Preparation, structure and properties of octenylsuccinic anhydride modified starch

K-REx Repository

Show simple item record Bai, Yanjie 2017-01-31T19:41:29Z 2017-01-31T19:41:29Z 2013-05-01 en_US
dc.description.abstract The reaction of starch and octenylsuccinic anhydride (OSA) produces lipophilic starch that has the ability to stabilize oil-in-water emulsions. The functional properties of octenylsuccinate (OS) starch depend on its molecular structure and distribution of OS groups. Structures of OSA and OS starches were investigated by NMR spectroscopy. In granular OS starches, OS groups were substituted at O-2, O-3 positions, but not the O-6 position. Distribution of OS groups was investigated by enzyme hydrolysis followed by chromatography analysis. OS substitution predominantly occurred at the amorphous region of the starch granules. OS starch of degree of substitution (DS) 0.018 had OS groups located close to the branching points, whereas the OS substitution in OS starch of DS 0.092 occurred near non-reducing ends as well as the branching points. OS starches with different substitution patterns were prepared from two approaches. OS starches from the first approach had OS substitution near the branching points or non-reducing ends, whereas OS starches from the second approach had OS groups distributed randomly throughout the starch chains. A method of preparing OS starch by dry heating a mixture of waxy maize starch and OSA was developed. The optimum reaction was investigated and found to be pH 8.5 by addition of 3% NH4HCO3, 180 °C and 2 h. Reaction efficiency of ca. 90% was obtained at OSA levels from 1 to 6%. The OS starch had a DS of 0.0202 with 98% solubility when reacted with 3% OSA. Transglucosidation occurred during the reaction. The OS starch had a degree of branching of 19.8 %. The highly debranched OS starch showed excellent emulsification property for vitamin E and vitamin A. The structural changes of insoluble native waxy maize starch granules to cold watersoluble pyrodextrin during dextrinization under acidic conditions were investigated. We proposed that the starch was hydrolyzed by acid in the amorphous regions. Unwinding of the double helices also occurred, and crystallite size decreased. Starch molecules were hydrolyzed into small molecule fractions but remain in a radial arrangement. Glycosyl linkages including - (1 2), -(1 6), -(1 2), and -(1 6) linkages were formed and the majority starch chain terminals were 1,6-anhydro- -D- lucopyranose. Transglucosidation occurred during dextrinization and the resulted pyrodextrin was highly branched. en_US
dc.language.iso en_US en_US
dc.publisher Kansas State University en
dc.subject Starch en_US
dc.subject Octenylsuccinate anhydride en_US
dc.subject Emulsion en_US
dc.title Preparation, structure and properties of octenylsuccinic anhydride modified starch en_US
dc.type Dissertation en_US Doctor of Philosophy en_US
dc.description.level Doctoral en_US
dc.description.department Department of Grain Science and Industry en_US
dc.description.advisor Yong Cheng Shi en_US 2013 en_US May en_US

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search K-REx

Advanced Search


My Account


Center for the

Advancement of Digital