Representation of vector fields
dc.citation.doi | http://doi.org/10.14419/gjma.v3i2.4577 | en_US |
dc.citation.epage | 76 | en_US |
dc.citation.issn | 2307-9002 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.jtitle | Global Journal of Mathematical Analysis | en_US |
dc.citation.spage | 73 | en_US |
dc.citation.volume | 3 | en_US |
dc.contributor.author | Ramm, Alexander G. | |
dc.contributor.authoreid | ramm | en_US |
dc.date.accessioned | 2015-08-04T00:47:07Z | |
dc.date.available | 2015-08-04T00:47:07Z | |
dc.date.issued | 2015-06-01 | |
dc.date.published | 2015 | en_US |
dc.description.abstract | A simple proof is given for the explicit formula which allows one to recover a C2 – smooth vector field A=A(x) in R3, decaying at infinity, from the knowledge of its ∇×A and ∇⋅A. The representation of A as a sum of the gradient field and a divergence-free vector fields is derived from this formula. Similar results are obtained for a vector field in a bounded C2 - smooth domain. | en_US |
dc.identifier.uri | http://hdl.handle.net/2097/20128 | |
dc.language.iso | en_US | en_US |
dc.publisher | Science Publishing Corporation | en_US |
dc.relation.uri | http://doi.org/10.14419/gjma.v3i2.4577 | en_US |
dc.rights | Attribution 3.0 Unported (CC BY 3.0) | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/ | |
dc.subject | Vector fields; Representation of vector fields | en_US |
dc.title | Representation of vector fields | en_US |
dc.type | Article (publisher version) | en_US |