Measuring the angle-dependent photoionization cross section of nitrogen using high-harmonic generation


We exploit the relationship between high harmonic generation (HHG) and the molecular photorecombination dipole to extract the molecular-frame differential photoionization cross section (PICS) in the extreme ultraviolet (XUV) for molecular nitrogen. A shape resonance and a Cooper-type minimum are reflected in the pump-probe time delay measurements of different harmonic orders, where high-order rotational revivals are observed in N2. We observe the energy- and angle-dependent Cooper minimum and shape resonance directly in the laboratory-frame HHG yield by achieving a high degree of alignment, ⟨cos2θ⟩≥0.8. The interplay between PICS and rotational revivals is confirmed by simulations using the quantitative rescattering theory. Our method of extracting molecular-frame structural information points the way to similar measurements in more complex molecules.