Estimating Mixture of Gaussian Processes by Kernel Smoothing

dc.citation.doi10.1080/07350015.2013.868084en_US
dc.citation.epage270en_US
dc.citation.issue2en_US
dc.citation.jtitleJournal of Business & Economic Statisticsen_US
dc.citation.spage259en_US
dc.citation.volume32en_US
dc.contributor.authorHuang, Mian
dc.contributor.authorLi, Runze
dc.contributor.authorWang, Hansheng
dc.contributor.authorYao, Weixin
dc.contributor.authoreidwxyaoen_US
dc.date.accessioned2014-12-03T16:54:30Z
dc.date.available2014-12-03T16:54:30Z
dc.date.issued2014-12-03
dc.date.published2014en_US
dc.description.abstractWhen functional data are not homogenous, for example, when there are multiple classes of functional curves in the dataset, traditional estimation methods may fail. In this article, we propose a new estimation procedure for the mixture of Gaussian processes, to incorporate both functional and inhomogenous properties of the data. Our method can be viewed as a natural extension of high-dimensional normal mixtures. However, the key difference is that smoothed structures are imposed for both the mean and covariance functions. The model is shown to be identifiable, and can be estimated efficiently by a combination of the ideas from expectation-maximization (EM) algorithm, kernel regression, and functional principal component analysis. Our methodology is empirically justified by Monte Carlo simulations and illustrated by an analysis of a supermarket dataset.en_US
dc.identifier.urihttp://hdl.handle.net/2097/18777
dc.language.isoen_USen_US
dc.relation.urihttp://www.tandfonline.com/doi/full/10.1080/07350015.2013.868084#.U6BtzMpdXU8en_US
dc.rightsThis is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Business & Economic Statistics on 2014, available online: http://www.tandfonline.com/doi/full/10.1080/07350015.2013.868084#.U6BtzMpdXU8.en_US
dc.subjectIdenti abilityen_US
dc.subjectEM algorithmen_US
dc.subjectKernel regressionen_US
dc.subjectGaussian processen_US
dc.subjectFunctional principal component analysisen_US
dc.titleEstimating Mixture of Gaussian Processes by Kernel Smoothingen_US
dc.typeArticle (author version)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YaoJB&EStats2014.pdf
Size:
353.81 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: