Mitigation of enteric foodborne pathogens in raw and minimally processed pet food using food additives

dc.contributor.authorKiprotich, Samuel Sugut
dc.date.accessioned2023-08-11T14:56:00Z
dc.date.available2023-08-11T14:56:00Z
dc.date.graduationmonthAugust
dc.date.issued2023
dc.description.abstractRaw meat-based diets (RMBDs) are minimally processed pet foods that are gaining in popularity, but they pose a public health risk because they can harbor enteric foodborne pathogens such as Salmonella enterica. They consist mainly of raw/uncooked animal sourced proteins (poultry, beef, veal, fish) which can be supplemented with cereals or tubers. However, these diets cannot be heat-processed, fermented, rendered, or extracted by their definition, and thus are potential vectors for the transmission of enteric foodborne pathogens. This study investigated the antimicrobial efficacy of encapsulated and raw glucono delta lactone (GDL), citric acid (CA), and lactic acid (LA) when challenged against S. enterica in a model RMBD for dogs. The results showed that both encapsulated and raw CA and LA had higher log reductions of S. enterica compared to GDL. Encapsulated CA and LA at 1.0% (w/w) exhibited higher (p<0.05) log reductions and preserved product quality compared to the raw acidulants (CA and LA) at 1.0%. Increasing the concentration of acidulants from 2.0 to 3.0% increased (p<0.05) the log reduction of the pathogens significantly, but resulted in discoloration, weeping, and syneresis of the RMBDs. In a subsequent study, combinations of encapsulated and raw acidulants were evaluated for their antimicrobial efficacy against Salmonella enterica. The results showed that combinations of raw and encapsulated acidulants resulted in significantly lower counts of S. enterica compared to when lactic and citric acids were used alone. Encapsulated acidulants (LE+CE) had a higher inactivation rate of the pathogen than when (LR+CR) was used as a treatment. The rate of inactivation of S. enterica increased over time. There was a significant interaction (p<0.05) between time and treatment in the rate of inactivation of S. enterica. The prediction models revealed a significant increase (p<0.05) in the rate of pathogen inactivation when inoculum levels increased from 6 to 9 log CFU/mL. There was a significant interaction between inoculum level and treatments on the rate of inactivation of the pathogens in the predictive models (p<0.05). Overall, the Weibull model performed better than the log linear models. The Weibull models were appropriate for modelling the survival kinetics of S. enterica in RMBDs treated with combinations of raw and encapsulated acidulants. In conclusion, combinations of encapsulated and raw acidulants can be used to pasteurize RMBDs and predictive models are useful microbial food safety tools in the prediction of the survival and inactivation of spoilage and pathogenic bacteria in RMBDs.
dc.description.advisorGreg Aldrich
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Grain Science and Industry
dc.description.levelDoctoral
dc.identifier.urihttps://hdl.handle.net/2097/43457
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectRaw pet food
dc.subjectRMBDs
dc.subjectAcidulants
dc.subjectSalmonella
dc.subjectDogs
dc.titleMitigation of enteric foodborne pathogens in raw and minimally processed pet food using food additives
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SamuelKiprotich2023.pdf
Size:
1.72 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.6 KB
Format:
Item-specific license agreed upon to submission
Description: