Fluctuation theory of molecular association and conformational equilibria

Date

2011-07-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

General expressions relating the effects of pressure, temperature, and composition on solute association and conformational equilibria using the fluctuation theory of solutions are provided. The expressions are exact and can be used to interpret experimental or computer simulation data for any multicomponent mixture involving molecules of any size and character at any composition. The relationships involve particle-particle, particle-energy, and energy-energy correlations within local regions in the vicinity of each species involved in the equilibrium. In particular, it is demonstrated that the results can be used to study peptide and protein association or aggregation, protein denaturation, and protein-ligand binding. Exactly how the relevant fluctuating properties may be obtained from experimental or computer simulation data are also outlined. It is shown that the enthalpy, heat capacity, and compressibility differences associated with the equilibrium process can, in principle, be obtained from a single simulation. Fluctuation based expressions for partial molar heat capacities, thermal expansions, and isothermal compressibilities are also provided.

Description

Keywords

Aggregation, Association, Compressibility, Enthalpy, Molecular biophysics, Molecular configurations, Proteins, Specific heat, Thermal expansion

Citation