Postprandial metabolism and inflammation: novel insights focusing on true-to-life application

Date

2017-08-01

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

The aims of this dissertation were to provide innovative, applicable insights regarding the impact of single-meal consumption on metabolic and inflammatory responses in the acute post-meal (“postprandial”) period. In Chapter 2, the connection between large postprandial glucose and triglyceride (TG) fluxes and cardiovascular disease (CVD) risk were reviewed. A new marker of metabolic status, Metabolic Load Index (MLI), calculated by adding glucose and TG, was proposed based on several considerations: 1) independent associations between postprandial glucose and TG with CVD risk, although the substrates are considered to increase risk through similar mechanisms; 2) postprandial glucose and TG responses are interrelated; and 3) meals consumed in daily life typically contain both carbohydrate and fat. MLI may be useful in characterizing metabolic status/risk in both clinical and research settings. Chapter 3 was a systematic review with the purpose of objectively describing postprandial responses (i.e. magnitude and timing) to a high-fat meal (HFM) in five commonly assessed inflammatory markers: interleukin (IL)-6, C-reactive protein (CRP), tumor necrosis factor (TNF)-α, IL-1β, and IL-8. IL-6 increased in >70% of studies, starting at ~1.4 pg/mL pre-meal and peaking at ~2.9 pg/mL ~6 hours post-HFM. Other markers (CRP, TNF-α, IL-1β, and IL-8) did not change after the HFM in the majority of studies. These findings suggest that IL-6 is an inflammatory marker that routinely increases following HFM consumption. Future postprandial studies should further investigate IL-6, as well as explore novel markers of inflammation. In Chapter 4, we compared the metabolic and inflammatory responses to a HFM (17 kcal/kg, 60% fat), representative of meals used in previous postprandial studies, to two meal trials that were more reflective of typical eating patterns: a moderate-fat meal (MFM; 8.5 kcal/kg, 30% fat), and a biphasic meal (BPM), in which the MFM was consumed twice, three hours apart. The HFM elicited a greater total area-under-the-curve (tAUC) TG response (1348.8 ± 783.7 mg/dL x 6 hrs) compared to the MFM (765.8 ± 486.8 mg/dL x 6 hrs; p = 0.0005) and the BPM (951.8 ± 787.7 mg/dL x 6 hrs; p = 0.03), but the MFM and BPM were not different (p = 0.72). It appears that the large postprandial TG response observed in previous studies may not be representative of the daily metabolic challenge for many individuals. Chapter 5 assessed the impact of both aging and chronic physical activity level on postprandial metabolic responses by comparing three groups: younger active (YA), older active (OA), and older inactive (OI) adults. The TG tAUC response was lower in YA (407.9 ± 115.1 mg/dL x 6 hr) compared to OA (625.6 ± 169.0 mg/dL x 6 hr; p = 0.02) and OI (961.2 ± 363.6 mg/dL x 6 hr; p = 0.0002), while the OA group TG tAUC was lower than OI (p = 0.02). Thus, it is likely that both aging and chronic physical activity level impact the postprandial metabolic response. This series of projects provides needed clarification regarding the postprandial metabolic and inflammatory responses to single-meal intake, particularly in the context of real-life application.

Description

Keywords

Postprandial, Metabolism, Inflammation, Triglycerides, Aging, Physical activity

Graduation Month

August

Degree

Doctor of Philosophy

Department

Department of Human Nutrition

Major Professor

Sara Rosenkranz

Date

2017

Type

Dissertation

Citation