Network clustering and community detection using modulus of families of loops

dc.citation.doi10.1103/PhysRevE.95.012316
dc.citation.issn2470-0045
dc.citation.issue1
dc.citation.jtitlePhysical Review E
dc.citation.spage7
dc.citation.volume95
dc.contributor.authorShakeri, Heman
dc.contributor.authorPoggi-Corradini, Pietro
dc.contributor.authorAlbin, Nathan
dc.contributor.authorScoglio, Caterina
dc.contributor.authoreidcaterina
dc.contributor.authoreidpietro
dc.contributor.authoreidalbin
dc.contributor.kstateScoglio, Caterina
dc.contributor.kstatePoggi-Corradini, Pietro
dc.contributor.kstateAlbin, Nathan
dc.date.accessioned2017-11-30T21:44:48Z
dc.date.available2017-11-30T21:44:48Z
dc.date.issued2017-01-17
dc.date.published2017
dc.descriptionCitation: Shakeri, H., Poggi-Corradini, P., Albin, N., & Scoglio, C. (2017). Network clustering and community detection using modulus of families of loops. Physical Review E, 95(1), 7. doi:10.1103/PhysRevE.95.012316
dc.description.abstractWe study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.
dc.description.versionArticle
dc.identifier.urihttp://hdl.handle.net/2097/38365
dc.relation.urihttps://doi.org/10.1103/PhysRevE.95.012316
dc.rightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttps://journals.aps.org/authors/transfer-of-copyright-agreement
dc.rights.urihttps://rightsstatements.org/vocab/InC/1.0/
dc.subjectComplex Networks
dc.subjectModel
dc.subjectPhysics
dc.titleNetwork clustering and community detection using modulus of families of loops
dc.typeText

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PhysRevE.95.012316.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format