Development of statistical mechanics emulators for system analysis and uncertainty quantification in nuclear engineering

dc.contributor.authorGairola, Abhinav
dc.date.accessioned2019-08-12T19:42:10Z
dc.date.available2019-08-12T19:42:10Z
dc.date.graduationmonthAugust
dc.date.issued2019-08-01
dc.description.abstractDespite the tremendous growth of computational resources in recent years, the "curse of dimensionality'' associated with the canonical evolutionary partial differential equations in nuclear reactor engineering and thermal-hydraulics such as the direct solution to non-linear Navier-Stokes equations is still a challenge to tackle. To solve this fundamental problem and to get a reasonable answer in the time-constrained engineering design and optimization process, reduced spatio-temporal complexity models are required. Typically, this is done by linearization and spatio-temporal averaging of parameters in the context of thermal-hydraulic applications. This procedure may lead to an inaccurate depiction of the system behavior--with a number of structural errors in the model. These structural errors can also arise because of the principles on which the model relies. Since it is almost impossible to completely decipher the principles on which the model rests, and a certain degree of distortion is always required to build a system of equations. This approximated view of the reality is the basis of many engineering system simulations toolboxes such as RELAP and TRACE--which can lead to a tremendous amount of uncertainties in the quantities of interests. The gap between the reality and approximated system is typically bridged by uncertainty quantification routes which rely on black-box approaches, such as constructing low-cost regression surrogates or emulators and conducting sensitivity studies with those surrogates.\par To tackle these uncertainties, this work takes a unique approach of using the high-resolution datasets to learn the dynamics of uncertainties with a statistical mechanics approach. While doing so, it is inherently assumed that the Navier-Stokes equation is a structurally perfect and correct model. The unique contribution in the general context of nuclear engineering is the constraining of non-linear Langevin equation on the high-resolution datasets via the non-equilibrium statistical mechanics route. This is achieved by computing the parameters of the model via solving an inverse problem through the utilization of the Kramers-Moyal expansion method. These statistical mechanics equations are used to quantify uncertainties in the scalar dispersion. A similar approach is used to emulate grid load pattern and renewable energy generation, and the emulators are integrated with established reactor system models to design a novel stochastic control strategy.
dc.description.advisorHitesh Bindra
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mechanical and Nuclear Engineering
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/40037
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectNon-equilibrium statistical mechanics
dc.subjectStatistical emulators
dc.titleDevelopment of statistical mechanics emulators for system analysis and uncertainty quantification in nuclear engineering
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AbhinavGairola2019.pdf
Size:
17.69 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: