WEYL filtration dimension and submodule structures for B2

dc.contributor.authorBeswick, Matthew
dc.date.accessioned2009-03-24T14:07:13Z
dc.date.available2009-03-24T14:07:13Z
dc.date.graduationmonthMay
dc.date.issued2009-03-24T14:07:13Z
dc.date.published2009
dc.description.abstractLet G be a connected and simply connected semisimple algebraic group over an algebraically closed field of positive prime characteristic. Let L([lambda]) and [upside-down triangle]([lambda]) be the simple and induced finite dimensional rational G-modules with p-singular dominant highest weight [lambda]. In this thesis, the concept of Weyl filtration dimension of a finite dimensional rational G-module is studied for some highest weight modules with p-singular highest weights inside the p2-alcove when G is of type B[subscript]2. In chapter 4, intertwining morphisms, a diagonal G-module morphism and tilting modules are used to compute the Weyl filtration dimension of L([lambda]) with [lambda] p-singular and inside the p[superscript]2-alcove. It is shown that the Weyl filtration dimension of L([lambda]) coincides with the Weyl filtration dimension of [upside-down triangle]([lambda]) for almost all (all but one of the 6 facet types) p-singular weights inside the p[superscript]2-alcove. In chapter 5 we study some submodule structures of Weyl (and there translations), Vogan, and tilting modules with both p-regular and p-singular highest weights. Most results are for the p[superscript]2 -alcove only although some concepts used are alcove independent.
dc.description.advisorZongzhu Lin
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mathematics
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/1303
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMathematics
dc.subjectAlgebra
dc.subjectRepresentation theory
dc.subjectAlgebraic groups
dc.subject.umiMathematics (0405)
dc.titleWEYL filtration dimension and submodule structures for B2
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MatthewBeswick2009.pdf
Size:
419.94 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: