Advanced microstructured semiconductor neutron detectors: design, fabrication, and performance

dc.contributor.authorBellinger, Steven Lawrence
dc.date.accessioned2012-10-22T14:28:39Z
dc.date.available2012-10-22T14:28:39Z
dc.date.graduationmonthDecember
dc.date.issued2012-10-22
dc.date.published2011
dc.description.abstractThe microstructured semiconductor neutron detector (MSND) was investigated and previous designs were improved and optimized. In the present work, fabrication techniques have been refined and improved to produce three-dimensional microstructured semiconductor neutron detectors with reduced leakage current, reduced capacitance, highly anisotropic deep etched trenches, and increased signal-to-noise ratios. As a result of these improvements, new MSND detection systems function with better gamma-ray discrimination and are easier to fabricate than previous designs. In addition to the microstructured diode fabrication improvement, a superior batch processing backfill-method for 6LiF neutron reactive material, resulting in a nearly-solid backfill, was developed. This method incorporates a LiF nano-sizing process and a centrifugal batch process for backfilling the nanoparticle LiF material. To better transition the MSND detector to commercialization, the fabrication process was studied and enhanced to better facilitate low cost and batch process MSND production. The research and development of the MSND technology described in this work includes fabrication of variant microstructured diode designs, which have been simulated through MSND physics models to predict performance and neutron detection efficiency, and testing the operational performance of these designs in regards to neutron detection efficiency, gamma-ray rejection, and silicon fabrication methodology. The highest thermal-neutron detection efficiency reported to date for a solid-state semiconductor detector is presented in this work. MSNDs show excellent neutron to gamma-ray (n/γ) rejection ratios, which are on the order of 106, without significant loss in thermal-neutron detection efficiency. Individually, the MSND is intrinsically highly sensitive to thermal neutrons, but not extrinsically sensitive because of their small size. To improve upon this, individual MSNDs were tiled together into a 6x6-element array on a single silicon chip. Individual elements of the array were tested for thermal-neutron detection efficiency and for the n/γ reject ratio. Overall, because of the inadequacies and costs of other neutron detection systems, the MSND is the premier technology for many neutron detection applications.
dc.description.advisorDouglas S. McGregor
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mechanical and Nuclear Engineering
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/14868
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMicrostructured semiconductor neutron detector
dc.subjectMicrostructured diode
dc.subjectHelium-3 replacement
dc.subjectNeutron detector
dc.subjectSolid state neutron detector
dc.subjectSemiconductor neutron detector
dc.subject.umiElectrical Engineering (0544)
dc.subject.umiNuclear Engineering (0552)
dc.subject.umiPhysics (0605)
dc.titleAdvanced microstructured semiconductor neutron detectors: design, fabrication, and performance
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
StevenBellinger2011.pdf
Size:
10.14 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: