Automatic assessment of biological control effectiveness of the egg parasitoid Trichogramma bourarachar against Cadra cautella using machine vision



Journal Title

Journal ISSN

Volume Title


Kansas State University


The primary objective of this research is to achieve automatic evaluation of the efficiency of using Trichogramma bourarachae for biological control of Cadra (=Ephestia) cautella by calculating the rate of parasitization. Cadra cautella is a moth feeding as a larva on dried fruit as well as stored nuts, seeds, and other warehouse foodstuffs. It attacks dates from ripening stages while on tree, throughout storage, and until consumption. These attacks cause significant qualitative and quantitative damages, which negatively affect dates’ marketability, resulting in economic losses. To achieve this research goal, tasks were accomplished by developing image processing algorithms for detecting, identifying, and differentiating between three Cadra cautella egg categories based on the success of Trichogramma parasitization against them. The egg categories were parasitized (black and dark red), fertile (unhatched yellow), and hatched (white) eggs. Color, intensity, and shape information was obtained from digital images of Cadra eggs after they were subjected to Trichogramma parasitization and used to develop detection algorithms. Two image processing methods were developed. The first method included segmentation and extractions of color and morphological features followed by watershed delineation, and is referred to as the "Watershed Method" (WT). The second method utilized the Hough Transformation to find circular objects followed by convolution filtering, and is referred to as the "Hough Transform Method" (HT). The algorithms were developed based on 2 images and then tested on more than 40 images. The WT and the HT methods achieved correct classification rates (CCRs) of parasitized eggs of 92% and 96%, respectively. Their CCRs of yellow eggs were 48% and 94%, respectively, while for white eggs the CCRs were 42% and 73%. Both methods performed satisfactorily in detecting the parasitized eggs, but the HT outperformed the WT in detecting the unparasitized eggs. The developed detection methods will enable automatic evaluation of biological control of Cadra (=Ephestia) cautella using Trichogramma bourarachae. Moreover, with few adjustments these methods can be used in similar applications such as detecting plant diseases in terms of presence of insects or their eggs.



Date fruit, Trichogramma parasitization, Cadra egg detection, Watershed delineation, Hough transformation

Graduation Month



Master of Science


Department of Biological & Agricultural Engineering

Major Professor

Naiqian Zhang