Cenozoic mafic to intermediate volcanism at Lava Mountain and Spring Mountain, Upper Wind River Basin, Wyoming

dc.contributor.authorDowney, Anna Catherine
dc.date.accessioned2015-08-14T15:06:30Z
dc.date.available2015-08-14T15:06:30Z
dc.date.graduationmonthAugust
dc.date.issued2015-08-01
dc.description.abstractThe Upper Wind River Basin (UWRB) is located in north-central Wyoming, to the south of the Yellowstone National Park boundary and east of Jackson Hole. Both Lava Mountain and Spring Mountain are Quaternary volcanoes in the UWRB. Lava Mountain is a shield volcano composed of 26 separate lavas capped by a scoria cone. Spring Mountain is located about ~36 km east of Lava Mountain, north of Dubois, WY, where eruptions of basalt cut through Paleocene and Eocene strata. The goal of this study aims to reconstruct the petrogenesis of magmas erupted at both volcanoes using geochemical, petrographic, and isotopic analyses. Important local events in geologic history played a large role in the development of the UWRB. This includes a long history of ancient and Cenozoic subduction, regional extension, and also the migration of the North American plate over the Yellowstone hotspot. The few previous studies on Lava Mountain claim the rocks are mafic in composition, however this was based solely on reconnaissance geological mapping. Geochemical evidence presented in this thesis show Lava Mountain rocks range from basaltic andesite to dacite. Basaltic andesite and dacite are interstratified at the base until approximately 2774 m; the rest of the volcano is andesite. All Lava Mountain samples are largely aphanitic and crystal-poor. Conversely, at Spring Mountain, localized normal faulting controls the location of eruptions of olivine-rich basalt. Petrographic analysis for both Lava Mountain and Spring Mountain display a range of evidence for open system processes, including sieved and/or resorbed pyroxenes, olivines and feldspars, as well as xenocrysts that suggest an influence from crustal assimilation. A petrogenetic model is introduced that discusses how Lava Mountain magma production occurred via fractional crystallization of basalt to dacite, then magma mixing of basaltic andesite and dacite, coupled with small amounts of crustal assimilation, to form the locally erupted andesites. All samples, including Spring Mountain basalts, have ⁸⁷Sr/⁸⁶Sr isotopes of 0.70608 and 0.70751, with ¹⁴³Nd/¹⁴⁴Nd isotopes of 0.51149 and 0.51157 and εNd values of -18 to -22. Pb isotopes plot to the left of the Geochron and directly on to slightly above the Stacey-Kramers curve. Strontium, neodymium, and lead isotope data suggest that Spring Mountain basalts are melts of ancient (e.g., 2.8 Ga Beartooth province) lithospheric mantle. The high ⁸⁷Sr/⁸⁶Sr values and exceptionally low εNd values separate the UWRB rocks from both Yellowstone and Snake River Plain volcanics, and suggest they originated from a different magma source. Finally, thermal evidence suggests melting genesis for UWRB rocks may not be Yellowstone plume related; rather it is more likely linked to Cenozoic extension.
dc.description.advisorMatthew E. Brueseke
dc.description.degreeMaster of Science
dc.description.departmentGeology
dc.description.levelMasters
dc.description.sponsorshipThe Tobacco Root Geological Society Geological Society of America Wyoming Geological Association The Kansas Geological Foundation
dc.identifier.urihttp://hdl.handle.net/2097/20377
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectIgneous petrology
dc.subjectLava Mountain
dc.subjectSpring Mountain
dc.subjectUpper Wind River Basin
dc.subjectWyoming volcanism
dc.subject.umiPetrology (0584)
dc.titleCenozoic mafic to intermediate volcanism at Lava Mountain and Spring Mountain, Upper Wind River Basin, Wyoming
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AnnaDowney2015.pdf
Size:
6.19 MB
Format:
Adobe Portable Document Format
Description:
MS Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: