Identifying poverty-driven need by augmenting census and community survey data

dc.contributor.authorKorivi, Keerthi
dc.date.accessioned2016-11-18T22:47:50Z
dc.date.available2016-11-18T22:47:50Z
dc.date.graduationmonthDecember
dc.date.issued2016-12-01
dc.description.abstractNeed is a function of both individual household’s ability to meet basic requirements such as food, shelter, clothing, medical care, and transportation, and latent exogenous factors such as the cost of living and available community support for such requirements. Identifying this need driven poverty helps in understanding the socioeconomic status of individuals and to identify the areas of development. This work aims at using georeferenced data from the American Community Survey (ACS) to estimate baseline need based on aggregated socioeconomic variables indicating absolute and relative poverty. In this project, I implement and compare the results of several machine learning classification algorithms such as Random Forest, Support Vector Machine, and Logistic Regression to identify poverty for different block groups in the United States
dc.description.advisorWilliam H. Hsu
dc.description.degreeMaster of Science
dc.description.departmentDepartment of Computing and Information Sciences
dc.description.levelMasters
dc.identifier.urihttp://hdl.handle.net/2097/34556
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMachine learning
dc.subjectPoverty
dc.titleIdentifying poverty-driven need by augmenting census and community survey data
dc.typeReport

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KeerthiKorivi2016.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: