Theory of retrieving orientation-resolved molecular information using time-domain rotational coherence spectroscopy

Date

2017-08-28

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

We provide a unified theoretical framework for recently emerging experiments that retrieve fixed-in-space molecular information through time-domain rotational coherence spectroscopy. Unlike a previous approach by Makhija et al. (V. Makhija et al., arXiv:1611.06476), our method can be applied to the retrieval of both real-valued (e.g., ionization yield) and complex-valued (e.g., induced dipole moment) molecular response information. It is also a direct retrieval method without using iterations. We also demonstrate that experimental parameters, such as the fluence of the aligning laser pulse and the rotational temperature of the molecular ensemble, can be quite accurately determined using a statistical method.

Description

Citation: Wang, X., Le, A.-T., Zhou, Z., Wei, H., & Lin, C. D. (2017). Theory of retrieving orientation-resolved molecular information using time-domain rotational coherence spectroscopy. Physical Review A, 96(2), 023424. https://doi.org/10.1103/PhysRevA.96.023424

Keywords

High-order harmonic generation, Multiphoton or tunneling ionization & excitation, Molecules, Schroedinger equation

Citation