:195-207 (2005) 

Zhuang J, Li X, Bagavathiannan M, Jin X, Yang J, Meng W, Li T, Li L, Wang Y, Chen Y, Yu J 

(2022) Evaluation of different deep convolutional neural networks for detection of 

broadleaf weed seedlings in wheat. Pest Manag Sci 2022:521–529 

 



186 

Appendix A - List of abbreviations 

A. palmeri – Palmer amaranth (Amaranthus palmeri) 

AI – artificial intelligence 

AIC – Akaike information criterion 

ANN – artificial neural networks 

ANOVA – analysis of variance 

AP – average precision 

BCST – broadcast application 

BRD – broadcast threshold 

CNN – convolutional neural network 

COCO – Microsoft “Common Objects in Context” image set 

DAGBT – days after the green-on-brown treatment 

DAGT – days after the green-on-green treatment 

DAT – days after treatment 

DCNN – deep convolutional neural network 

DL – deep learning 

EFF – efficacy threshold 

fb – followed by 

FN – false negative 

FP – false positive 

GOB – green-on-brown application 

GOG – green-on-green application 

GPS – global positioning system 
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IL – Illinois 

ILSVRC – ImageNet Large Scale Visual Recognition Challenge 

INT 1 – intermediate threshold 1 

INT 2 – intermediate threshold 2 

IoU – intersection over union 

IR – infrared radiation 

IWM – integrated weed management 

KS – Kansas 

LED – light-emitting diode 

LiDAR – light detection and ranging 

MAN 1 – Manhattan, Kansas field 1 

MAN 2 – Manhattan, Kansas field 2 

mAP – mean average precision 

ML – machine learning 

MOA – (Herbicide) mode of action 

MS – milliseconds 

NE – Nebraska 

NE 1 – Nebraska field 1 

NE 2 – Nebraska field 2 

NIR – near infrared radiation 

PWM – pulse width modulation 

R-CNN – regional convolutional neural network 

SAV – savings threshold 



188 

SEY 1 – Seymour, Illinois field 1 

SEY 2 – Seymour, Illinois field 2 

SS – spot spray application 

 SSD – Single Shot Detection 

SSWM – site-specific weed management 

T1 – treatment 1; low broadcast rate + a high spot-spray rate 

T2 – treatment 2; high broadcast rate + a low spot-spray rate 

T3 – treatment 3; spot-spray only 

TP – true positive 

UAV – unmanned aerial vehicles 

WAP – weeks after planting 

WSSA – Weed Science Society of America 

YOLO – You Only Look Once 

YOLOv3 – You Only Look Once, version 3 

YOLOv4 – You Only Look Once, version 4 

YOLOv5 – You Only Look Once, version 5 

YOLOv8 – You Only Look Once, version 8 


