A cost analysis for the densification and transportation of cellulosic biomass for ethanol production.

K-REx Repository

Show simple item record

dc.contributor.author Wilson, Jonathan
dc.date.accessioned 2011-08-11T16:28:40Z
dc.date.available 2011-08-11T16:28:40Z
dc.date.issued 2011-08-11
dc.identifier.uri http://hdl.handle.net/2097/12003
dc.description.abstract The current forage handling equipment in the cellulosic ethanol industry is severely limited by the low bulk densities of baled and ground biomass. Low bulk densities contribute to flowability problems and lack of maximizing trailer capacities. By pelleting we can increase the bulk density and flowability characteristics of forages. The objectives of this research were to evaluate (1) the energy requirements of grinding sorghum stalks, corn stover, wheat straw and big bluestem through two different screen sizes, (2) the energy requirements of pelleting forages from the two grind sizes, and (3) the physical properties of our various end products. The two screen types were found to have significantly different energy consumptions from each other (P<.0001). The majority of the four forage types were also found to have significantly different energy consumptions for grinding from each other (P<.0001). The exception was big bluestem vs. corn (P=.2329). All of the 1/8” vs. 1/8” and 1/8” vs. 3/8” grinds were significantly different from each other (Most P<.0001 and all at least P<.05). 3/8” sorghum was significant against all other 3/8” forage types. No other comparisons were significant for 3/8” vs. 3/8” (All 3/8” sorghum P<.0001). Production rate through the 3/8” screen was almost 3 times that of the 1/8” screen (Average of 400 lb/hr vs. 150 lb/hr). The two screen types were found to have significantly different energy consumptions for pelleting from each other (P<.0001). The four forage types were also found to have significantly different energy consumptions from each other (P<.0001) while the big blue vs. wheat did not. (P=.1192). Particle length for the 1/8” grind ranged from .06 inches to .07 inches, while the 3/8” grind ranged from .08 inches to .12 inches. Pelleting increased bulk density from 6.24 lb/ft3 to 9.99 lb/ft3 for biomass grinds to 31.17 lb/ft3 to 43.77 lb/ft3 for pelleted biomass. Pellet quality ranged from 93% to 98%. A cost analysis indicated that it would take roughly $20 extra per ton for the transportation, pre-processing and storage of pelleted cellulosic biomass than whole corn. This cost is still almost half that of the cost for baled biomass. en_US
dc.language.iso en_US en_US
dc.publisher Kansas State University en
dc.subject Bulk Density en_US
dc.subject Cellulosic Ethanol en_US
dc.subject Pelleting en_US
dc.subject Logistics en_US
dc.title A cost analysis for the densification and transportation of cellulosic biomass for ethanol production. en_US
dc.type Thesis en_US
dc.description.degree Master of Science en_US
dc.description.level Masters en_US
dc.description.department Department of Grain Science and Industry en_US
dc.description.advisor Leland McKinney en_US
dc.subject.umi Agriculture, General (0473) en_US
dc.subject.umi Economics, Agricultural (0503) en_US
dc.date.published 2011 en_US
dc.date.graduationmonth August en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search K-REx


Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

cads@k-state.edu