Self-organized nanoporous materials for chemical separations and chemical sensing

dc.contributor.authorPandey, Bipin
dc.date.accessioned2013-08-16T16:26:49Z
dc.date.available2013-08-16T16:26:49Z
dc.date.graduationmonthAugust
dc.date.issued2013-08-16
dc.date.published2013
dc.description.abstractSelf-organized nanoporous materials have drawn a lot of attention because the uniform, highly dense, and ordered cylindrical nanopores in these materials provide a unique platform for chemical separations and chemical sensing applications. Here, we explore self-organized nanopores of PS-b-PMMA diblock copolymer thin films and anodic gallium oxide for chemical separations and sensing applications. In the first study, cyclic voltammograms of cytochrome c on recessed nanodisk-array electrodes (RNEs) based on nanoporous films (11, 14 or 24 nm in average pore diameter; 30 nm thick) derived from polystyrene-poly(methylmethacrylate) diblock copolymers were measured. The faradic current of cytochrome c was observed on RNEs, indicating the penetration of cytochrome c (hydrodynamic diameter ≈ 4 nm) through the nanopores to the underlying electrodes. Compared to the 24-nm pores, the diffusion of cytochrome c molecules through the 11- and 14-nm pores suffered significantly larger hindrance. The results reported in this study will provide guidance in designing RNEs for size-based chemical sensing and also for controlled immobilization of biomolecules within nanoporous media for biosensors and bioreactors. In another study, conditions for the formation of self-organized nanopores of a metal oxide film were investigated. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H2SO4 at 10 V and 15 V. The average pore diameter was in the range of 18 ~ 40 nm, and the anodic gallium oxide was ca. 2 µm thick. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis. In the final study, surface chemical property of self-organized nanoporous anodic gallium oxide is explored through potentiometric measurements. The nanoporous anodic and barrier layer gallium oxide structures showed slow potentiometric response only at acidic pH (≤ 4), in contrast to metallic gallium substrates that exhibited a positive potentiometric response to H⁺ over the pH range examined (3-10). The potentiometric response at acidic pH probably reflects some chemical processes between gallium oxide and HCl.
dc.description.advisorTakashi Ito
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Chemistry
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/16274
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectSelf-organized nanoporous materials
dc.subjectBlock copolymers
dc.subjectDiffusion of cytochrome
dc.subjectFinite element simulation
dc.subjectCOMSOL multiphysics
dc.subjectAnodic gallium oxide
dc.subject.umiChemistry (0485)
dc.titleSelf-organized nanoporous materials for chemical separations and chemical sensing
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BipinPandey2013.pdf
Size:
4.65 MB
Format:
Adobe Portable Document Format
Description:
Dissertation

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: