Supervised and unsupervised learning for plant and crop row detection in precision agriculture

dc.contributor.authorVarshney, Varun
dc.date.accessioned2017-04-21T13:17:26Z
dc.date.available2017-04-21T13:17:26Z
dc.date.graduationmonthMay
dc.date.issued2017-05-01
dc.description.abstractThe goal of this research is to present a comparison between different clustering and segmentation techniques, both supervised and unsupervised, to detect plant and crop rows. Aerial images, taken by an Unmanned Aerial Vehicle (UAV), of a corn field at various stages of growth were acquired in RGB format through the Agronomy Department at the Kansas State University. Several segmentation and clustering approaches were applied to these images, namely K-Means clustering, Excessive Green (ExG) Index algorithm, Support Vector Machines (SVM), Gaussian Mixture Models (GMM), and a deep learning approach based on Fully Convolutional Networks (FCN), to detect the plants present in the images. A Hough Transform (HT) approach was used to detect the orientation of the crop rows and rotate the images so that the rows became parallel to the x-axis. The result of applying different segmentation methods to the images was then used in estimating the location of crop rows in the images by using a template creation method based on Green Pixel Accumulation (GPA) that calculates the intensity profile of green pixels present in the images. Connected component analysis was then applied to find the centroids of the detected plants. Each centroid was associated with a crop row, and centroids lying outside the row templates were discarded as being weeds. A comparison between the various segmentation algorithms based on the Dice similarity index and average run-times is presented at the end of the work.
dc.description.advisorWilliam H. Hsu
dc.description.degreeMaster of Science
dc.description.departmentDepartment of Computing and Information Sciences
dc.description.levelMasters
dc.identifier.urihttp://hdl.handle.net/2097/35463
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectdeep learning
dc.subjectmachine learning
dc.subjectsupervised
dc.subjectunsupervisedprecision agriculture
dc.titleSupervised and unsupervised learning for plant and crop row detection in precision agriculture
dc.typeThesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
VarunVarshney2017.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Description:
Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: