Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host disease

Abstract

Description

Citation: McGuirk, J. P., Robert Smith, J., Divine, C. L., Zuniga, M., & Weiss, M. L. (2015). Wharton’s jelly-derived mesenchymal stromal cells as a promising cellular therapeutic strategy for the management of graft-versus-host disease. Pharmaceuticals, 8(2), 196-220. doi:10.3390/ph8020196
Allogeneic hematopoietic cell transplantation (allo-HCT), a treatment option in hematologic malignancies and bone marrow failure syndromes, is frequently complicated by Graft-versus-host disease (GVHD). The primary treatment for GVHD involves immune suppression by glucocorticoids. However, patients are often refractory to the steroid therapy, and this results in a poor prognosis. Therefore alternative therapies are needed to treat GVHD. Here, we review data supporting the clinical investigation of a novel cellular therapy using Wharton’s jelly (WJ)-derived mesenchymal stromal cells (MSCs) as a potentially safe and effective therapeutic strategy in the management of GVHD. Adult-derived sources of MSCs have demonstrated signals of efficacy in the management of GVHD. However, there are limitations, including: limited proliferation capacity; heterogeneity of cell sources; lengthy expansion time to clinical dose; expansion failure in vitro; and a painful, invasive, isolation procedure for the donor. Therefore, alternative MSC sources for cellular therapy are sought. The reviewed data suggests MSCs derived from WJ may be a safe and effective cellular therapy for GVHD. Laboratories investigated and defined the immune properties of WJ-MSCs for potential use in cellular therapy. These cells represent a more uniform cell population than bone marrow-derived MSCs, displaying robust immunosuppressive properties and lacking significant immunogenicity. They can be collected safely and painlessly from individuals at birth, rapidly expanded and stored cryogenically for later clinical use. Additionally, data we reviewed suggested licensing MSCs (activating MSCs by exposure to cytokines) to enhance effectiveness in treating GVHD. Therefore, WJCs should be tested as a second generation, relatively homogeneous allogeneic cell therapy for the treatment of GVHD. © 2015 by the authors; licensee MDPI, Basel, Switzerland.

Keywords

Allo-Hct, Gvhd, Wj-Mscs, Galectin 1, Galectin 3, Galectin 8

Citation