Data envelopment analysis of clinics with sparse data: fuzzy clustering approach

dc.citation.doidoi:10.1016/j.cie.2012.01.009en_US
dc.citation.epage21en_US
dc.citation.issue1en_US
dc.citation.jtitleComputers & Industrial Engineeringen_US
dc.citation.spage13en_US
dc.citation.volume63en_US
dc.contributor.authorBen-Arieh, David
dc.contributor.authorGullipalli, Deep Kumar
dc.contributor.authoreiddavidbeen_US
dc.contributor.authoreiddeepen_US
dc.date.accessioned2012-09-26T14:00:34Z
dc.date.available2012-09-26T14:00:34Z
dc.date.issued2012-09-26
dc.date.published2012en_US
dc.description.abstractThis paper presents a method for utilizing Data Envelopment Analysis (DEA) with sparse input and output data using fuzzy clustering concepts. DEA, a methodology to assess relative technical efficiency of production units is susceptible to missing data, thus, creating a need to supplement sparse data in a reliable and accurate manner. The approach presented is based on a modified fuzzy c-means clustering using Optimal Completion Strategy (OCS) algorithm. This particular algorithm is sensitive to the initial values chosen to substitute missing values and also to the selected number of clusters. Therefore, this paper proposes an approach to estimate the missing values using the OCS algorithm, while considering the issue of initial values and cluster size. This approach is demonstrated on a real and complete dataset of 22 rural clinics in the State of Kansas, assuming varying levels of missing data. Results show the effect of the clustering based approach on the data recovered considering the amount and type of missing data. Moreover, the paper shows the effect that the recovered data has on the DEA scores.en_US
dc.identifier.urihttp://hdl.handle.net/2097/14758
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0360835212000216en_US
dc.subjectData Envelopment Analysisen_US
dc.subjectSparse dataen_US
dc.subjectClusteringen_US
dc.subjectFuzzy c-meansen_US
dc.subjectHealthcareen_US
dc.titleData envelopment analysis of clinics with sparse data: fuzzy clustering approachen_US
dc.typeArticle (author version)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BENARIEHCIE2012.pdf
Size:
436.28 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: