An algebraic framework for compositional design of autonomous and adaptive multiagent systems



Journal Title

Journal ISSN

Volume Title


Kansas State University


Organization-based Multiagent Systems (OMAS) have been viewed as an effective paradigm for addressing the design challenges posed by today’s complex systems. In those systems, the organizational perspective is the main abstraction, which provides a clear separation between agents and systems, allowing a reduction in the complexity of the overall system. To ease the development of OMAS, several methodologies have been proposed. Unfortunately, those methodologies typically require the designer to handle system complexity alone, which tends to lead to ad-hoc designs that are not scalable and are difficult to maintain. Moreover, designing organizations for large multiagent systems is a complex and time-consuming task; design models quickly become unwieldy and thus hard to develop. To cope with theses issues, a framework for organization-based multiagent system designs based on separation of concerns and composition principles is proposed. The framework uses category theory tools to construct a formal composition framework using core models from the Organization-based Multiagent Software Engineering (O-MASE) framework. I propose a formalization of these models that are then used to establish a reusable design approach for OMAS. This approach allows designers to design large multiagent organizations by reusing smaller composable organizations that are developed separately, thus providing them with a scalable approach for designing large and complex OMAS. In this dissertation, the process of formalizing and composing multiagent organizations is discussed. In addition, I propose a service-oriented approach for building autonomous, adaptive multiagent systems. Finally, as a proof of concept, I develop two real world examples from the domain of cooperative robotics and wireless sensor networks.



Agent-Oriented Software Engineering, Multiagent Systems, Design Models, Organizations

Graduation Month



Doctor of Philosophy


Department of Computing and Information Sciences

Major Professor

Scott A. DeLoach