Mapping Resonance Structures in Transient Core-Ionized Atoms
dc.citation.doi | 10.1103/PhysRevX.10.041056 | |
dc.citation.issn | 2160-3308 | |
dc.citation.issue | 4 | |
dc.citation.jtitle | Physical Review X | |
dc.citation.volume | 10 | |
dc.contributor.author | Mazza, T. | |
dc.contributor.author | Ilchen, M. | |
dc.contributor.author | Kiselev, M. D. | |
dc.contributor.author | Gryzlova, E. V. | |
dc.contributor.author | Baumann, T. M. | |
dc.contributor.author | Boll, R. | |
dc.contributor.author | De Fanis, A. | |
dc.contributor.author | Grychtol, P. | |
dc.contributor.author | Montaño, J. | |
dc.contributor.author | Music, V. | |
dc.contributor.author | Ovcharenko, Y. | |
dc.contributor.author | Rennhack, N. | |
dc.contributor.author | Rivas, D. E. | |
dc.contributor.author | Schmidt, Ph. | |
dc.contributor.author | Wagner, R. | |
dc.contributor.author | Ziolkowski, P. | |
dc.contributor.author | Berrah, N. | |
dc.contributor.author | Erk, B. | |
dc.contributor.author | Johnsson, P. | |
dc.contributor.author | Küstner-Wetekam, C. | |
dc.contributor.author | Marder, L. | |
dc.contributor.author | Martins, M. | |
dc.contributor.author | Ott, C. | |
dc.contributor.author | Pathak, S. | |
dc.contributor.author | Pfeifer, T. | |
dc.contributor.author | Rolles, D. | |
dc.contributor.author | Zatsarinny, O. | |
dc.contributor.author | Grum-Grzhimailo, A. N. | |
dc.contributor.author | Meyer, M. | |
dc.date.accessioned | 2023-12-07T22:39:34Z | |
dc.date.available | 2023-12-07T22:39:34Z | |
dc.date.issued | 2020-12-18 | |
dc.date.published | 2020-12-18 | |
dc.description.abstract | The nature of transient electronic states created by photoabsorption critically determines the dynamics of the subsequently evolving system. Here, we investigate K-shell photoionized atomic neon by absorbing a second photon within the Auger-decay lifetime of 2.4 fs using the European XFEL, a unique high-repetition-rate, wavelength-tunable x-ray free-electron laser. By high-resolution electron spectroscopy, we map out the transient Rydberg resonances unraveling the details of the subsequent decay of the hollow atom. So far, ultra-short-lived electronic transients, which are often inaccessible by experiments, were mainly inferred from theory but are now addressed by nonlinear x-ray absorption. The successful characterization of these resonances with femtosecond lifetimes provides the basis for a novel class of site-specific, nonlinear, and time-resolved studies with strong impact for a wide range of topics in physics and chemistry. | |
dc.identifier.uri | https://hdl.handle.net/2097/44077 | |
dc.relation.uri | https://link.aps.org/doi/10.1103/PhysRevX.10.041056 | |
dc.rights | Creative Commons Attribution 4.0 International license | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.title | Mapping Resonance Structures in Transient Core-Ionized Atoms | |
dc.type | Text |
Files
Original bundle
1 - 1 of 1