Exploring students’ patterns of reasoning

Date

2012-04-25

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

As part of a collaborative study of the science preparation of elementary school teachers, we investigated the quality of students’ reasoning and explored the relationship between sophistication of reasoning and the degree to which the courses were considered inquiry oriented. To probe students’ reasoning, we developed open-ended written content questions with the distinguishing feature of applying recently learned concepts in a new context. We devised a protocol for developing written content questions that provided a common structure for probing and classifying students’ sophistication level of reasoning. In designing our protocol, we considered several distinct criteria, and classified students’ responses based on their performance for each criterion. First, we classified concepts into three types: Descriptive, Hypothetical, and Theoretical and categorized the abstraction levels of the responses in terms of the types of concepts and the inter-relationship between the concepts. Second, we devised a rubric based on Bloom’s revised taxonomy with seven traits (both knowledge types and cognitive processes) and a defined set of criteria to evaluate each trait. Along with analyzing students’ reasoning, we visited universities and observed the courses in which the students were enrolled. We used the Reformed Teaching Observation Protocol (RTOP) to rank the courses with respect to characteristics that are valued for the inquiry courses. We conducted logistic regression for a sample of 18 courses with about 900 students and reported the results for performing logistic regression to estimate the relationship between traits of reasoning and RTOP score. In addition, we analyzed conceptual structure of students’ responses, based on conceptual classification schemes, and clustered students’ responses into six categories. We derived regression model, to estimate the relationship between the sophistication of the categories of conceptual structure and RTOP scores. However, the outcome variable with six categories required a more complicated regression model, known as multinomial logistic regression, generalized from binary logistic regression. With the large amount of collected data, we found that the likelihood of the higher cognitive processes were in favor of classes with higher measures on inquiry. However, the usage of more abstract concepts with higher order conceptual structures was less prevalent in higher RTOP courses.

Description

Keywords

Reasoning, Rubric, Reform, Inquiry teaching, RTOP, reformed teaching observation protocol, logisitic regression, Bloom's revised taxonomy, National study of undergraduate science, transfer of learning, conceptual strcuture, backward design, Multinomial logistic regression, binary logistic regression

Graduation Month

May

Degree

Doctor of Philosophy

Department

Department of Physics

Major Professor

Dean A. Zollman

Date

2012

Type

Dissertation

Citation