Matter wave optics perspective at molecular photoionization: K-shell photoionization and Auger decay of N2

dc.citation.doi10.1088/1367-2630/13/9/095013
dc.citation.issn1367-2630
dc.citation.issue9
dc.citation.jtitleNew Journal of Physics
dc.citation.volume13
dc.contributor.authorSchöffler, M. S.
dc.contributor.authorJahnke, T.
dc.contributor.authorTitze, J.
dc.contributor.authorPetridis, N.
dc.contributor.authorCole, K.
dc.contributor.authorSchmidt, L. Ph H.
dc.contributor.authorCzasch, A.
dc.contributor.authorJagutzki, O.
dc.contributor.authorWilliams, J. B.
dc.contributor.authorCocke, C. L.
dc.contributor.authorOsipov, T.
dc.contributor.authorLee, S.
dc.contributor.authorPrior, M. H.
dc.contributor.authorBelkacem, A.
dc.contributor.authorLanders, A. L.
dc.contributor.authorSchmidt-Böcking, H.
dc.contributor.authorDörner, R.
dc.contributor.authorWeber, Th
dc.date.accessioned2023-12-07T18:56:12Z
dc.date.available2023-12-07T18:56:12Z
dc.date.issued2011-09-01
dc.date.published2011-09-01
dc.description.abstractIn this paper, we shed new light on the molecular photoionization of a diatomic molecule. We will elaborate the differences and analogy between a quantum optical and light–matter interaction approach in a study of K-shell photoionization of N2 in which the photoelectron and the subsequently emitted Auger electron are both measured in coincidence in the body fixed frame of the molecule. The two electrons form an entangled state inside a double slit. By changing the photon energy we create different types of interference in the photoelectron and the Auger electron wave.
dc.identifier.urihttps://hdl.handle.net/2097/43842
dc.relation.urihttps://dx.doi.org/10.1088/1367-2630/13/9/095013
dc.rightsCreative Commons Attribution 2.0 Generic
dc.rights.urihttps://creativecommons.org/licenses/by/2.0/
dc.titleMatter wave optics perspective at molecular photoionization: K-shell photoionization and Auger decay of N2
dc.typeText

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Schoffler_2011_New_J._Phys._13_095013.pdf
Size:
849.25 KB
Format:
Adobe Portable Document Format