Assessment of the new AASHTO design provisions for shear and combined shear/torsion and comparison with the equivalent ACI provisions
dc.contributor.author | Halim, Abdul Halim | |
dc.date.accessioned | 2010-12-16T20:17:51Z | |
dc.date.available | 2010-12-16T20:17:51Z | |
dc.date.graduationmonth | December | |
dc.date.issued | 2010-12-16 | |
dc.date.published | 2010 | |
dc.description.abstract | The shear and combined shear and torsion provisions of the AASHTO LRFD (2008) Bridge Design Specifications, as well as simplified AASHTO procedure for prestressed and non-prestressed reinforced concrete members were investigated and compared to their equivalent ACI 318-08 provisions. Response-2000, an analytical tool developed based on the Modified Compression Field Theory (MCFT), was first validated against the existing experimental data and then used to generate the required data for cases where no experimental data was available. Several normal and prestressed beams, either simply supported or continuous were used to evaluate the AASHTO and ACI shear design provisions In addition, the AASHTO LRFD provisions for combined shear and torsion were investigated and their accuracy was validated against the available experimental data. These provisions were also compared to their equivalent ACI code requirements. The latest design procedures in both codes propose exact shear-torsion interaction equations that can directly be compared to the experimental results by considering all ϕ factors as one. In this comprehensive study, different over-reinforced, moderately-reinforced, and under-reinforced sections with high-strength and normal-strength concrete for both solid and hollow sections were analyzed. The main objectives of this study were to: • Evaluate the shear and the shear-torsion procedures proposed by AASHTO LRFD (2008) and ACI 318-08 • Validate the code procedures against the experimental results by mapping the experimental points on the code-based exact interaction diagrams • Develop a MathCAD program as a design tool for sections subjected to shear or combined shear and torsion | |
dc.description.advisor | Asadollah Esmaeily | |
dc.description.degree | Master of Science | |
dc.description.department | Department of Civil Engineering | |
dc.description.level | Masters | |
dc.description.sponsorship | Kabul University (Afghanistan)/World Bank Partnership Project | |
dc.identifier.uri | http://hdl.handle.net/2097/7011 | |
dc.language.iso | en_US | |
dc.publisher | Kansas State University | |
dc.rights | © the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Shear Design | |
dc.subject | Shear and Torsion | |
dc.subject | ACI 318-08 | |
dc.subject | AASHTO LRFD | |
dc.subject | Modified Compression Field Theory | |
dc.subject | Interaction curves | |
dc.subject.umi | Engineering, Civil (0543) | |
dc.title | Assessment of the new AASHTO design provisions for shear and combined shear/torsion and comparison with the equivalent ACI provisions | |
dc.type | Thesis |