Kinetic percolation

Date

2017-05-05

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We demonstrate that kinetic aggregation forms superaggregates that have structures identical to static percolation aggregates, and these superaggregates appear as a separate phase in the size distribution. Diffusion limited cluster-cluster aggregation (DLCA) simulations were performed to yield fractal aggregates with a fractal dimension of 1.8 and superaggregates with a fractal dimension of D = 2.5 composed of these DLCA supermonomers. When properly normalized to account for the DLCA fractal nature of their supermonomers, these superaggregates have the exact same monomer packing fraction, scaling law prefactor, and scaling law exponent (the fractal dimension) as percolation aggregates; these are necessary and sufficient conditions for same structure. The size distribution remains monomodal until these superaggregates form to alter the distribution. Thus the static percolation and the kinetic descriptions of gelation are now unified.

Description

Citation: Heinson, W. R., Chakrabarti, A., & Sorensen, C. M. (2017). Kinetic percolation. Physical Review E, 95(5), 6. doi:10.1103/PhysRevE.95.052109

Keywords

Laminar Diffusion Flames, Fractal Dimension, Gelation, Gels, Aggregation, Physics

Citation