Establishing a protocol for sorghum (Sorghum bicolor) gene transformation

K-REx Repository

Show simple item record Navrude, Spencer 2020-12-03T22:03:56Z 2020-12-03T22:03:56Z 2021-05-01
dc.description.abstract Sorghum (Sorghum bicolor) is one of the most utilized crops in the world. Not only does it provide a staple food source for arid regions of the planet, it is also important for sustaining livestock production, as well as advancements in its use in biofuels. Despite the importance of sorghum for a large swath of the world, progress for using genetic transformation to develop more useful sorghum varieties has been far outpaced by other similar cereal crops. Thus, developing and improving a protocol to reliably transform sorghum is of great interest, in which the results will be beneficial to improving agricultural use all over the world. The objective of this study was to identify results of sorghum transformation from many sources and apply successful tissue culture and transformation techniques into one successful protocol. Positive control was established before transformation to guarantee embryo regeneration prior to inoculation. Two different media types were established and analyzed for their production and quality of callus and shoot regeneration. A comparison was made on two medium types, referred to as “B” media [2,4-D for callus induction and 6-Benzylaminopurine (BAP)/indole-3-acetic acid (IAA) for regeneration] and “S” media [2,4-D/BAP for callus induction and 2,4-D/BAP/thidiazuron (TDZ) for regeneration], respectively. Although both these medium types yielded viable plants with roots and shoots, B media was selected for its successes in callus induction and shoot regeneration. Calluses induced embryos in B media yielded shoots that were larger, more distinct, and easier to separate compared to calluses on S media. Once positive control was established, two bacterial strains, EHA101 and LBA4404, containing the same vector, SbGFPTSCENH3, were evaluated for their efficacy for targeted mutagenesis of sorghum using a CRISPR/Cas9 system. LBA4404 proved to be a more effective bacterial strain than EHA101 in transforming sorghum embryos, with little to no bacterial overgrowth, and higher rates of green callus and shoot emergence. Of all embryos inoculated with Agrobacterium, five plants were fully regenerated into a viable plant on herbicide selection pressure and then acclimated in the soil. To confirm transformation, polymerase chain reaction (PCR) and gel electrophoresis analysis were performed. Our initial result from gel electrophoresis analysis of the five plants indicated that all five plants appeared to be transgenic. After sequencing the genome of the plants, their sequences were aligned and matched with the genomes sequenced from the CENH3 construct and the extracted plasmid. Of the five plants, three of their genomes indicated a 98 to 99% match to both the CENH3 construct and the plasmid. Upon further inspection of the chromatogram results, errors were corrected in the initial results, which showed a 100% match for these three plants. Based on these results, we can confidently say that these three plants are transgenic. en_US
dc.description.sponsorship Heartland Plant Innovations United States Department of Agriculture Kansas Corn Commission en_US
dc.language.iso en_US en_US
dc.subject Sorghum transformation en_US
dc.subject Sorghum Genetics en_US
dc.title Establishing a protocol for sorghum (Sorghum bicolor) gene transformation en_US
dc.type Thesis en_US Master of Science en_US
dc.description.level Masters en_US
dc.description.department Department of Horticulture and Natural Resources en_US
dc.description.advisor Sunghun Park en_US 2021 en_US May en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search K-REx

Advanced Search


My Account


Center for the

Advancement of Digital