A case study on cumulative logit models with low frequency and mixed effects

Date

2017-12-01

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

Data with ordinal responses may be encountered in many research fields, such as social, medical, agriculture or financial sciences. In this paper, we present a case study on cumulative logit models with low frequency and mixed effects and discuss some strengths and limitations of the current methodology. Two plant pathologists requested our statistical advice to fit a cumulative logit mixed model seeking for the effect of six commercial products on the control of a seed and seedling disease in soybeans in vitro. In their attempt to estimate the model parameters using a generalized linear mixed model approach with PROC GLIMMIX, the model failed to converge. Three alternative approaches to solve the problem were examined: 1) stratifying the data searching for the random effect; 2) assuming the random effect would be small and reducing the model to a fixed model; and 3) combining the original categories of the response variable to a lower number of categories. In addition, we conducted a power analysis to evaluate the required sample size to detect treatment differences. The results of all the proposed solutions were similar. Collapsing categories for a cumulative/proportional odds model has little effect on estimation. The sample size used in the case study is enough to detect a large shift of frequencies between categories, but not for moderated changes. Moreover, we do not have enough information to estimate a random effect. Even when it is present, the results regarding the fixed factors: pathogen, evaluation day, and treatment effects are the same as the obtained by the fixed model alternatives. All six products had a significant effect in slowing the effect of the pathogen, but the effects vary between pathogen species and assessment timing or date.

Description

Keywords

Cumulative, Logit, Multinomial, Mixed

Graduation Month

December

Degree

Master of Science

Department

Department of Statistics

Major Professor

Perla E. Reyes Cuellar

Date

2017

Type

Report

Citation