A pion-argon cross section measurement in the ProtoDUNE-SP experiment with cosmogenic muon calibration
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Neutrinos are tiny mysterious fundamental particles with small cross sections. Through neutrino physics, scientists across the world are trying to answer many intriguing questions about nature such as the dominance of matter over antimatter, CP violation in the lepton sector, number of supernovas in the early universe, etc. Detection of neutrinos requires massive particle detectors and intense neutrino beam owing to their small cross section. Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino experiment that is planned to start taking data beginning in 2026. DUNE will consist of 4 massive detectors, the first of which will be using single-phase liquid argon time projection chamber (LArTPC) technology. The ProtoDUNE-SP experiment is a prototype of the DUNE built at the CERN neutrino platform and uses the same detector technology that will be used in DUNE first module. The ProtoDUNE-SP experiment collected months of test beam and cosmic ray data beginning in September 2018. It was built to provide a testbed for the installation of detector parts for DUNE, showing long-term stability of the detector, understanding detector response for different test beam particles (including protons, pions, electrons, kaons, muons), and measurement of hadron-argon cross sections.
When a particle passes through LArTPC electron-ion pairs are produced. To reconstruct the position and energy of a particle passing through the medium knowledge of ionization electron drift velocity is essential. The electron drift velocity is distorted by an excess positive charge built up in the detector, known as space charge. This study discusses a novel technique for measuring the ionization electron drift velocity using cosmic-ray muons. The technique uses tracks that travel the entire drift distance of the TPC for drift velocity determination. Secondly, the study discusses a method for converting the charge deposited into energy. The method is carried out in two steps. In the first step detector response for energetic cosmic ray muons crossing the entire the TPC is used to make the charge deposition uniform throughout the TPC, and in the second step stopping cosmic-ray muons are used for determining the energy scale. Finally, the study discusses a pion-argon cross section measurement based on reweighting of Monte Carlo simulations using J. Calcutt's Geant4Reweight framework. Neutrinos cannot be directly detected; they are identified based on the interaction products. Pions are a common interaction product in a neutrino interaction. For precise modeling of neutrino event generators, it is essential to understand the pion-argon interaction. Pion-argon cross section measurement serves as an important input for neutrino interaction models. The results of the pion-argon total reaction cross section using the Geant4 reweighting technique are found to be in good agreement with Geant4 predictions. The many studies carried out in the ProtoDUNE-SP experiment will be useful for current and future neutrino experiments using LArTPC technology including ICARUS, MicroBooNE, DUNE.