On deformations of pasting diagrams

dc.citation.epage53en_US
dc.citation.issue2en_US
dc.citation.jtitleTheory and Applications of Categoriesen_US
dc.citation.spage24en_US
dc.citation.volume22en_US
dc.contributor.authorYetter, David
dc.contributor.authoreiddyetteren_US
dc.date.accessioned2015-04-17T16:43:28Z
dc.date.available2015-04-17T16:43:28Z
dc.date.issued2009-06-01
dc.date.published2009en_US
dc.description.abstractWe adapt the work of Power to describe general, not-necessarily composable, not-necessarily commutative 2-categorical pasting diagrams and their composable and commutative parts. We provide a deformation theory for pasting diagrams valued in the 2-category of k-linear categories, paralleling that provided for diagrams of algebras by Gerstenhaber and Schack, proving the standard results. Along the way, the construction gives rise to a bicategorical analog of the homotopy G-algebras of Gerstenhaber and Voronov.en_US
dc.identifier.urihttp://hdl.handle.net/2097/18936
dc.language.isoen_USen_US
dc.relation.urihttp://www.tac.mta.ca/tac/volumes/22/2/22-02abs.htmlen_US
dc.rightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectPasting diagramsen_US
dc.subjectPasting schemesen_US
dc.subjectDeformation theoryen_US
dc.titleOn deformations of pasting diagramsen_US
dc.typeArticle (publisher version)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YetterTheoryAppCats2009.pdf
Size:
273.68 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: