Redundant residue number system based space-time block codes

dc.contributor.authorSengupta, Avik
dc.date.accessioned2012-08-01T13:41:53Z
dc.date.available2012-08-01T13:41:53Z
dc.date.graduationmonthAugust
dc.date.issued2012-08-01
dc.date.published2012
dc.description.abstractSpace-time coding (STC) schemes for Multiple Input Multiple Output (MIMO) systems have been an area of active research in the past decade. In this thesis, we propose a novel design of Space-Time Block Codes (STBCs) using Redundant Residue Number System (RRNS) codes, which are ideal for high data rate communication systems. Application of RRNS as a concatenated STC scheme to a MIMO wireless communication system is the main motivation for this work. We have optimized the link between residues and complex constellations by incorporating the “Direct Mapping” scheme, where residues are mapped directly to Gray coded constellations. Knowledge of apriori probabilities of residues is utilized to implement a probability based “Distance-Aware Direct Mapping” (DA) scheme, which uses a set-partitioning approach to map the most probable residues such that they are separated by the maximum possible distance. We have proposed an “Indirect Mapping” scheme, where we convert the residues back to bits before mapping them. We have also proposed an adaptive demapping scheme which utilizes the RRNS code structure to reduce the ML decoding complexity and improve the error performance. We quantify the upper bounds on codeword and bit error probabilities of both Systematic and Non-systematic RRNS-STBC and characterize the achievable coding and diversity gains assuming maximum likelihood decoding (MLD). Simulation results demonstrate that the DA Mapping scheme provides performance gain relative to a Gray coded direct mapping scheme. We show that Systematic RRNS-STBC codes provide superior performance compared to Nonsystematic RRNS-STBC, for the same code parameters, owing to more efficient binary to residue mapping. When compared to other concatenated STBC and Orthogonal STBC (OSTBC) schemes, the proposed system gives better performance at low SNRs.
dc.description.advisorBalasubramaniam Natarajan
dc.description.degreeMaster of Science
dc.description.departmentDepartment of Electrical and Computer Engineering
dc.description.levelMasters
dc.identifier.urihttp://hdl.handle.net/2097/14111
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMIMO systems
dc.subjectRedundant residue number system
dc.subjectSpace time block bode
dc.subjectDistance aware mapping
dc.subject.umiElectrical Engineering (0544)
dc.titleRedundant residue number system based space-time block codes
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AvikSengupta2012.pdf
Size:
943.07 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: