Waring’s number in finite fields

dc.contributor.authorCipra, James Arthur
dc.date.accessioned2010-05-12T13:06:11Z
dc.date.available2010-05-12T13:06:11Z
dc.date.graduationmonthMay
dc.date.issued2010-05-12T13:06:11Z
dc.date.published2010
dc.description.abstractThis thesis establishes bounds (primarily upper bounds) on Waring's number in finite fields. Let $p$ be a prime, $q=p^n$, $\mathbb F_q$ be the finite field in $q$ elements, $k$ be a positive integer with $k|(q-1)$ and $t= (q-1)/k$. Let $A_k$ denote the set of $k$-th powers in $\mathbb F_q$ and $A_k' = A_k \cap \mathbb F_p$. Waring's number $\gamma(k,q)$ is the smallest positive integer $s$ such that every element of $\mathbb F_q$ can be expressed as a sum of $s$ $k$-th powers. For prime fields $\mathbb F_p$ we prove that for any positive integer $r$ there is a constant $C(r)$ such that $\gamma(k,p) \le C(r) k^{1/r}$ provided that $\phi(t) \ge r$. We also obtain the lower bound $\gamma(k,p) \ge \frac {(t-1)}ek^{1/(t-1)}-t+1$ for $t$ prime. For general finite fields we establish the following upper bounds whenever $\gamma(k,q)$ exists: $$ \gamma(k,q)\le 7.3n\left\lceil\frac{(2k)^{1/n}}{|A_k^\prime|-1}\right\rceil\log(k), $$ $$ \gamma(k,q)\le8n \left\lceil{\frac{(k+1)^{1/n}-1}{|A^\prime_k|-1}}\right\rceil, $$ and $$ \gamma(k,q)\ll n(k+1)^{\frac{\log(4)}{n\log|\kp|}}\log\log(k). $$ We also establish the following versions of the Heilbronn conjectures for general finite fields. For any $\ve>0$ there is a constant, $c(\ve)$, such that if $|A^\prime_k|\ge4^{\frac{2}{\ve n}}$, then $\gamma(k,q)\le c(\varepsilon) k^{\varepsilon}$. Next, if $n\ge3$ and $\gamma(k,q)$ exists, then $\gamma(k,q)\le 10\sqrt{k+1}$. For $n=2$, we have $\gamma(k,p^2)\le16\sqrt{k+1}$.
dc.description.advisorTodd E. Cochrane
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mathematics
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/4152
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectWaring's Problem
dc.subjectNumber Theory
dc.subject.umiMathematics (0405)
dc.titleWaring’s number in finite fields
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
JamesArthurCipra2010.pdf
Size:
320.29 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: