Nonparametric lack-of-fit tests in presence of heteroscedastic variances

dc.contributor.authorGharaibeh, Mohammed Mahmoud
dc.date.accessioned2014-07-21T20:42:38Z
dc.date.available2014-07-21T20:42:38Z
dc.date.graduationmonthDecember
dc.date.issued2014-07-21
dc.date.published2014
dc.description.abstractIt is essential to test the adequacy of a specified regression model in order to have cor- rect statistical inferences. In addition, ignoring the presence of heteroscedastic errors of regression models will lead to unreliable and misleading inferences. In this dissertation, we consider nonparametric lack-of-fit tests in presence of heteroscedastic variances. First, we consider testing the constant regression null hypothesis based on a test statistic constructed using a k-nearest neighbor augmentation. Then a lack-of-fit test of nonlinear regression null hypothesis is proposed. For both cases, the asymptotic distribution of the test statistic is derived under the null and local alternatives for the case of using fixed number of nearest neighbors. Numerical studies and real data analyses are presented to evaluate the perfor- mance of the proposed tests. Advantages of our tests compared to classical methods include: (1) The response variable can be discrete or continuous and can have variations depend on the predictor. This allows our tests to have broad applicability to data from many practi- cal fields. (2) Using fixed number of k-nearest neighbors avoids slow convergence problem which is a common drawback of nonparametric methods that often leads to low power for moderate sample sizes. (3) We obtained the parametric standardizing rate for our test statis- tics, which give more power than smoothing based nonparametric methods for intermediate sample sizes. The numerical simulation studies show that our tests are powerful and have noticeably better performance than some well known tests when the data were generated from high frequency alternatives. Based on the idea of the Least Squares Cross-Validation (LSCV) procedure of Hardle and Mammen (1993), we also proposed a method to estimate the number of nearest neighbors for data augmentation that works with both continuous and discrete response variable.
dc.description.advisorHaiyan Wang
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Statistics
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/18116
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.umiStatistics (0463)
dc.titleNonparametric lack-of-fit tests in presence of heteroscedastic variances
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MohammedGharaibeh2014.pdf
Size:
1.3 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: