Measurement and Comparison of Glass Transition and Sticky Point Temperatures of Distillers Dried Grains with Solubles (DDGS) with Varying Condensed Distillers Solubles (CDS) and Drying Temperature Levels

K-REx Repository

Show simple item record

dc.contributor.author Bhadra, Rumela
dc.contributor.author Rosentrater, Kurt A.
dc.contributor.author Muthukumarappan, Kasiviswanath
dc.date.accessioned 2016-08-11T20:26:51Z
dc.date.available 2016-08-11T20:26:51Z
dc.date.issued 2014-07-23
dc.identifier.uri http://hdl.handle.net/2097/32887
dc.description Citation: Bhadra, R., K. Muthukumarappan, and K. A. Rosentrater. 2014. Measurement and Comparison of Glass Transition and Sticky Point Temperatures of Distillers Dried Grains with Solubles (DDGS) with Varying Condensed Distillers Solubles (CDS) and Drying Temperature Levels. Cereal Chemistry 91(4):406-413.
dc.description.abstract Distillers dried grains with solubles (DDGS) is the main coproduct of the U.S. fuel ethanol industry and has significantly impacted the livestock feed markets in recent years. Particle agglomeration and subsequent flowability problems during storage and transport are often a hindrance, a nuisance, and expensive. This paper aims at characterizing the glass transition (Tg) and sticky point (Ts) temperatures of DDGS samples prepared with varying condensed distillers solubles (CDS) levels (10, 15, and 20%, wb), drying temperatures (100, 200, and 300°C), and moisture contents (0, 10, and 20%, db), and it discusses implications on DDGS flowability behavior. Distillers wet grains were combined with specified levels of CDS and dried in a convection-style laboratory oven to produce DDGS. Subsequently, predetermined amounts of water were added to the DDGS to achieve desired moisture content levels. To determine Tg (°C), a differential scanning calorimeter was used, whereas Ts (°C) was determined through a novel technique with a rheometer. Results indicated high correlations between observed Ts and observed Tg (R2 = 0.87) data for DDGS samples. Also, the empirical model for predicted Tg = f (drying temperature, CDS level, and moisture content) based on the Gordon–Taylor model showed favorable R2 (0.74). Stickiness of DDGS increased with an increase in moisture content, indicating flow problems resulting from moisture. It was found that drying temperatures and CDS levels each had significant effects on Tg and Ts as well.
dc.relation.uri http://doi.org/10.1094/CCHEM-05-13-0106-R
dc.rights This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.uri http://rightsstatements.org/vocab/InC/1.0/
dc.title Measurement and Comparison of Glass Transition and Sticky Point Temperatures of Distillers Dried Grains with Solubles (DDGS) with Varying Condensed Distillers Solubles (CDS) and Drying Temperature Levels
dc.type Article
dc.date.published 2014
dc.citation.doi 10.1094/CCHEM-05-13-0106-R
dc.citation.epage 413
dc.citation.issn 0009-0352
dc.citation.issue 4
dc.citation.jtitle Cereal Chemistry
dc.citation.spage 406
dc.citation.volume 91
dc.contributor.authoreid rbhadra


Files in this item

This item appears in the following Collection(s)

Show simple item record

This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). Except where otherwise noted, the use of this item is bound by the following: This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).

Search K-REx


Advanced Search

Browse

My Account

Statistics








Center for the

Advancement of Digital

Scholarship

cads@k-state.edu