Landscape ecology, survival and space use of lesser prairie-chickens



Journal Title

Journal ISSN

Volume Title


Kansas State University


The lesser prairie-chicken (Tympanuchus pallidicinctus) has experienced range-wide population declines and range contraction since European settlement. Due to ongoing declines, lesser prairie-chickens were listed as threatened under the Endangered Species Act in 2014; however, uncertainty regarding the legal status of the species has developed following a judicial decision to vacate the listing in September 2015. Regardless, new research is required for conservation planning, especially for understudied portions and temporal periods of the occupied range. I evaluated nonbreeding lesser prairie-chicken survival using known-fate models, and tested for the influence of environmental, landscape and predator effects on weekly survival. I estimated nonbreeding home-range size using fixed kernel density estimators and Brownian Bridge movement models for VHF and Satellite tagged lesser prairie-chickens, and measured habitat use during the 6-month nonbreeding period (16 September – 14 March). I also determined the influence of lek location on space use intensity within home ranges using resource utilization functions. Female survival was high (0.75, SE = 0.05) and consistent across nonbreeding seasons, but not explainable by selected variables. Mean home range size for birds with GPS transmitters (955 ha, SE = 128.5) was 215% larger than for individuals with VHF transmitters (303 ha, SE = 24.1) and 136% greater during the 2014-2015 nonbreeding season than the 2013-2014 season. Males and females were tied to leks throughout the nonbreeding season, and this relationship was not variable across the months of the nonbreeding season. Proportions of habitat used differed among study sites, but temporal trends were not evident. Lesser prairie-chickens exhibited consistency among ecoregions for home-range, space use, and survival; however, with differing habitat use among regions, management should be on the regional scale. Agriculture and energy development have caused fragmentation of the landscape where lesser prairie-chickens evolved. I used known fate survival models to test if landscape composition or configuration within sites caused survival to differ by site, as well as within home ranges to determine if functional relationships exist between weekly survival and landscape configuration or composition. I used Andersen-Gill models to test whether distance to anthropogenic features affected hazard rates. Differences in survival rates between sites, with survival rates 50% greater in Clark County, Kansas compared to Northwestern, Kansas, corresponded to differences in the amount of grassland habitat on the landscape, but study-site configuration was not measurably different. Increasing the number of patch types within home ranges increased survival, indicating positive effects of heterogeneity. In addition, as distance to fences decreased, lesser prairie-chickens experienced greater risk. Overall, further breakup of grassland landscapes that lesser prairie-chickens occupy should be avoided, to avoid habitat loss and fragmentation thresholds that could further affect survival rates. Additionally, fences should be removed or avoided around active leks.



Lesser prairie chicken, Home-range, Landscape composition, Landscape configuration, Survival, Resource utilization

Graduation Month



Master of Science



Major Professor

David A. Haukos