A study on the type I error rate and power for generalized linear mixed model containing one random effect
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
In animal health research, it is quite common for a clinical trial to be designed to demonstrate the efficacy of a new drug where a binary response variable is measured on an individual experimental animal (i.e., the observational unit). However, the investigational treatments are applied to groups of animals instead of an individual animal. This means the experimental unit is the group of animals and the response variable could be modeled with the binomial distribution. Also, the responses of animals within the same experimental unit may then be statistically dependent on each other. The usual logit model for a binary response assumes that all observations are independent. In this report, a logit model with a random error term representing the group of animals is considered. This is model belongs to a class of models referred to as generalized linear mixed models and is commonly fit using the SAS System procedure PROC GLIMMIX. Furthermore, practitioners often adjust the denominator degrees of freedom of the test statistic produced by PROC GLIMMIX using one of several different methods. In this report, a simulation study was performed over a variety of different parameter settings to compare the effects on the type I error rate and power of two methods for adjusting the denominator degrees of freedom, namely “DDFM = KENWARDROGER” and “DDFM = NONE”. Despite its reputation for fine performance in linear mixed models with normally distributed errors, the “DDFM = KENWARDROGER” option tended to perform poorly more often than the “DDFM = NONE” option in the logistic regression model with one random effect.