Bayesian mixture labeling and clustering

dc.citation.doidoi:10.1080/03610926.2010.526741en_US
dc.citation.epage421en_US
dc.citation.issue3en_US
dc.citation.jtitleCommunications in Statistics—Theory and Methodsen_US
dc.citation.spage403en_US
dc.citation.volume41en_US
dc.contributor.authorYao, Weixin
dc.contributor.authoreidwxyaoen_US
dc.date.accessioned2012-07-11T22:39:51Z
dc.date.available2012-07-11T22:39:51Z
dc.date.issued2012-07-11
dc.date.published2012en_US
dc.description.abstractLabel switching is one of the fundamental issues for Bayesian mixture modeling. It occurs due to the nonidentifiability of the components under symmetric priors. Without solving the label switching, the ergodic averages of component specific quantities will be identical and thus useless for inference relating to individual components, such as the posterior means, predictive component densities, and marginal classification probabilities. In this article, we establish the equivalence between the labeling and clustering and propose two simple clustering criteria to solve the label switching. The first method can be considered as an extension of K-means clustering. The second method is to find the labels by minimizing the volume of labeled samples and this method is invariant to the scale transformation of the parameters. Using a simulation example and two real data sets application, we demonstrate the success of our new methods in dealing with the label switching problem.en_US
dc.identifier.urihttp://hdl.handle.net/2097/14025
dc.relation.urihttp://www.tandfonline.com/doi/abs/10.1080/03610926.2010.526741en_US
dc.rightsThis is an electronic version of an article published in Communications in Statistics—Theory and Methods, 41(3), 403-421. Communications in Statistics—Theory and Methods is available online at: http://www.tandfonline.com/doi/abs/10.1080/03610926.2010.526741en_US
dc.subjectBayesian mixturesen_US
dc.subjectClusteringen_US
dc.subjectK-meansen_US
dc.subjectLabel switchingen_US
dc.subjectMarkov chain Monte Carloen_US
dc.titleBayesian mixture labeling and clusteringen_US
dc.typeArticle (author version)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yao CommInStat-TheoryMethod 2012.pdf
Size:
2.19 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: