Molecular aspects of sand-fly-based vaccine development

Date

2011-06-07

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

The emergence and reemergence of vector-borne diseases pose significant threats to humans and other animals worldwide. Although vector control relies mostly on insecticides, the emergence of insecticide resistance urges for the development of new strategies to control the spread of such diseases. For sand fly-transmitted leishmaniasis, Transmission Blocking Vaccines (TBV) may constitute a feasible strategy to impair Leishmania transmission from infected to uninfected vertebrate hosts. Moreover, sand fly saliva-based vaccines represent an alternative or complementary approach as these vaccines protect different mammalian hosts against Leishmania. Based on the potential use of sand fly molecules as vaccines against leishmaniasis, we assessed the potential of Phlebotomus papatasi midgut secreted proteins as TBV candidates and the expression variability of sand fly salivary gland genes. Regarding the TBV approach, we took advantage of the RNA interference (RNAi) technique to evaluate the effects of knocking down P. papatasi midgut-specific genes on Leishmania major development within the sand fly midgut. Whereas peritrophin 1 (PpPer1) knock down led to increased Le. major load by 39%, knocking down chitinase 1 (PpChit1) reduced Le. major load in P. papatasi midguts by 63%. Thus, our data strongly suggest that PpChit1 constitutes a potential target for TBV approaches against Leishmania transmission in endemic areas. Concerning protective vaccines based on salivary gland secreted proteins, we searched for expression polymorphism in selected salivary gland genes in natural and colonized populations of P. papatasi. Significant differences in salivary gland gene expression were not only exhibited in P. papatasi specimens collected in different geographic habitats but also seasonal difference in gene expression was displayed by specimens belonging to the same population. As antigen dose is an important component of immune responses, different doses of salivary protein inoculated into host skin may interfere with vaccine protection. Thus, the efficacy of sand fly saliva-based vaccine upon exposure to different salivary protein doses must be evaluated before deployment in endemic areas. Our data also ruled out some biotic factors as responsible for fine-tuning the expression of such genes. Overall, this dissertation makes significant contribution to the development of sand fly-based vaccines against leishmaniasis.

Description

Keywords

Sand flies, Phlebotomus papatasi, Vaccine, Peritrophic matrix, Salivary gland, Gene expression

Graduation Month

August

Degree

Doctor of Philosophy

Department

Department of Entomology

Major Professor

Marcelo Ramalho-Ortigao

Date

2011

Type

Dissertation

Citation