Heterogeneity of spiral wear patterns produced by local heating on amorphous polymers


We report on spiral wear patterns produced at constant angular velocity by hot tip atomic force microscopy (HT-AFM) on surfaces of two common amorphous polymers: polystyrene (PS) and polymethylmethacrylate (PMMA). Topography of these patterns is obtained with regular AFM cantilevers. Topography cross-sections taken from a center of each spiral at a given azimuthal angle Θ relate changes of surface corrugation h[subscript corr] with tangential velocity v of a thermal cantilever. Polymer wear is characterized by a power law hsubscript corr = α(v=v[subscript max])[superscript –β] , which yields a pre-factor α and an exponent β. Below the glass transition temperature T[subscript g], α is polymer specific and β varies weakly between similar conditions and samples. Variations of β are hypothesized to reflect polymer relaxation processes, which are expected to vary only weakly between amorphous polymers. At and above T[subscript g], α approaches initial thermal tip indentation depth within a polymer, β plummets, and a power law relation of h[subscript corr] with v diverges. These results are explained by heterogeneous wear around T[subscript g] due to a local nature of glass transition. At all studied temperatures, additional wear heterogeneities are found as due to position on the polymer and Θ. Variations of α and β with position on the polymer are found to be only marginally larger then uncertainties of the thermal tip-polymer interface temperature. Variations of α and β with Θ are found to be largely influenced by buckling of thermal cantilevers traveling in a spiral pattern.



Spiral wear patterns, Nanostructures, Polymers, Atomic force microscopy (AFM), Wear