Exposure of wheat to flameless catalytic infrared radiation on temperatures attained, wheat physical properties, microbial loads, milling yield, and flour quality

dc.contributor.authorDeliephan, Aiswariya
dc.date.accessioned2013-04-30T20:10:29Z
dc.date.available2013-04-30T20:10:29Z
dc.date.graduationmonthMayen_US
dc.date.issued2013-04-30
dc.date.published2013en_US
dc.description.abstractOrganic, hard red winter wheat of 11% moisture was tempered with distilled water to moisture levels of 16 and 18% and held for 8, 16, and 24 h. At each moisture and holding time wheat was unexposed (control) or exposed to infrared radiation for 1, 1.5, and 2 min using a bench-top flameless catalytic infrared emitter. The mean external grain temperatures for 16% mc wheat measured with thermocouples during infrared exposure of 1, 1.5, and 2 min ranged from 77.4-83.1, 93.7-101.2, and 91.2-98.3°C, respectively; corresponding mean internal temperatures were 67.3-76.4, 80.0-85.6, and 81.3-93.2°C. Minor differences in kernel moisture, hardness, and weight were observed among treatments. Tempered wheat after infrared exposure among treatments lost 1.5-2% moisture. Infrared exposure of wheat reduced initial bacterial loads (6.7×10[superscript]4 CFU/g) by 98.7% and fungal loads (4.3×10[superscript]3 CFU/g) by 97.8% when compared with those on untreated wheat. Wheat tempered to 18% and exposed for 2 min to infrared radiation lost 2% moisture, and this wheat when milled had a yield of 73.5%. The color of flour from infrared- exposed wheat was slightly dark (color change, ΔE = 0.31) when compared with untreated flour. Differential scanning calorimetry showed that flours from infrared exposed wheat had lower enthalpy (3.0 J/g) than those unexposed to infrared (3.3 J/g). These flours were adversely affected because they had longer mixing times (7-15 min) at all infrared exposures due to the presence of insoluble polymeric proteins (up to 60%). Microbial loads in flour from wheat tempered to 18% and exposed for 1-2 min had 0.6-2.4 log reduction compared to flour from untreated wheat. Wheat tempered to 18% moisture with electrolyzed-oxidizing (EO) water reduced bacterial and fungal loads up to 66%. EO water tempered wheat exposed for 1, 1.5, and 2 min to infrared radiation showed microbial reductions of 99.5% when compared with control wheat. Infrared treatment of tempered wheat cannot be recommended as it adversely affected flour functionality. The use of EO water for tempering as opposed to potable water that is generally used in mills slightly enhances microbial safety of hard red winter wheat.en_US
dc.description.advisorBhadriraju Subramanyamen_US
dc.description.degreeMaster of Scienceen_US
dc.description.departmentDepartment of Grain Science and Industryen_US
dc.description.levelMastersen_US
dc.identifier.urihttp://hdl.handle.net/2097/15707
dc.language.isoen_USen_US
dc.publisherKansas State Universityen
dc.subjectInfrared radiationen_US
dc.subjectElectrolyzed oxidizing wateren_US
dc.subjectWheaten_US
dc.subjectQualityen_US
dc.subjectMicrobial loadsen_US
dc.subject.umiFood Science (0359)en_US
dc.subject.umiMicrobiology (0410)en_US
dc.titleExposure of wheat to flameless catalytic infrared radiation on temperatures attained, wheat physical properties, microbial loads, milling yield, and flour qualityen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AiswariyaDeliephan2013.pdf
Size:
862.72 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: