A bias corrected nonparametric regression estimator

dc.citation.doidoi:10.1016/j.spl.2011.10.006en_US
dc.citation.epage282en_US
dc.citation.issue2en_US
dc.citation.jtitleStatistics & Probability Lettersen_US
dc.citation.spage274en_US
dc.citation.volume82en_US
dc.contributor.authorYao, Weixin
dc.contributor.authoreidwxyaoen_US
dc.date.accessioned2012-05-17T15:56:09Z
dc.date.available2012-05-17T15:56:09Z
dc.date.issued2012-05-17
dc.date.published2012en_US
dc.description.abstractIn this article, we propose a new method of bias reduction in nonparametric regression estimation. The proposed new estimator has asymptotic bias order h4, where h is a smoothing parameter, in contrast to the the usual bias order h2 for the local linear regression. In addition, the proposed estimator has the same order of the asymptotic variance as the local liner regression. Our proposed method is closely related to the bias reduction method for kernel density estimate proposed by Chung and Lindsay (2011). However, our method is not a direct extension of their density estimate, but a totally new one based on the bias cancelation result of their proof.en_US
dc.identifier.urihttp://hdl.handle.net/2097/13830
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0167715211003270en_US
dc.subjectBias reductionen_US
dc.subjectLocal linear regressionen_US
dc.subjectNonparametric regressionen_US
dc.subjectNonlinear smootheren_US
dc.titleA bias corrected nonparametric regression estimatoren_US
dc.typeArticle (author version)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yao StatProbLetters 2012.pdf
Size:
271.62 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: